Органоїд — це мініатюрна та спрощена тривимірна версія органу, створена in vitro, яка імітує ключову функціональну, структурну та біологічну складність цього органу.
Органоїд | |
Очікувана тривалість життя | 80 день[1] |
---|---|
З матеріалу | стовбурові клітини |
Органоїд у Вікісховищі |
Органоїди — це тривимірні (3D) клітинні структури, які походять зі стовбурових клітин або тканиноспецифічних клітин-попередників, і точно імітують мікроархітектуру та функціональність конкретних органів або тканин в організмі людини чи тварини.
Науковці біомедицини та біомедичні інженери використовують органоїди для вивчення нормального розвитку, моделювання захворювань у лабораторії, відкриття та розробки ліків, персоналізованої діагностики та медицини, регенеративної медицини, клітинної терапії стовбуровими клітинами, тканинної інженерії та досліджень можливостей друку органів.
Історія
Ранні експерименти (1900-ті)
Культивування органоїдів міцно базується на методології 3D-культивування клітин, розробленій протягом останнього століття. Ще в 1906 році так званий «метод висячої краплі» дозволяв культивувати клітини в 3D.
Одночасно дослідники вивчали здатність дисоційованих клітин до регенерації. Спроби створити органи in vitro розпочалися з одного з перших експериментів «дисоціації-реагрегації», коли Генрі Ван Пітерс Вілсон у 1907 році продемонстрував, що механічно дисоційовані клітини губки можуть реагрегуватись та самоорганізовуватися для створення цілого організму. Вілсон показав, що губки можна розщепити на окремі клітини, які здатні повторно асоціюватися в тканиноподібні структури. Те ж саме, пізніше, показали на прикладі кишковопорожнинних у 1914 році та ембріональних клітин амфібій у 1940-х роках.
1920-1970-ті роки
У 1920-х роках увага дослідників зосередилась на ембріології, зокрема на морфогенезі кінцівок, що призвело до розвитку трубчастих культур і методу годинникового скла. Трубчасті культури передбачали вирощування тканин на увігнутій скляній поверхні, на яку вбудовували та культивували фрагменти тканин або зачатки органів. Метод годинникового скла, запроваджений Феллом і Робісоном у 1929 році, використовував увігнуту скляну поверхню, що утримує плазмовий згусток для культивування фрагментів тканини.
До 1950-х років різні органи успішно культивували in vitro, хоча й з обмеженнями. В основному дослідники працювали над тим, щоб уникнути міграції клітин із зразка тканини, намагалися оптимізувати умови газообміну, зменшити некроз. Метод лінзового паперу також дозволив культивувати тонкі зрізи органів протягом цього періоду.
На початку 1950-х років робота Москона з кінцівками курячого ембріона та зачатками нирок привела до створення методів ферментативного травлення, суспензійної культури та реагрегації клітин.
Також, у цю епоху почали з’являтися методи культури на основі колагену. У 1930-х роках Хузелла експериментував з культивуванням клітин на волокнистому колагені. Значний розвиток відбувся в 1956 році, коли Роберт Ерманн і Джордж Гей представили метод відновлення колагену, вилученого з сухожиль щурячого хвоста, у вигляді прозорого гелю. Це нововведення полегшило культивування різних клітинних ліній і тканин, покращуючи їх виживання. Роком пізніше, Ласфарг створив метод, використовуючи колагеназу для дисоціації тканини молочної залози дорослої миші, утворюючи органоїди молочної залози (фрагменти проток), позбавлені фібробластів і адипоцитів. Це було передумовою, яка згодом призвела до створення методу отримання мільйонів життєздатних гепатоцитів Беррі та Френдом у 1969 році шляхом перфузії печінки цією самою колагеназою.
У 1970-х роках дослідники помітили, що зміна фізичний вплив на субстрат та клітини може викликати специфічну диференціацію клітин. В той же час, Річард Сварм і його команда працювали над позаклітинним матриксом хондросарком, виділяючи з них гель з характеристиками базальної мембрани, відомий нині як [en]. Цей гель, багатий ламініном, колагеном IV і фібронектином, зіграв вирішальну роль у вдосконаленні методів культивування органоїдів.
1980-2010-ті роки
1980-ті роки ознаменували значний прогрес у біології стовбурових клітин. Виділення та характеристика ембріональних стовбурових клітин (ЕСК) були ключовими досягненнями в цю епоху. ЕСК, з їх потенціалом створювати різноманітні типи клітин, надихнули дослідників досліджувати їх корисність у створенні органоподібних структур.
Не менш вагомими дослідженнями для галузі органоїдів були дослідження впливу культурального середовища чи позаклітинного матриксу на диференціацію клітин. Декілька таких досліджень в 1980-х роках показали значну роль позаклітинного матриксу у регуляції експресії генів та морфогенезу. Подальші дослідження 1990-х років пролили ще більше світла на роль позаклітинного матриксу в диференціації клітин та утворенні тканиноподібних структур, зокрема на взаємодію позаклітинного матриксу з рецепторами клітин інтегринами, що призводить до каскаду реакцій, змінюючих експресію генів та диференціацію клітин.
Подальші дослідження показали, що морфогенез залежить від взаємодії факторів росту, морфогенів і матриксних металопротеїназ, а також від геометрії тканин.
У 2006 році Яков Нахміас і Девід Одде продемонстрували самозбірку судинних органоїдів печінки, які підтримувалися протягом понад 50 днів in vitro. У 2008 році Йошікі Сасаї та його команда з інституту RIKEN продемонстрували, що стовбурові клітини можливо перетворити на кульки нервових клітин, які самоорганізуються в характерні шари. У 2009 році Сато та команда опублікували в Nature своє дослідження, в якому вони використали стовбурові клітини, які експресують LGR5, ізольовані із первинної кишкової тканини, і показали, що ці стовбурові клітини можуть клонально генерувати архітектуру крипт-ворсинок у 3D-культурі. Базуючись на літературі про молочні залози, згаданій раніше, ці автори також використовували Matrigel для проведення своїх 3D культур і доповнювали їх факторами, необхідними для росту епітелію кишківника. Були створені органоїди, що складаються з центрального просвіту, вистеленого ворсинчастим епітелієм, і кількох оточуючих криптоподібних доменів. Потім ця методологія була успішно використана в культурах шлунка, підшлункової залози, товстої кишки та печінки. Мишачі та людські ембріональні стовбурові клітини (ЕСК) також використовувалися для генерування органоїдів in vitro, таких як поляризована кортикальна тканина мозку та зорові чаші. Також, у 2010 році було продемонструвано виробництво ниркових органоїдів із реногенних стовбурових клітин мишачого плоду.
Індуковані плюрипотентні стовбурові клітини, отримані завдяки епігенетичному перепрограмуванню, які стали науковим проривом у 2006 році, за який Сін'я Яманака та Джон Гердон отримали Нобелівську премію з хімії у 2012 році, стали також додатковим інструментом для вивчення морфогенезу і, згодом, стали одним з основних джерел клітин для конструювання органоїдів.
У 2013 році Ланкастер з командою створили метод культивування, який дозволив генерувати [en] з індукованих плюрипотентних стовбурових клітин, отриманих із фібробластів шкіри.
У 2014 році Цюнь Ван і його колеги розробили гелі на основі колагену-I та синтетичні спінені біоматеріали для культивування та доставки кишкових органоїдів, і інкапсулювали функціоналізовані ДНК наночастинки золота в кишкові органоїди, щоб сформувати механізм для доставки ліків і генотерапії. Також, у 2014 році було продемонстровано, що серцево-судинні органоїди можуть утворюватися з ЕСК шляхом модуляції жорсткості субстрату, до якого вони прилипають. Крім того, у 2014 році були створені перші органоїди сітківки.
У 2015 році Такебе з командою продемонстрували узагальнений метод формування зачатка органу з різноманітних тканин шляхом поєднання специфічних тканин-попередників, отриманих із плюрипотентних стовбурових клітин, або відповідних зразків тканини з ендотеліальними клітинами та мезенхімальними стовбуровими клітинами.
У 2017 році була запропонована нова методика утворення церебральних органоїдів, а журнал Nature Methods визнав органоїди «Методом року 2017».
Загалом, у 2010-х роках спостерігався значний сплеск досліджень органоїдів та їх використання для моделювання нормального розвитку чи розвитку захворювань, для розробки й тестування ліків, та для регенеративної медицини.
2020-сучасність
Через значний потенціал використання органоїдів в багатьох галузях біомедицини, кількість досліджень органоїдів щороку збільшується, порівняно з початком 2010-х, — експоненційно.
- 2021 — отримані з ембріональних стовбурових клітин людини церебральні органоїди успішно трансплантовані в місця контрольованого травматичного ураження головного мозку мишей. Трансплантовані органоїди вижили та диференціювалися в різні типи нейрональних клітин, утворювали нові зв'язки та демонстрували спонтанну активність; також були виявлені індукована васкуляризація та зменшення гліального рубця. Що більш важливо, просторове навчання та пам’ять мишей покращилися після трансплантації органоїдів. Ці висновки засвідчили про те, що церебральний органоїд, імплантований у місця травматичного ураження є потенційним терапевтичним методом для ЧМТ.
- 2022 — коркові церебральні органоїди, отримані зі стовбурових клітин людини й трансплантовані в соматосенсорну кору новонароджених безтимусних щурів, розвивають зрілі типи клітин, які інтегруються в сенсорні та мотиваційні нейронні схеми. В кінці грудня було опубліковане дослідження, що показало успішну інтеграцію мозкових органоїдів з зоровою корою миші.
- 2023 — органоїди людського мозку знову були успішно інтегровані з зоровою системою дорослого щура після трансплантації у великі пошкоджені порожнини в зоровій корі. Дослідження показало успішне відновлення функції після інтеграції мозкового органоїда в ділянку ішемічного інсульту миші. Також було представлено прецизійну роботизовану платформу культур клітин Cell X для ефективного виробництва специфічних для пацієнта іПСК і органоїдів сітківки, демонструючи потенціал для клінічного конвеєрного виробництва іПСК для аутологічної заміни клітин сітківки; пізніше в серпні було представлено ще одну технологію автоматизованого друку органоїдів для тестування та скринінгу ліків. У серпні вийшло дослідження, що описує успішну трансплантацію щурам серцевих органоїдів, сконструйованих з електропровідними кремнієвими нанодротами, в місця ураження інфарктом міоркарда, що сприяло значному функціональному відновленню серця.
Властивості
Органоїди, культивовані зі стовбурових клітин або тканиноспецифічних попередників, є тривимірними структурами, що відображають структуру та функціональність реальних органів. До них основних властивостей відносяться:
- клітинна гетерогенність, що дозволяє вивчати складні процеси та захворювання;
- самоорганізація, що дозволяє відтворювати органоподібні структури;
- і функціональність, що імітуює фізіологію органів для дослідження функцій органів, механізмів захворювання та реакції на ліки.
Ланкастер і Кнобліх визначають органоїд як сукупність органоспецифічних типів клітин, які розвиваються зі стовбурових клітин або органів-попередників, самоорганізуються шляхом сортування клітин і просторово обмежені подібно до in vivo, і демонструє наступні властивості:
- органоїд має кілька органів-специфічних типів клітин;
- органоїд здатний повторювати деякі специфічні функції органу (наприклад, скорочення, нервова активність, ендокринна секреція, фільтрація, виділення);
- його клітини згруповані разом і просторово організовані, подібно до органу.
Розробка органоїдів
Розробка органоїдів включає складний процес, який спрямований на повторення складних структур і функцій різних тканин і органів у контрольованому лабораторному середовищі.
Способи утворення органоїдів
2D проти 3D культурних систем
Утворення органоїдів може відбуватися як у двовимірних (2D), так і в тривимірних (3D) культуральних системах. У той час як 2D-культури використовувалися для деяких ранніх досліджень, 3D-культури набули популярності завдяки їхній здатності більш точно відтворювати середовище in vivo. У 3D-режимі клітини взаємодіють одна з одною та навколишньою матрицею таким чином, що точно імітує природну архітектуру тканин, у результаті чого утворюються органоїди, які краще повторюють фізіологічні функції.
Похідні зі стовбурових клітин проти первинних органоїдів, отриманих із тканин
Органоїди можуть бути створені або зі стовбурових клітин, або з первинних зразків тканин. Органоїди, отримані зі стовбурових клітин, часто з індукованих плюрипотентних стовбурових клітин (iPSC) методом епігенетичного перепрограмування, пропонують перевагу плюрипотентності та можуть бути спрямовані на диференціацію в різні типи клітин. Навпаки, первинні органоїди — це такі, що отримані з тканин in vivo. Обидва підходи мають свої переваги: органоїди, отримані зі стовбурових клітин, забезпечують масштабованість і можливість вивчати більш широкий спектр тканин, тоді як органоїди, отримані з первинних тканин, зберігають генетичні та фенотипові характеристики вихідної тканини.
Матрикси та фактори росту
Вибір позаклітинного матриксу і факторів росту відіграє вирішальну роль у формуванні органоїдів. Компоненти позакрітинного матриксу, такі як Матригель, колаген або ламінін, забезпечують структурну підтримку та біохімічні сигнали, необхідні для клітинної адгезії, проліферації та диференціації. Фактори росту, такі як агоністи [en] і [en], часто використовуються для спрямування конкретних шляхів розвитку під час дозрівання органоїдів. Ці матрикси та фактори вибираються на основі типу тканини та бажаних характеристик органоїдів.
Колоїдні фотонні кристали пропонують численні переваги для органоїдної інженерії, включаючи їх унікальні структури, можливості оптичного маніпулювання, універсальність функціональності та легкість інтеграції в стандартизовані виробничі процеси.
Тканиноспецифічні мікрооточення
Однією з ключових детермінант успішного формування органоїдів є відновлення тканиноспецифічного мікросередовища. Ці мікросередовища складаються з унікальних комбінацій компонентів позаклітинного матриксу, факторів росту та міжклітинних взаємодій. Дослідники ретельно розробляють умови культивування, щоб відтворити ці мікросередовища, дозволяючи органоїдам розвиватися у спосіб, який дуже нагадує їх аналоги in vivo. Цей підхід відіграв важливу роль у створенні органоїдів, які повторюють структуру та функції різних органів, включаючи мозок, кишківник, печінку, нирки, підшлункову залозу, легені, серце, судини, сітківку, внутрішнє вухо та інші.
Досягнення в технології утворення органоїдів
Останні досягнення в техніці утворення органоїдів розширили масштаб і можливості цієї галузі. Ці інновації включають інтеграцію мікрофлюїдики для точного контролю умов культивування, розробку систем органоїд-на-чипі для високопродуктивного скринінгу (див. також Орган на чипі), різноманітні підходи генетичної інженерії, застосування штучного інтелекту та машинного навчання для покращеного аналізу органоїдів, та, навіть, створення роботизованих автоматичних систем для масового виробництва іПСК та органоїдів. Ці передові технології мають потенціал для прискорення дослідження органоїдів та їх застосування в тканинній інженерії, регенеративній медицині, персоналізованій медицині та відкритті ліків.
Типи органоїдів
Багато різних структур органів були повторені за допомогою органоїдів.
Церебральний органоїд
[en] — це органоїд головного мозку, на поточному етапі розвитку — певної його регіон-специфічної ділянки, як-от кора чи передній мозок. Органоїди головного мозку відіграють важливу роль у вивченні нормального та патологічного нейророзвитку, моделюванні захворювань мозку, таких як хвороба Альцгеймера та хвороба Паркінсона, дослідженні впливу ліків на нервову тканину, і також відкривають значні можливості для інженерії нервової тканини та регенеративної медицини травм головного мозку, інсульту, нейродегенеративних хвороб тощо.
Перші церебральні органоїди були створені в 2013 році шляхом культивування плюрипотентних стовбурових клітин людини в тривимірній структурі за допомогою ротаційного [en] та розвивались протягом місяців. А вже через 8 років у преклінічному досліджені на тваринах було показано, що церебральні органоїди можуть відновити функцію в уражених травмою чи інсультом ділянках головного мозку.
Типи
Існує багато типів церебральних органоїдів, які імітують певний регіон мозку і відрізняються типами клітин та іншими характеристиками, й використовуються для різних цілей.
Серед цих типів окремо виділяють асемблоїди — це злиті органоїди, специфічні для регіону, які намагаються повторити міжрегіональні та міжклітинні взаємодії, а також розвиток нейронних ланцюгів шляхом поєднання кількох областей мозку та/або ліній клітин.
Крім того, окремо виділяють більш прогресивний тип органоїдів — васкуляризований, тобто, з наявною кровоносною системою, що забезпечує кровопостачання клітин, необхідне для нормального фунціонування клітин при довготривалих дослідженнях. Окрім доставки кисню та живлення, накопичені докази свідчать про те, що судинна система мозку регулює нейронну диференціацію, міграцію та формування контурів під час розвитку.
Огляд 2022 року та огляд 2023 року та кілька інших статей зазначених далі виділяють наступні типи органоїдів: олігокортикальні сфероїди, кортикальні сфероїди, органоїди середнього мозку, гіпоталамічні органоїди, органоїди сітківки та мультиокулярні органоїди, органоїди переднього мозку, асемблоїди переднього мозку, органоїди з мікроглією, [en], астероїди (з астроцитів), мієлінізовані органоїди (мієліноїди) та деякі інші.
Застосування
Моделювання захворювань та скринінг ліків
Фармацевтичні компанії та наукові колективи використовують церебральні органоїди для скринінгу та розробки ліків через їхні характеристики максимально наближені до in vivo.
Основні поточні дослідження церебральних органоїдів в моделюванні хвороб та тестування ліків для них направлені на дослідження таких патологій:
- Патології нейророзвитку (розлади аутистичного спектра, мікроцефалія, синдром Ретта, синдром Ангельмана, туберозний склероз та ін.)
- Нейродегенеративні хвороби (хвороба Альцгеймера, хвороба Паркінсона, бічний аміотрофічний склероз, розсіяний склероз, хвороба Гантінгтона, хвороба Кройцфельда-Якоба та ін.)
- Психіатричні розлади (депресивні розлади, шизофренія, біполярний афективний розлад та ін.)
- Пухлини мозку (гліобластома, медулобластома, менінгіома та ін.)
- Інфекційні захворювання ЦНС (малярія, вірус Зіка, SARS-CoV-2, Японський енцефаліт, вірус простого герпесу та ін.)
Крім того, органоїди досліджуються на вплив екзогенних хімічних речовин, таких як забруднюючі речовини, токсини, ліки та промислові хімікати на здоров'я мозку.
Персоналізована медицина та індивідуальне лікування
Церебральні органоїди мають великі перспективи в галузі персоналізованої медицини. Отримавши органоїди з іПСК окремих пацієнтів, дослідники можуть створити індивідуальні моделі пацієнтів для вивчення механізмів захворювання та тестування персоналізованих стратегій лікування. Такий підхід дозволяє проводити більш адаптоване та ефективне терапевтичне втручання, особливо у випадках рідкісних генетичних розладів і станів із значним генетичним компонентом.
Сучасні дослідження також фокусуються на використанні органоїдів мозку для досліджень в персоналізованій медицині в поєднанні з різними передовими методами, такими як редагування генома ((CRISPR-Cas9)), інтегративний мультиоміксний аналіз, 3D очищення мозкової тканини та передових систем візуалізації методом конфокальної мікроскопії. Також, перспективним вважається поєднання машинного навчання та моделювання органоїдів мозку для цілей персоналізованої медицини.
Тканинна інженерія та регенеративна медицина
Церебральні органоїди є перспективними для регенеративної медицини, особливо в контексті травм головного мозку та дегенеративних розладів.
У 2021 році було показано, що церебральні органоїди можуть відновити функцію в уражених травмою ділянках головного мозку. У 2022 й 2023 роках кілька досліджень показали, що органоїди людського мозку були успішно інтегровані з зоровою системою дорослого щура після трансплантації у великі пошкоджені порожнини зорової кори. Ще одне дослідження 2023 року, опубліковане в npj Regenerative Medicine, показало успішне відновлення функції враженої інсультом ділянки мозку миші після інтеграції в неї мозкового органоїд:
"...Через кілька місяців ми виявили, що трансплантовані органоїди добре вижили в ураженому інфарктом ядрі, диференціювалися в цільові нейрони, відновлювали інфарктну тканину, посилали аксони до віддалених мішеней мозку та інтегрувалися в нейронний ланцюг господаря, тим самим усуваючи сенсомоторні дефекти поведінки мишей, які перенесли інсульт, тоді як трансплантація дисоційованих окремих клітин з органоїдів не привела до відновлення ураженої інфарктом тканини."
Також, дослідження 2023 року продемонструвало виробництво in vitro та in vivo мієлінізуючих олігодендроцитів із культури нейроепітеліальних стовбурових (lt-NES) клітин (отриманих в людських іПСК), яка також дає початок нейронам зі здатністю інтегруватися в пошкоджені інсультом коркові мережі дорослих щурів та мієлінізувати демієлінізовані аксони щура. Це відкриває нові можливості в лікуванні нейродегенеративних захворювань з порушенням мієлінізації нервових волокон.
Див. також — Інженерія нервової тканини, Тканинна інженерія, Регенеративна медицина.
Розуміння біології розвитку
Церебральні органоїди є безцінними інструментами для вивчення різних аспектів розвитку людського мозку. Дослідники, серед іншого, можуть досліджувати:
- Нейрогенез: органоїди дозволяють спостерігати за диференціюванням нервових стовбурових клітин і формуванням різних підтипів нейронів.
- [en]: як аксони ростуть і переміщуються до цільових областей під час розвитку мозку.
- Формування , ансамблів й мереж.
- [en] (кортикальне згортання чи згортання кори) — це процес формування характерних складок кори головного мозку.
- Клітинні взаємодії: церебральні органоїди полегшують вивчення клітинних взаємодій, у тому числі за участю нейронів, гліальних клітин і кровоносних судин.
Органоїдний інтелект
Органоїдний інтелект (ОІ) — це нова міждисциплінарна галузь, зосереджена на розробці біологічних обчислень із використанням органоїдів мозку і технологій нейрокомп'ютерного інтерфесу. Біобчислювальні системи на основі OI мають потенціал для швидшого прийняття рішень, безперервного навчання під час виконання завдань і більшої ефективності використання енергії та обчислення даних, ніж обчислення на основі кремнієвих транзисторів та штучного інтелекту. Розвиток OI може покращити наше розуміння розвитку мозку, навчання, пам’яті та, потенційно, може допомогти знайти лікування неврологічних розладів, таких як деменція чи аутизм.
OI включає збільшення церебральних органоїдів у складні, міцні 3D-структури, збагачені клітинами та генами, пов’язаними з навчанням, підключення їх до пристроїв введення та виведення наступного покоління та систем ШІ/машинного навчання. Для цього потрібні нові моделі, алгоритми та технології інтерфейсу, щоб спілкуватися з органоїдами мозку, розуміти, як вони навчаються та обчислюють, а також обробляти та зберігати величезні обсяги даних, які вони генерують.
Крім того, використання таких органоїдів, які можуть розвинути відчуття та, ймовірно, в подальшому, свідомість, є предметом дискусій в нейроетиці та біоетиці.
Також досліджується апаратний підхід штучного інтелекту, який використовує адаптивне резервуарне обчислення біологічних нейронних мереж в органоїді мозку. У цьому підході, який називається Brainoware, обчислення виконуються шляхом надсилання та отримання інформації від органоїда мозку за допомогою [en] високої щільності. Застосовуючи просторово-часову електричну стимуляцію, досягається нелінійна динаміка та властивості запам’ятовування, а також неконтрольоване навчання на основі тренувальних даних шляхом зміни функціональних зв’язків в органоїдах. Був продемонстрований практичний потенціал цієї методики, використовуючи її для розпізнавання мовлення та прогнозування нелінійних рівнянь у системі резервуарних обчислень.
Органоїд кишки
Кишкові органоїди зазвичай отримують із плюрипотентних стовбурових клітин або стовбурових клітин дорослої тканини. Ці 3D-структури складаються з різних типів клітин, знайдених у кишківнику людини, включаючи ентероцити, келихоподібні клітини, [en] та [en]. Кишкові органоїди, зазвичай, складаються з одного шару поляризованих кишкових епітеліальних клітин, що оточують центральний просвіт, і повторюють структуру крипт-ворсинок кишківника, та його функції, фізіологію та організацію, зберігаючи всі типи клітин, які зазвичай зустрічаються в структурі, включаючи стовбурові клітини кишківника. Таким чином, кишкові органоїди є цінною моделлю для вивчення кишкового транспорту поживних речовин, всмоктування та доставки ліків, наноматеріалів і наномедицини, секреції гормону інкретину та інфікування різними ентеропатогенами.
Однією з сфер дослідження кишкових органоїдів є дослідження ніші стовбурових клітин. Кишкові органоїди використовувалися для вивчення природи ніші кишкових стовбурових клітин, і дослідження, проведені з ними, продемонстрували позитивну роль IL-22 у підтримці кишкових стовбурових клітин, разом із демонстрацією ролі інших типів клітин, таких як нейрони та фібробласти в підтримці стовбурових клітин кишечника.
У галузі інфекційної біології були досліджені різні модельні системи кишкових органоїдів. З одного боку, органоїди можуть бути інфіковані масово, просто змішавши їх із цікавим ентеропатогеном. Однак для моделювання інфекції більш природним шляхом, починаючи з просвіту кишечника, необхідна мікроін’єкція збудника. Крім того, полярність кишкових органоїдів можна інвертувати, і їх навіть можна розділити на окремі клітини та культивувати як двовимірні моношари для того, щоб апікальна та базолатеральна сторони епітелію були легше доступні.
Кишкові органоїди також продемонстрували терапевтичний потенціал в лікуванні цукрового діабету, коли науковці перетворили клітини органоїда кишки у бета-клітини підшлункової залози, що продукують інсулін.
Для більш точної рекапітуляції кишечника in vivo були розроблені спільні культури кишкових органоїдів та імунних клітин. Крім того, моделі «орган-на-чипі» поєднують кишкові органоїди з іншими типами клітин, такими як ендотеліальні або імунні клітини, а також перистальтичний потік.
Застосування
- Розуміння розвитку та фізіології: кишкові органоїди дають змогу зрозуміти розвиток, структуру та фізіологію кишечника людини. Дослідники можуть вивчати такі процеси, як диференціація клітин, оновлення епітелію, розвиток імунної системи кишківника та ніші стовбурових клітин, поглинання поживних речовин, взаємодія хазяїна та мікроба, та багато інших.
- Моделювання захворювань. Дослідники використовують кишкові органоїди для моделювання різноманітних [en], включаючи [en], муковісцидоз та інфекційні захворювання, такі як норовірус, ротавірус та ін. Вводячи специфічні для захворювання мутації або патогени, вчені можуть вивчати механізми захворювання та тестувати можливі методи лікування.
- Скринінг і розробка ліків: фармацевтичні компанії та дослідники використовують кишкові органоїди для оцінки безпеки та ефективності препаратів-кандидатів для шлунково-кишкових розладів. Ці моделі пропонують фізіологічно відповідну систему для скринінгу потенційних терапевтичних засобів.
- Персоналізована медицина: кишкові органоїди, отримані з клітин пацієнтів, можна використовувати для вивчення індивідуальних реакцій на ліки та хвороби. Цей підхід є перспективним для пристосування лікування до конкретних пацієнтів.
- Регенеративна медицина: Органоїдна терапія заснована на культивуванні in vitro з подальшим відбором і розмноженням здорових кишкових стовбурових клітин з метою трансплантації в слизову оболонку кишечника людини. Трансплантовані кишкові органоїди можна застосовувати для сприяння регенерації епітелію та відновлення нормальної фізіології кишечника.
- Дослідження токсикології та фармакокінетики. Кишкові органоїди використовуються в токсикологічних дослідженнях для оцінки впливу хімічних речовин і токсинів на кишечник, а також фармакокінетику і метаболізм лікарських засобів.
Органоїд шлунка
Шлункові органоїди принаймні частково повторюють фізіологію шлунка. Органоїди шлунка були створені безпосередньо з плюрипотентних стовбурових клітин шляхом тимчасових маніпуляцій сигнальними шляхами FGF, WNT, BMP, ретиноєвої кислоти та EGF в умовах тривимірної культури. Перші шлункові органоїди також були створені з використанням LGR5, що експресує дорослі стовбурові клітини шлунка.
Органоїди шлунка використовувалися як модель для вивчення нормального та патологічного розвитку, та раку.
Органоїд печінки
Органоїди печінки повторюють структурні та функціональні особливості печінки, включаючи гепатоцити та епітеліальні клітини жовчних шляхів.
Застосування
- Моделювання захворювань. Органоїди печінки використовуються для моделювання широкого спектру [en], включаючи вірусний гепатит, неалкогольну жирову хворобу печінки, генетичні захворювання печінки, медикаментозне ураження печінки, [en], рак печінки та інші.
- Скринінг і розробка ліків: фармацевтичні компанії використовують органоїди печінки для оцінки токсичності й ефективності препаратів-кандидатів, та їх метаболізму в печінці. Ці моделі забезпечують фізіологічно релевантну систему для оцінки метаболізму ліків, гепатотоксичності та взаємодії ліків.
- Регенеративна медицина: органоїди печінки пропонують платформу для досліджень регенерації печінки, та трансплантації печінкових органоїдів і біоштучних пристроїв печінки.
- Персоналізована медицина: органоїди печінки, отримані з клітин пацієнта, дають змогу використовувати персоналізовані підходи до медицини. Використовуючи власні клітини пацієнта для створення органоїдів, дослідники можуть перевіряти реакцію на ліки та розробляти індивідуальні методи лікування захворювань печінки.
- Дослідження розвитку печінки: органоїди печінки дають змогу зрозуміти розвиток печінки та органогенез. Дослідники можуть досліджувати процеси диференціації гепатобластів, формування жовчних проток і дозрівання печінки.
- Токсикологічні дослідження: ці органоїди є цінними інструментами для вивчення впливу токсинів, хімічних речовин та інших ксенобіотиків на печінку. Вони можуть допомогти визначити потенційну небезпеку та оцінити безпеку різних сполук.
Органоїд підшлункової залози
Органоїди підшлункової залози відтворюють клітинне різноманіття та функціональність підшлункової залози, включаючи типи ендокринних та екзокринних клітин, й стромальних компонентів. Органоїди підшлункової залози дають цінну інформацію про розвиток підшлункової залози, моделювання захворювань, тестування ліків і відкривають цінні можливості для регенеративної медицини.
Застосування
- Моделювання захворювань: Органоїди підшлункової залози відіграли важливу роль у вивченні захворювань підшлункової залози, таких як цукровий діабет, панкреатит, муковісцидоз і рак підшлункової залози. Дослідники можуть індукувати мутації, специфічні для захворювання, або піддавати органоїди впливу середовища, пов’язаного з епігеномними змінами при захворюваннях, щоб зрозуміти механізми захворювання.
- Скринінг ліків: фармацевтичні компанії використовують органоїди підшлункової залози, які можуть точніше передбачати реакцію на ліки, ніж традиційні двовимірні клітинні культури, допомагаючи ідентифікувати потенційні терапевтичні засоби.
- Регенеративна медицина: органоїди підшлункової залози можуть бути джерелом клітин-попередників підшлункової залози для трансплантації, потенційно забезпечуючи лікування цукрового діабету 1 типу, відновлюючи популяцію острівців Лангерганса з бета-клітинами, продукуючих інсулін, в тілі. (див. також Трансплантація підшлункової залози) Також, дослідження 2023 року показало можливість [en] контролю виділення інсуліну трансплантованими миші органоїдами підшлункової залози.
- Персоналізована медицина: Органоїди підшлункової залози, отримані зі специфічних клітин пацієнта, дозволяють використовувати підходи до персоналізованої медицини. Дослідники можуть перевірити реакцію на ліки на органоїдах, створених із власних клітин пацієнта, пристосовуючи лікування до індивідуальних потреб.
Органоїд нирок
Органоїди нирок імітують нефронові структури нирки, включаючи клубочки та ниркові канальці.
Застосування
- Біологія розвитку: органоїди нирок дозволяють вивчати розвиток і диференціювання нирок, проливаючи світло на молекулярні механізми, які керують формуванням і функцією нирок.
- Моделювання захворювань: Дослідники використовують органоїди нирок для вивчення захворювань, пов’язаних з нирками, таких як полікістоз нирок, нефротичний синдром, вроджені захворювання нирок та ін. Впроваджуючи специфічні для захворювання мутації або клітини, отримані від пацієнтів, вчені отримують уявлення про механізми захворювання та потенційні методи лікування.
- Скринінг і розробка ліків.
- Випробування на нефротоксичність: органоїди нирок використовуються для оцінки нефротоксичності ліків і хімічних речовин, що допомагає ідентифікувати речовини, які можуть пошкодити нирки.
- Персоналізована медицина: використовуючи клітини, отримані від пацієнтів, дослідники прагнуть розробити персоналізоване лікування, максимально ефективне для конкретного пацієнта.
- Регенеративна медицина та трансплантації нирок. Щоб підвищити функціональність органоїдів нирок, зусилля зосереджені на покращенні васкуляризації та інтеграції з тканиною господаря, що зробить їх більш придатними для трансплантації та регенеративної медицини.
Органоїд легень
Органоїди легень – це складні тривимірні моделі in vitro, які імітують структуру та функцію легенів людини чи тварин. Ці мініатюрні структури стали безцінними інструментами для різноманітних біомедичних застосувань, пропонуючи уявлення про розвиток легень, моделювання захворювань, скринінг ліків і потенційну регенеративну терапію.
Легеневі органоїди, зазвичай, утворюють з індукованих плюрипотентних, ембріональних і дорослих стовбурових клітин. Сигнальні шляхи TGF-β/BMP/SMAD, FGF і Wnt/β-катеніну підтримують розвиток легеневих органоїдів. Легеневі органоїди містять різноманітність клітин легенів, включаючи клітини бронхів, альвеол та різні типи клітин, такі як епітеліальні, мезенхімальні та імунні клітини.
Застосування
- Моделювання захворювань: Дослідники використовують легеневі органоїди для вивчення захворювань легенів, включаючи хронічне обструктивне захворювання легень (ХОЗЛ), ідіопатичний легеневий фіброз, респіраторні інфекції, муковісцидоз, рак легень та ін. Впроваджуючи специфічні для хвороби мутації або піддаючи органоїди дії факторів, пов’язаних із хворобою, вчені отримують уявлення про механізми хвороби. Також, легеневі органоїди відіграють важливу роль у вивченні респіраторних інфекцій, таких як грип і SARS‐CoV‐2. Вони створюють контрольоване середовище для дослідження взаємодії вірусу та господаря та тестування противірусних методів лікування.
- Скринінг ліків та персоналізована медицина
- Регенеративна медицина. Легеневі органоїди є перспективними для регенеративної медицини, зокрема у відновленні пошкодженої легеневої тканини. Дослідники прагнуть створити функціональну легеневу тканину для трансплантації, що потенційно принесе користь пацієнтам із термінальною стадією захворювань легенів.
Органоїд серця
Органоїди серця — це складні тривимірні структури, створені для повторення архітектури та функції серця. Серцеві органоїди зазвичай створюють із плюрипотентних стовбурових клітин людини, таких як індуковані плюрипотентні стовбурові клітини або ембріональні стовбурові клітини. Ці органоїди мають на меті імітувати складність людського серця, включаючи різні типи клітин, такі як кардіоміоцити, фібробласти, перицити та ендотеліальні клітини. Епікардіоіди — новітні моделі серцевих органоїдів, що імітують структуру як міокарда, так і епікарда.
Застосування
- Моделювання розвитку та захворювань: Дослідники використовують серцеві органоїди для вивчення нормального розвитку та моделювання різних захворювань серця, таких як кардіоміопатії, вроджені вади серця, аритмії, інфаркт міокарда, серцева недостатність та інших. Впроваджуючи специфічні для захворювання генетичні мутації або використовуючи клітини, взяті у пацієнтів, вчені отримують уявлення про механізми захворювання та потенційні терапевтичні цілі.
- Скринінг і розробка ліків.
- Регенеративна медицина: Серцеві органоїди досліджуються на предмет можливості активації сигнальних шляхів, відповідальних за регенерацію в серці, а також через їхній потенціал у безпосередньому відновленні пошкодженої тканини серця, наприклад, після інфаркту міокарда. Досягнення належної васкуляризації та інтеграції з тканиною господаря має важливе значення для функціональності серцевих органоїдів. Дослідники зосереджуються на вдосконаленні цих аспектів, щоб зробити їх більш придатними для трансплантації та регенеративної терапії.
- Електрофізіологічні дослідження: Серцеві органоїди забезпечують платформу для електрофізіологічних досліджень, допомагаючи зрозуміти порушення серцевого ритму. Ці моделі дозволяють дослідникам досліджувати, як кардіоміоцити скорочуються та електрично спілкуються.
Органоїди сітківки
Органоїди сітківки — це тривимірні in vitro моделі сітківки людини, які пропонують цінну платформу для вивчення розвитку сітківки, захворювань і потенційних терапевтичних втручань.
Органоїди сітківки також отримують із плюрипотентних стовбурових клітин, таких як індуковані плюрипотентні стовбурові клітини або ембріональні стовбурові клітини. Вони повторюють складну структуру сітківки людини, включаючи різні типи клітин сітківки, такі як фоторецептори, гангліозні клітини сітківки та глія Мюллера.
Застосування
- Моделювання захворювань. Дослідники використовують органоїди сітківки для моделювання різних захворювань сітківки, включаючи пігментний ретиніт, вікову дегенерацію жовтої плями (макулодистрофія), глаукому та інші. Завдяки таким органоїдам, вчені можуть отримати уявлення про механізми захворювання та перевірити потенційні методи лікування.
- Скринінг і розробка ліків, токсикологічні дослідження. Також, органоїди сітківки та органоїди-на-чипі сітківки використовуються для моделювання внутрішньоочної доставки ліків.
- Регенеративна медицина: Науковці досліджують можливість трансплантації клітин сітківки, отриманих з органоїдів, пацієнтам з захворюваннями сітківки для відновлення зору. Також, деякі дослідження вивчають використання органоїдів сітківки для дослідження регенерації зорового нерва, що є складним аспектом лікування нейропатій зорового нерва. Відновлення зору в пацієнтів, які осліпли внаслідок пізніх нейропатій зорового нерва, потребує технологій, які можуть або врятувати пошкоджені та запобігти подальшій дегенерації гангліозних клітин сітківки, або замінити втрачені гангліозні клітини, — і органоїди сітківки є перспективним джерелом цих клітин. Також, у 2023 році було представлено прецизійну роботизовану платформу культур клітин Cell X для ефективного виробництва специфічних для пацієнта іПСК і органоїдів сітківки, демонструючи потенціал для клінічного конвеєрного виробництва іПСК для аутологічної заміни клітин сітківки.
- Редагування генів: Інструмент редагування генів CRISPR-Cas9 застосовується до органоїдів сітківки для виправлення хвороботворних мутацій або введення певних генетичних модифікацій. Це дозволяє вивчати функцію генів і потенційні методи редагування генома та генотерапії при офтальмологічних патологіях.
Органоїд язика
Язикові (лінгвальні) органоїди — це органоїди, які повторюють, принаймні частково, аспекти фізіології язика. Епітеліальні язикові органоїди були створені з використанням BMI1, що експресують епітеліальні стовбурові клітини в умовах тривимірної культури за допомогою маніпуляції з EGF, WNT і TGF-β. Однак ця органоїдна культура не має смакових рецепторів, оскільки ці клітини не виникають із епітеліальних стовбурових клітин, що експресують Bmi1. Органоїди язикової смакової бруньки, що містять смакові клітини, однак, були створені з використанням стовбурових/прогеніторних клітин LGR5+ або CD44+ тканини циркумваллятного (CV) сосочка. Ці органоїди смакових рецепторів були успішно створені безпосередньо з ізольованих стовбурових клітин/клітин-попередників, що експресують смак Lgr5- або LGR6. і опосередковано, через виділення та подальше культивування тканини циркумваллятного сосочка, що містить Lgr5+ або CD44+ стовбурові клітини/клітини-попередники. Суспензійно-культивовані органоїди можуть забезпечити ефективну модель для імітації смакових рецепторів in vivo порівняно зі звичайними органоїдами культивованими в Matrigel.
Інші типи органоїдів
- Органоїд щитоподібної залози
- Органоїд тимуса
- Тестикулярний органоїд
- Органоїд простати
- Епітеліальний органоїд (ендометрію матки, носу)
- Бластоїд
- Ендометріальний органоїд та асемблоїд
- Органоїд судин
- Органоїд шкіри
- Органоїд гематоенцефалічного бар'єру
Окрім органоїдів, останнім часом з’явилися інші більш складні 3D-моделі, які набувають великої популярності. Обробка тривимірних агрегатів стовбурових клітин Wnt призводить до порушення симетрії з подальшим поляризованим ростом щодо трьох ортогональних осей. Цей процес формує подовжені тривимірні структури, так звані [en]».
Асемблоїди — це тривимірні системи клітинної культури, які є результатом інтеграції декількох типів органоїдів, або містять спеціалізовані типи клітин і демонструють особливості самоорганізації.
Див. також
Додаткова література
Книги
- K. Paul, Manash, ред. (28 вересня 2022). Organoid Bioengineering - Advances, Applications and Challenges. Biomedical Engineering (англ.) 13. IntechOpen. ISBN .
- Yahaya, Badrul Hisham, ред. (2022). Organoid Technology for Disease Modelling and Personalized Treatment. Stem Cell Biology and Regenerative Medicine (англ.) 71. Cham: Springer International Publishing, Springer Nature. ISBN .
- Spence, Jason R., ред. (2020). Human Pluripotent Stem Cell Derived Organoid Models. Methods in Cell Biology (1st edition). Cambridge, MA San Diego, CA Oxford London: Academic Press, an imprint of Elsevier. ISBN .
- Turksen, Kursad, ред. (2019). Organoids: stem cells, structure, and function. Methods in molecular biology. New York, NY: Humana Press, . ISBN .
Журнали
- Organoid
- Cell Stem Cell (сайт, Cell Press)
- Stem Cell Reports (сайт, Cell Press)
Статті
- Vandana, J. Jeya; Manrique, Cassandra; Lacko, Lauretta A.; Chen, Shuibing (2023-05). Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation. Cell Stem Cell 30 (5). doi:10.1016/j.stem.2023.04.011.
- Suhito, Intan Rosalina; Kim, Tae-Hyung (25 квітня 2022). Recent advances and challenges in organoid-on-a-chip technology. Organoid (англ.) 2. doi:10.51335/organoid.2022.2.e4.
- Lee, Hanbyeol. Trends in the global organoid technology and industry: from organogenesis in a dish to the commercialization of organoids : ( )[англ.] / Hanbyeol Lee, Jeong Suk Im, Da Bin Choi [et al.] // Organoid. — 2021. — Vol. 1 (15 July). — DOI:10.51335/organoid.2021.1.e11.
- Corrò, Claudia. A brief history of organoids : ( )[англ.] / Claudia Corrò, Laura Novellasdemunt, Vivian S.W. Li // American Journal of Physiology-Cell Physiology. — 2020. — Vol. 319, no. 1 (1 July). — P. 151–165. — DOI:10.1152/ajpcell.00120.2020.
Посилання
- Organoid News
Примітки
- https://www.sciencealert.com/this-mini-brain-is-made-from-real-tissue-and-it-has-huge-potential
- Zhao, Zixuan; Chen, Xinyi; Dowbaj, Anna M.; Sljukic, Aleksandra; Bratlie, Kaitlin; Lin, Luda; Fong, Eliza Li Shan; Balachander, Gowri Manohari; Chen, Zhaowei (1 грудня 2022). Organoids. Nature Reviews Methods Primers (англ.). Т. 2, № 1. с. 1—21. doi:10.1038/s43586-022-00174-y. ISSN 2662-8449. PMC 10270325. PMID 37325195. Процитовано 2 вересня 2023.
{{}}
: Обслуговування CS1: Сторінки з PMC з іншим форматом () - Hofer, Moritz; Lutolf, Matthias P. (2021-05). Engineering organoids. Nature Reviews Materials (англ.). Т. 6, № 5. с. 402—420. doi:10.1038/s41578-021-00279-y. ISSN 2058-8437. Процитовано 2 вересня 2023.
- Tang, Xiao-Yan; Wu, Shanshan; Wang, Da; Chu, Chu; Hong, Yuan; Tao, Mengdan; Hu, Hao; Xu, Min; Guo, Xing (24 травня 2022). Human organoids in basic research and clinical applications. Signal Transduction and Targeted Therapy (англ.). Т. 7, № 1. с. 1—17. doi:10.1038/s41392-022-01024-9. ISSN 2059-3635. Процитовано 3 вересня 2023.
- Mullard, Asher (16 лютого 2023). Mini-organs attract big pharma. Nature Reviews Drug Discovery (англ.). Т. 22, № 3. с. 175—176. doi:10.1038/d41573-023-00030-y. Процитовано 2 вересня 2023.
- NIAID scientists develop “mini-brain” model of human prion disease. National Institutes of Health (NIH) (EN) . 14 червня 2019. Процитовано 3 вересня 2023.
- Simian, Marina; Bissell, Mina J. (28 грудня 2016). Organoids: A historical perspective of thinking in three dimensions. Journal of Cell Biology. Т. 216, № 1. с. 31—40. doi:10.1083/jcb.201610056. ISSN 0021-9525. PMC 5223613. PMID 28031422. Процитовано 2 вересня 2023.
{{}}
: Обслуговування CS1: Сторінки з PMC з іншим форматом () - Lancaster, Madeline A.; Knoblich, Juergen A. (18 липня 2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science (англ.). Т. 345, № 6194. doi:10.1126/science.1247125. ISSN 0036-8075.
- Wilson, H. V. (7 червня 1907). A New Method by Which Sponges May Be Artificially Reared. Science (англ.). Т. 25, № 649. с. 912—915. doi:10.1126/science.25.649.912.
- De Morgan, W.; Drew, late G. Harold (1914-10). A Study of the Restitution Masses formed by the Dissociated Cells of the Hydroids Antennularia Ramosa and A. Antennina. Journal of the Marine Biological Association of the United Kingdom (англ.). Т. 10, № 3. с. 440—463. doi:10.1017/S0025315400008237. ISSN 0025-3154.
- Holtfreter J (1944). Experimental studies on the development of the pronephros. Rev. Can. Biol. 3: 220—250.
- Holtfreter J. 1948. The mechanism of embryonic induction and its relation to parthenogenesis and malignancy. In Symposia of the Society for Experimental Biology. Cambridge University Press, Cambridge, England, UK. 17.
- Corrò et al., 2020, с. ?.
- Experimental studies on the differentiation of embryonic tissues growing in vivo and in vitro.—II. The development of the isolated early embryonic eye of the fowl when cultivated in vitro. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character (англ.). Т. 100, № 703. 1926-09. с. 273—283. doi:10.1098/rspb.1926.0049. ISSN 0950-1193.
- Fell, Honor Bridget; Robison, Robert (1 січня 1929). The growth, development and phosphatase activity of embryonic avian femora and limb-buds cultivated in vitro. Biochemical Journal (англ.). Т. 23, № 4. с. 767—784.5. doi:10.1042/bj0230767. ISSN 0306-3283.
- Trowell, O. A. (1 січня 1954). A modified technique for organ culture in vitro. Experimental Cell Research. Т. 6, № 1. с. 246—248. doi:10.1016/0014-4827(54)90169-X. ISSN 0014-4827.
- Trowell, O. A. (1955-03). EXPERIMENTS ON LYMPH NODES COLTURED IN VITRO. Annals of the New York Academy of Sciences (англ.). Т. 59, № 5. с. 1066—1069. doi:10.1111/j.1749-6632.1955.tb46002.x.
- Moscona, A.; Moscona, H. (1952-07). The dissociation and aggregation of cells from organ rudiments of the early chick embryo. Journal of Anatomy. Т. 86, № Pt 3. с. 287—301. ISSN 0021-8782. PMC 1273752. PMID 12980879.
- Moscona, A. A. (1959-05). Tissues from Dissociated Cells. Scientific American. Т. 200, № 5. с. 132—144. doi:10.1038/scientificamerican0559-132. ISSN 0036-8733.
- Moscona, A. (1 січня 1961). Rotation-mediated histogenetic aggregation of dissociated cells: A quantifiable approach to cell interactions in vitro. Experimental Cell Research. Т. 22. с. 455—475. doi:10.1016/0014-4827(61)90122-7. ISSN 0014-4827.
- Steinberg, M. S. (1 листопада 1962). The role of temperature in the control of aggregation of dissociated embryonic cells. Experimental Cell Research. Т. 28, № 1. с. 1—10. doi:10.1016/0014-4827(62)90306-3. ISSN 0014-4827.
- Hayes, Raymond L. (1 січня 1965). An in vitro technique for reaggregation of dissociated tissue in a centrifugal field. Experimental Cell Research. Т. 37, № 1. с. 1—11. doi:10.1016/0014-4827(65)90152-7. ISSN 0014-4827.
- Huzella T. 1932. Orientation de la croissance des cultures de tissus sur la trame fibrillaire artificielle coagulée de la solution de collagène. SAC r. Soc. Biol. Paris. 109:515.
- Ehrmann, R. L.; Gey, G. O. (1956-06). The growth of cells on a transparent gel of reconstituted rat-tail collagen. Journal of the National Cancer Institute. Т. 16, № 6.
- Lasfargues, Etienne Y. (1957-01). Cultivation and behavior in vitro of the normal mammary epithelium of the adult mouse. The Anatomical Record (англ.). Т. 127, № 1. с. 117—129. doi:10.1002/ar.1091270111. ISSN 0003-276X.
- Berry, M. N.; Friend, D. S. (1 грудня 1969). HIGH-YIELD PREPARATION OF ISOLATED RAT LIVER PARENCHYMAL CELLS. The Journal of Cell Biology. Т. 43, № 3. с. 506—520. doi:10.1083/jcb.43.3.506.
- Michalopoulos, G.; Pitot, H.C. (1975-08). Primary culture of parenchymal liver cells on collagen membranes. Experimental Cell Research (англ.). Т. 94, № 1. с. 70—78. doi:10.1016/0014-4827(75)90532-7.
- Emerman, Joanne T.; Pitelka, Dorothy R. (1 травня 1977). Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro (англ.). Т. 13, № 5. с. 316—328. doi:10.1007/BF02616178.
- Kleinman, Hynda K.; Martin, George R. (1 жовтня 2005). Matrigel: Basement membrane matrix with biological activity. Seminars in Cancer Biology. Т. 15, № 5. с. 378—386. doi:10.1016/j.semcancer.2005.05.004.
- Kim, Suran; Min, Sungjin; Choi, Yi Sun; Jo, Sung-Hyun; Jung, Jae Hun; Han, Kyusun; Kim, Jin; An, Soohwan; Ji, Yong Woo (30 березня 2022). Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nature Communications (англ.). Т. 13, № 1. с. 1692. doi:10.1038/s41467-022-29279-4.
- Kozlowski, Mark T.; Crook, Christiana J.; Ku, Hsun Teresa (10 грудня 2021). Towards organoid culture without Matrigel. Communications Biology (англ.). Т. 4, № 1. с. 1—15. doi:10.1038/s42003-021-02910-8.
- Evans, M. J.; Kaufman, M. H. (1981-07). Establishment in culture of pluripotential cells from mouse embryos. Nature (англ.). Т. 292, № 5819. с. 154—156. doi:10.1038/292154a0. ISSN 1476-4687.
- Martin, G R (1981-12). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences (англ.). Т. 78, № 12. с. 7634—7638. doi:10.1073/pnas.78.12.7634.
- Chambard, M; Gabrion, J; Mauchamp, J (1 жовтня 1981). Influence of collagen gel on the orientation of epithelial cell polarity: follicle formation from isolated thyroid cells and from preformed monolayers. The Journal of Cell Biology (англ.). Т. 91, № 1. с. 157—166. doi:10.1083/jcb.91.1.157.
- Bissell, Mina J.; Hall, H. Glenn; Parry, Gordon (7 листопада 1982). How does the extracellular matrix direct gene expression?. Journal of Theoretical Biology. Т. 99, № 1. с. 31—68. doi:10.1016/0022-5193(82)90388-5.
- Lee, E Y; Parry, G; Bissell, M J (1 січня 1984). Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. The Journal of Cell Biology. Т. 98, № 1. с. 146—155. doi:10.1083/jcb.98.1.146.
- Hadley, M A; Byers, S W; Suárez-Quian, C A; Kleinman, H K; Dym, M (1 жовтня 1985). Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. The Journal of Cell Biology (англ.). Т. 101, № 4. с. 1511—1522. doi:10.1083/jcb.101.4.1511.
- Li, M L; Aggeler, J; Farson, D A; Hatier, C; Hassell, J; Bissell, M J (1987-01). Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proceedings of the National Academy of Sciences (англ.). Т. 84, № 1. с. 136—140. doi:10.1073/pnas.84.1.136.
- Schuetz, Erin G.; Li, Donna; Omiecinski, Curtis J.; Muller-Eberhard, Ursula; Kleinman, Hynda K.; Elswick, Barbara; Guzelian, Philip S. (1988-03). Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. Journal of Cellular Physiology (англ.). Т. 134, № 3. с. 309—323. doi:10.1002/jcp.1041340302.
- Streuli, C H; Bissell, M J (1 квітня 1990). Expression of extracellular matrix components is regulated by substratum. The Journal of Cell Biology (англ.). Т. 110, № 4. с. 1405—1415. doi:10.1083/jcb.110.4.1405.
- Schmidhauser, C; Bissell, M J; Myers, C A; Casperson, G F (1990-12). Extracellular matrix and hormones transcriptionally regulate bovine beta-casein 5' sequences in stably transfected mouse mammary cells. Proceedings of the National Academy of Sciences (англ.). Т. 87, № 23. с. 9118—9122. doi:10.1073/pnas.87.23.9118.
- Schmidhauser, C; Casperson, G F; Myers, C A; Sanzo, K T; Bolten, S; Bissell, M J (1992-06). A novel transcriptional enhancer is involved in the prolactin- and extracellular matrix-dependent regulation of beta-casein gene expression. Molecular Biology of the Cell (англ.). Т. 3, № 6. с. 699—709. doi:10.1091/mbc.3.6.699.
- Streuli, C H; Schmidhauser, C; Bailey, N; Yurchenco, P; Skubitz, A P; Roskelley, C; Bissell, M J (1 травня 1995). Laminin mediates tissue-specific gene expression in mammary epithelia. The Journal of Cell Biology (англ.). Т. 129, № 3. с. 591—603. doi:10.1083/jcb.129.3.591.
- Muschler, John; Lochter, André; Roskelley, Calvin D.; Yurchenco, Peter; Bissell, Mina J. (1999-09). Nelson, W. James (ред.). Division of Labor among the α6β4 Integrin, β1 Integrins, and an E3 Laminin Receptor to Signal Morphogenesis and β-Casein Expression in Mammary Epithelial Cells. Molecular Biology of the Cell (англ.). Т. 10, № 9. с. 2817—2828. doi:10.1091/mbc.10.9.2817.
- Streuli, C H; Bailey, N; Bissell, M J (1 грудня 1991). Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. The Journal of Cell Biology (англ.). Т. 115, № 5. с. 1383—1395. doi:10.1083/jcb.115.5.1383.
- Simian, Marina; Hirai, Yohei; Navre, Marc; Werb, Zena; Lochter, Andre; Bissell, Mina J. (15 серпня 2001). The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development. Т. 128, № 16. с. 3117—3131. doi:10.1242/dev.128.16.3117.
- Nelson, Celeste M.; VanDuijn, Martijn M.; Inman, Jamie L.; Fletcher, Daniel A.; Bissell, Mina J. (13 жовтня 2006). Tissue Geometry Determines Sites of Mammary Branching Morphogenesis in Organotypic Cultures. Science (англ.). Т. 314, № 5797. с. 298—300. doi:10.1126/science.1131000.
- Nahmias, Yaakov; Schwartz, Robert E.; Hu, Wei-Shou; Verfaillie, Catherine M.; Odde, David J. (2006-06). Endothelium-Mediated Hepatocyte Recruitment in the Establishment of Liver-like Tissue In Vitro. Tissue Engineering. Т. 12, № 6. с. 1627—1638. doi:10.1089/ten.2006.12.1627.
- Yong, Ed (28 серпня 2013). Lab-Grown Model Brains. The Scientist. Процитовано 26 грудня 2013.
- Sato, Toshiro; Vries, Robert G.; Snippert, Hugo J.; van de Wetering, Marc; Barker, Nick; Stange, Daniel E.; van Es, Johan H.; Abo, Arie; Kujala, Pekka (2009-05). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature (англ.). Т. 459, № 7244. с. 262—265. doi:10.1038/nature07935.
- Barker, Nick; Huch, Meritxell; Kujala, Pekka; van de Wetering, Marc; Snippert, Hugo J.; van Es, Johan H.; Sato, Toshiro; Stange, Daniel E.; Begthel, Harry (2010-01). Lgr5+ve Stem Cells Drive Self-Renewal in the Stomach and Build Long-Lived Gastric Units In Vitro. Cell Stem Cell (англ.). Т. 6, № 1. с. 25—36. doi:10.1016/j.stem.2009.11.013.
- Huch, Meritxell; Bonfanti, Paola; Boj, Sylvia F; Sato, Toshiro; Loomans, Cindy J M; van de Wetering, Marc; Sojoodi, Mozhdeh; Li, Vivian S W; Schuijers, Jurian (17 вересня 2013). Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. The EMBO Journal. Т. 32, № 20. с. 2708—2721. doi:10.1038/emboj.2013.204.
- Sato, Toshiro; Stange, Daniel E.; Ferrante, Marc; Vries, Robert G.J.; van Es, Johan H.; van den Brink, Stieneke; van Houdt, Winan J.; Pronk, Apollo; van Gorp, Joost (2011-11). Long-term Expansion of Epithelial Organoids From Human Colon, Adenoma, Adenocarcinoma, and Barrett's Epithelium. Gastroenterology (англ.). Т. 141, № 5. с. 1762—1772. doi:10.1053/j.gastro.2011.07.050.
- Huch, Meritxell; Dorrell, Craig; Boj, Sylvia F.; van Es, Johan H.; Li, Vivian S. W.; van de Wetering, Marc; Sato, Toshiro; Hamer, Karien; Sasaki, Nobuo (14 лютого 2013). In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature (англ.). Т. 494, № 7436. с. 247—250. doi:10.1038/nature11826.
- Eiraku, Mototsugu; Watanabe, Kiichi; Matsuo-Takasaki, Mami; Kawada, Masako; Yonemura, Shigenobu; Matsumura, Michiru; Wataya, Takafumi; Nishiyama, Ayaka; Muguruma, Keiko (2008-11). Self-Organized Formation of Polarized Cortical Tissues from ESCs and Its Active Manipulation by Extrinsic Signals. Cell Stem Cell (англ.). Т. 3, № 5. с. 519—532. doi:10.1016/j.stem.2008.09.002.
- Eiraku, Mototsugu; Takata, Nozomu; Ishibashi, Hiroki; Kawada, Masako; Sakakura, Eriko; Okuda, Satoru; Sekiguchi, Kiyotoshi; Adachi, Taiji; Sasai, Yoshiki (2011-04). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature (англ.). Т. 472, № 7341. с. 51—56. doi:10.1038/nature09941.
- Nakano, Tokushige; Ando, Satoshi; Takata, Nozomu; Kawada, Masako; Muguruma, Keiko; Sekiguchi, Kiyotoshi; Saito, Koichi; Yonemura, Shigenobu; Eiraku, Mototsugu (2012-06). Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs. Cell Stem Cell (англ.). Т. 10, № 6. с. 771—785. doi:10.1016/j.stem.2012.05.009.
- Unbekandt, Mathieu; Davies, Jamie A. (2010-03). Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney International. Т. 77, № 5. с. 407—416. doi:10.1038/ki.2009.482.
- Takahashi, Kazutoshi; Яманака Сін'я (2006-08). Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. Т. 126, № 4. с. 663—676. doi:10.1016/j.cell.2006.07.024.
- Takahashi, Kazutoshi; Tanabe, Koji; Ohnuki, Mari; Narita, Megumi; Ichisaka, Tomoko; Tomoda, Kiichiro; Яманака Сін'я (2007-11). Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell (англ.). Т. 131, № 5. с. 861—872. doi:10.1016/j.cell.2007.11.019.
- Yu, Junying; Vodyanik, Maxim A.; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L.; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A.; Ruotti, Victor (21 грудня 2007). Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science (англ.). Т. 318, № 5858. с. 1917—1920. doi:10.1126/science.1151526.
- Park, In-Hyun; Lerou, Paul H; Zhao, Rui; Huo, Hongguang; Daley, George Q (2008-07). Generation of human-induced pluripotent stem cells. Nature Protocols (англ.). Т. 3, № 7. с. 1180—1186. doi:10.1038/nprot.2008.92.
- Xu, Ziran; Yang, Jiaxu; Xin, Xianyi; Liu, Chengrun; Li, Lisha; Mei, Xianglin; Li, Meiying (2023). Merits and challenges of iPSC-derived organoids for clinical applications. Frontiers in Cell and Developmental Biology. Т. 11. doi:10.3389/fcell.2023.1188905.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Lancaster, Madeline A.; Renner, Magdalena; Martin, Carol-Anne; Wenzel, Daniel; Bicknell, Louise S.; Hurles, Matthew E.; Homfray, Tessa; Penninger, Josef M.; Jackson, Andrew P. (19 вересня 2013). Cerebral organoids model human brain development and microcephaly. Nature (англ.). Т. 501, № 7467. с. 373—379. doi:10.1038/nature12517. Процитовано 2 вересня 2023.
- Peng, Haisheng; Poovaiah, Nitya; Forrester, Michael; Cochran, Eric; Wang, Qun (12 січня 2015). Ex Vivo Culture of Primary Intestinal Stem Cells in Collagen Gels and Foams. ACS Biomaterials Science & Engineering (англ.). Т. 1, № 1. с. 37—42. doi:10.1021/ab500041d.
- Peng, Haisheng; Wang, Chao; Xu, Xiaoyang; Yu, Chenxu; Wang, Qun (26 лютого 2015). An intestinal Trojan horse for gene delivery. Nanoscale (англ.). Т. 7, № 10. с. 4354—4360. doi:10.1039/C4NR06377E.
- Shkumatov, Artem; Baek, Kwanghyun; Kong, Hyunjoon (14 квіт. 2014 р.). Matrix Rigidity-Modulated Cardiovascular Organoid Formation from Embryoid Bodies. PLOS ONE (англ.). Т. 9, № 4. с. e94764. doi:10.1371/journal.pone.0094764.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Zhong, Xiufeng; Gutierrez, Christian; Xue, Tian; Hampton, Christopher; Vergara, M. Natalia; Cao, Li-Hui; Peters, Ann; Park, Tea Soon; Zambidis, Elias T. (10 червня 2014). Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nature Communications (англ.). Т. 5, № 1. с. 4047. doi:10.1038/ncomms5047.
- Takebe, Takanori; Enomura, Masahiro; Yoshizawa, Emi; Kimura, Masaki; Koike, Hiroyuki; Ueno, Yasuharu; Matsuzaki, Takahisa; Yamazaki, Takashi; Toyohara, Takafumi (2015-05). Vascularized and Complex Organ Buds from Diverse Tissues via Mesenchymal Cell-Driven Condensation. Cell Stem Cell. Т. 16, № 5. с. 556—565. doi:10.1016/j.stem.2015.03.004.
- Zhu, Yujuan; Wang, Li; Yu, Hao; Yin, Fangchao; Wang, Yaqing; Liu, Haitao; Jiang, Lei; Qin, Jianhua (22 серпня 2017). In situ generation of human brain organoids on a micropillar array. Lab on a Chip (англ.). Т. 17, № 17. с. 2941—2950. doi:10.1039/C7LC00682A.
- Method of the Year 2017: Organoids. Nature Methods (англ.). Т. 15, № 1. 2018-01. с. 1—1. doi:10.1038/nmeth.4575.
- Fatehullah, Aliya; Tan, Si Hui; Barker, Nick (2016-03). Organoids as an in vitro model of human development and disease. Nature Cell Biology (англ.). Т. 18, № 3. с. 246—254. doi:10.1038/ncb3312.
- Clevers, Hans (2016-06). Modeling Development and Disease with Organoids. Cell. Т. 165, № 7. с. 1586—1597. doi:10.1016/j.cell.2016.05.082.
- Calà, Giuseppe; Sina, Beatrice; De Coppi, Paolo; Giobbe, Giovanni Giuseppe; Gerli, Mattia Francesco Maria (2023). Primary human organoids models: Current progress and key milestones. Frontiers in Bioengineering and Biotechnology. Т. 11. doi:10.3389/fbioe.2023.1058970.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Bao, Zhongyuan; Fang, Kaiheng; Miao, Zong; Li, Chong; Yang, Chaojuan; Yu, Qiang; Zhang, Chen; Miao, Zengli; Liu, Yan (22 листопада 2021). Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice. Oxidative Medicine and Cellular Longevity (англ.). Т. 2021. с. e6338722. doi:10.1155/2021/6338722.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Revah, Omer; Gore, Felicity; Kelley, Kevin W.; Andersen, Jimena; Sakai, Noriaki; Chen, Xiaoyu; Li, Min-Yin; Birey, Fikri; Yang, Xiao (2022-10). Maturation and circuit integration of transplanted human cortical organoids. Nature (англ.). Т. 610, № 7931. с. 319—326. doi:10.1038/s41586-022-05277-w.
- Wilson, Madison N.; Thunemann, Martin; Liu, Xin; Lu, Yichen та ін. (26 грудня 2022). Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nature Communications (англ.). Т. 13, № 1. doi:10.1038/s41467-022-35536-3.
{{}}
: Явне використання «та ін.» у:|first4=
() - Jgamadze, Dennis; Lim, James T.; Zhang, Zhijian; Harary, Paul M.; Germi, James; Mensah-Brown, Kobina; Adam, Christopher D.; Mirzakhalili, Ehsan; Singh, Shikha (2023-02). Structural and functional integration of human forebrain organoids with the injured adult rat visual system. Cell Stem Cell. Т. 30, № 2. с. 137—152.e7. doi:10.1016/j.stem.2023.01.004.
- Cao, Shi-Ying; Yang, Di; Huang, Zhen-Quan; Lin, Yu-Hui; Wu, Hai-Yin; Chang, Lei; Luo, Chun-Xia; Xu, Yun; Liu, Yan (30 травня 2023). Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke. npj Regenerative Medicine (англ.). Т. 8, № 1. с. 1—14. doi:10.1038/s41536-023-00301-7.
- Bohrer, Laura R.; Stone, Nicholas E.; Mullin, Nathaniel K.; Voigt, Andrew P.; Anfinson, Kristin R.; Fick, Jessica L.; Luangphakdy, Viviane; Hittle, Bradley; Powell, Kimerly (28 лютого 2023). Automating iPSC generation to enable autologous photoreceptor cell replacement therapy. Journal of Translational Medicine (англ.). Т. 21, № 1. doi:10.1186/s12967-023-03966-2.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Kang, Soo‐Yeon; Kimura, Masaki; Shrestha, Sunil; Lewis, Phillip; Lee, Sangjoon; Cai, Yuqi; Joshi, Pranav; Acharya, Prabha; Liu, Jiafeng (24 серпня 2023). A Pillar and Perfusion Plate Platform for Robust Human Organoid Culture and Analysis. Advanced Healthcare Materials (англ.). doi:10.1002/adhm.202302502.
- Tan, Yu; Coyle, Robert C.; Barrs, Ryan W.; Silver, Sophia E.; Li, Mei; Richards, Dylan J.; Lin, Yiliang; Jiang, Yuanwen; Wang, Hongjun (4 серпня 2023). Nanowired human cardiac organoid transplantation enables highly efficient and effective recovery of infarcted hearts. Science Advances (англ.). Т. 9, № 31. doi:10.1126/sciadv.adf2898.
- Takasato, Minoru; Er, Pei X.; Chiu, Han S.; Little, Melissa H. (2016-09). Generation of kidney organoids from human pluripotent stem cells. Nature Protocols (англ.). Т. 11, № 9. с. 1681—1692. doi:10.1038/nprot.2016.098.
- Sachs, Norman; Papaspyropoulos, Angelos; Zomer‐van Ommen, Domenique D; Heo, Inha; Böttinger, Lena та ін. (15 лютого 2019). Long‐term expanding human airway organoids for disease modeling. The EMBO Journal (англ.). Т. 38, № 4. doi:10.15252/embj.2018100300.
{{}}
: Явне використання «та ін.» у:|last6=
() - McCracken, Kyle W.; Catá, Emily M.; Crawford, Calyn M.; Sinagoga, Katie L.; Schumacher, Michael; Rockich, Briana E.; Tsai, Yu-Hwai; Mayhew, Christopher N.; Spence, Jason R. (2014-12). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature (англ.). Т. 516, № 7531. с. 400—404. doi:10.1038/nature13863.
- Huang, Kai; Li, Qiwei; Xue, Yufei; Wang, Qiong; Chen, Zaozao; Gu, Zhongze (1 жовтня 2023). Application of colloidal photonic crystals in study of organoids. Advanced Drug Delivery Reviews. Т. 201. с. 115075. doi:10.1016/j.addr.2023.115075.
- Yin, Xiaolei; Mead, Benjamin E.; Safaee, Helia; Langer, Robert; Karp, Jeffrey M.; Levy, Oren (2016-01). Engineering Stem Cell Organoids. Cell Stem Cell. Т. 18, № 1. с. 25—38. doi:10.1016/j.stem.2015.12.005.
- Ha, Jeongmin; Kang, Ji Su; Lee, Minhyung; Baek, Areum; Kim, Seongjun; Chung, Sun-Ku; Lee, Mi-Ok; Kim, Janghwan (2020). Simplified Brain Organoids for Rapid and Robust Modeling of Brain Disease. Frontiers in Cell and Developmental Biology. Т. 8. doi:10.3389/fcell.2020.594090.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Sun, Xin-Yao; Ju, Xiang-Chun; Li, Yang; Zeng, Peng-Ming; Wu, Jian; Zhou, Ying-Ying; Shen, Li-Bing; Dong, Jian; Chen, Yue-Jun (4 травня 2022). Gleeson, Joseph G (ред.). Generation of vascularized brain organoids to study neurovascular interactions. eLife. Т. 11. с. e76707. doi:10.7554/eLife.76707.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Jang, Hyunsoo; Kim, Seo Hyun; Koh, Youmin; Yoon, Ki-Jun (28 лютого 2022). Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture. International Journal of Stem Cells (англ.). Т. 15, № 1. с. 41—59. doi:10.15283/ijsc22004.
- Jusop, Amirah Syamimi; Thanaskody, Kalaiselvaan; Tye, Gee Jun; Dass, Sylvia Annabel; Wan Kamarul Zaman, Wan Safwani; Nordin, Fazlina (2023). Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: a glance through. Frontiers in Molecular Neuroscience. Т. 16. doi:10.3389/fnmol.2023.1173433. ISSN 1662-5099.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - D’Antoni, Chiara; Mautone, Lorenza; Sanchini, Caterina; Tondo, Lucrezia; Grassmann, Greta; Cidonio, Gianluca; Bezzi, Paola; Cordella, Federica; Di Angelantonio, Silvia (28 червня 2023). Unlocking Neural Function with 3D In Vitro Models: A Technical Review of Self-Assembled, Guided, and Bioprinted Brain Organoids and Their Applications in the Study of Neurodevelopmental and Neurodegenerative Disorders. International Journal of Molecular Sciences (англ.). Т. 24, № 13. с. 10762. doi:10.3390/ijms241310762.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Qu, Molong; Xiong, Liang; Lyu, Yulin; Zhang, Xiannian; Shen, Jie; Guan, Jingyang; Chai, Peiyuan; Lin, Zhongqing; Nie, Boyao (2021-03). Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Research (англ.). Т. 31, № 3. с. 259—271. doi:10.1038/s41422-020-00453-x.
- Kardia, Egi; Frese, Michael; Smertina, Elena; Strive, Tanja; Zeng, Xi-Lei; Estes, Mary; Hall, Robyn N. (8 березня 2021). Culture and differentiation of rabbit intestinal organoids and organoid-derived cell monolayers. Scientific Reports (англ.). Т. 11, № 1. с. 5401. doi:10.1038/s41598-021-84774-w.
- Kasendra, Magdalena; Troutt, Misty; Broda, Taylor; Bacon, W. Clark; Wang, Timothy C.; Niland, Joyce C.; Helmrath, Michael A. (1 липня 2021). Intestinal organoids: roadmap to the clinic. American Journal of Physiology-Gastrointestinal and Liver Physiology (англ.). Т. 321, № 1. с. G1—G10. doi:10.1152/ajpgi.00425.2020.
- Taelman, Jasin; Diaz, Mònica; Guiu, Jordi (2022). Human Intestinal Organoids: Promise and Challenge. Frontiers in Cell and Developmental Biology. Т. 10. doi:10.3389/fcell.2022.854740.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Tanimizu, Naoki; Ichinohe, Norihisa; Sasaki, Yasushi; Itoh, Tohru; Sudo, Ryo; Yamaguchi, Tomoko; Katsuda, Takeshi; Ninomiya, Takafumi; Tokino, Takashi (7 червня 2021). Generation of functional liver organoids on combining hepatocytes and cholangiocytes with hepatobiliary connections ex vivo. Nature Communications (англ.). Т. 12, № 1. с. 3390. doi:10.1038/s41467-021-23575-1.
- Liu, Qianglin; Zeng, Anqi; Liu, Zibo; Wu, Chunjie; Song, Linjiang (2022). Liver organoids: From fabrication to application in liver diseases. Frontiers in Physiology. Т. 13. doi:10.3389/fphys.2022.956244.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Kim, Hyo Jin; Kim, Gyeongmin; Chi, Kyun Yoo; Kim, Hyemin; Jang, Yu Jin; Jo, Seongyea; Lee, Jihun; Lee, Youngseok; Woo, Dong-Hun (3 лютого 2023). Generation of multilineage liver organoids with luminal vasculature and bile ducts from human pluripotent stem cells via modulation of Notch signaling. Stem Cell Research & Therapy (англ.). Т. 14, № 1. doi:10.1186/s13287-023-03235-5.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Harrison, Sean P.; Siller, Richard; Tanaka, Yoshiaki; Chollet, Maria Eugenia; de la Morena-Barrio, María Eugenia; Xiang, Yangfei; Patterson, Benjamin; Andersen, Elisabeth; Bravo-Pérez, Carlos (1 вересня 2023). Scalable production of tissue-like vascularized liver organoids from human PSCs. (англ.). с. 1—20. doi:10.1038/s12276-023-01074-1.
- Khoshdel-Rad, Niloofar; Ahmadi, Amin; Moghadasali, Reza (2022-02). Kidney organoids: current knowledge and future directions. Cell and Tissue Research (англ.). Т. 387, № 2. с. 207—224. doi:10.1007/s00441-021-03565-x.
- Kim, Hye-Youn; Yu, Seyoung; Choi, Yo Jun; Gee, Heon Yung (25 червня 2023). Kidney organoids: development and applications. Organoid (English) . Т. 3. doi:10.51335/organoid.2023.3.e10.
- Casamitjana, Joan; Espinet, Elisa; Rovira, Meritxell (2022). Pancreatic Organoids for Regenerative Medicine and Cancer Research. Frontiers in Cell and Developmental Biology. Т. 10. doi:10.3389/fcell.2022.886153.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Liu, Yuxiang; Li, Nianshuang; Zhu, Yin (2023-01). Pancreatic Organoids: A Frontier Method for Investigating Pancreatic-Related Diseases. International Journal of Molecular Sciences (англ.). Т. 24, № 4. с. 4027. doi:10.3390/ijms24044027.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Miller, Alyssa J.; Dye, Briana R.; Ferrer-Torres, Daysha; Hill, David R.; Overeem, Arend W.; Shea, Lonnie D.; Spence, Jason R. (2019-02). Generation of lung organoids from human pluripotent stem cells in vitro. Nature Protocols (англ.). Т. 14, № 2. с. 518—540. doi:10.1038/s41596-018-0104-8.
- Bosáková, Veronika; De Zuani, Marco; Sládková, Lucie; Garlíková, Zuzana; Jose, Shyam Sushama; Zelante, Teresa; Hortová Kohoutková, Marcela; Frič, Jan (2022). Lung Organoids—The Ultimate Tool to Dissect Pulmonary Diseases?. Frontiers in Cell and Developmental Biology. Т. 10. doi:10.3389/fcell.2022.899368.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Demchenko, Anna; Lavrov, Alexander; Smirnikhina, Svetlana (2022-12). Lung organoids: current strategies for generation and transplantation. Cell and Tissue Research (англ.). Т. 390, № 3. с. 317—333. doi:10.1007/s00441-022-03686-x.
- Hoang, Plansky; Wang, Jason; Conklin, Bruce R.; Healy, Kevin E.; Ma, Zhen (2018-04). Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nature Protocols (англ.). Т. 13, № 4. с. 723—737. doi:10.1038/nprot.2018.006.
- Kim, Hyeonyu; Kamm, Roger D.; Vunjak-Novakovic, Gordana; Wu, Joseph C. (2022-04). Progress in multicellular human cardiac organoids for clinical applications. Cell Stem Cell. Т. 29, № 4. с. 503—514. doi:10.1016/j.stem.2022.03.012.
- Lee, Seul-Gi; Kim, Ye-Ji; Son, Mi-Young; Oh, Min-Seok; Kim, Jin; Ryu, Bokyeong; Kang, Kyu-Ree; Baek, Jieun; Chung, Gujin (1 листопада 2022). Generation of human iPSCs derived heart organoids structurally and functionally similar to heart. Biomaterials. Т. 290. с. 121860. doi:10.1016/j.biomaterials.2022.121860.
- Sahara, Makoto (2023-01). Recent Advances in Generation of In Vitro Cardiac Organoids. International Journal of Molecular Sciences (англ.). Т. 24, № 7. с. 6244. doi:10.3390/ijms24076244.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Volmert, Brett; Kiselev, Artem; Juhong, Aniwat; Wang, Fei; Riggs, Ashlin; Kostina, Aleksandra; O’Hern, Colin; Muniyandi, Priyadharshni; Wasserman, Aaron (12 грудня 2023). A patterned human primitive heart organoid model generated by pluripotent stem cell self-organization. Nature Communications (англ.). Т. 14, № 1. с. 8245. doi:10.1038/s41467-023-43999-1. Процитовано 16 грудня 2023.
- Wimmer, Reiner A.; Leopoldi, Alexandra; Aichinger, Martin; Wick, Nikolaus; Hantusch, Brigitte; Novatchkova, Maria; Taubenschmid, Jasmin; Hämmerle, Monika; Esk, Christopher (2019-01). Human blood vessel organoids as a model of diabetic vasculopathy. Nature (англ.). Т. 565, № 7740. с. 505—510. doi:10.1038/s41586-018-0858-8.
- Afanasyeva, Tess A. V.; Corral-Serrano, Julio C.; Garanto, Alejandro; Roepman, Ronald; Cheetham, Michael E.; Collin, Rob W. J. (1 жовтня 2021). A look into retinal organoids: methods, analytical techniques, and applications. Cellular and Molecular Life Sciences (англ.). Т. 78, № 19. с. 6505—6532. doi:10.1007/s00018-021-03917-4.
- Li, Jinyan; Chen, Yijia; Ouyang, Shuai; Ma, Jingyu; Sun, Hui; Luo, Lixia; Chen, Shuyi; Liu, Yizhi (2021). Generation and Staging of Human Retinal Organoids Based on Self-Formed Ectodermal Autonomous Multi-Zone System. Frontiers in Cell and Developmental Biology. Т. 9. doi:10.3389/fcell.2021.732382.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Kim, Hantai; Kim, Young Sun; Kim, Yeon Ju; Ha, Jungho; Sung, Siung; Jang, Jeong Hun; Park, Sunho; Kim, Jangho; Kim, Kyunghoon (25 квітня 2023). Development of otic organoids and their current status. Organoid (English) . Т. 3. doi:10.51335/organoid.2023.3.e7.
- Smirnova, Lena; Caffo, Brian S.; Gracias, David H.; Huang, Qi; Morales Pantoja, Itzy E.; Tang, Bohao; Zack, Donald J.; Berlinicke, Cynthia A.; Boyd, J. Lomax (28 лютого 2023). Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish. Frontiers in Science. Т. 1. с. 1017235. doi:10.3389/fsci.2023.1017235.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Hetzel, Laura Ann; Ali, Ahmed; Corbo, Vincenzo; Hankemeier, Thomas (2023-01). Microfluidics and Organoids, the Power Couple of Developmental Biology and Oncology Studies. International Journal of Molecular Sciences (англ.). Т. 24, № 13. с. 10882. doi:10.3390/ijms241310882.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Zhu, Yujuan; Zhang, Xiaoxuan; Sun, Lingyu; Wang, Yu; Zhao, Yuanjin (2023-04). Engineering Human Brain Assembloids by Microfluidics. Advanced Materials (англ.). Т. 35, № 14. doi:10.1002/adma.202210083.
- Wu, Lei; Ai, Yongjian; Xie, Ruoxiao; Xiong, Jialiang; Wang, Yu; Liang, Qionglin (1 березня 2023). Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models. Lab on a Chip (англ.). Т. 23, № 5. с. 1192—1212. doi:10.1039/D2LC00804A.
- Fang, Guocheng; Chen, Yu‐Cheng; Lu, Hongxu; Jin, Dayong (2023-05). Advances in Spheroids and Organoids on a Chip. Advanced Functional Materials (англ.). Т. 33, № 19. doi:10.1002/adfm.202215043.
- Wang, Yaqing; Qin, Jianhua (1 лютого 2023). Advances in human organoids-on-chips in biomedical research. Life Medicine (англ.). Т. 2, № 1. doi:10.1093/lifemedi/lnad007.
- Tan, Sin Yen; Feng, Xiaohan; Cheng, Lily Kwan Wai; Wu, Angela Ruohao (13 червня 2023). Vascularized human brain organoid on-chip. Lab on a Chip (англ.). Т. 23, № 12. с. 2693—2709. doi:10.1039/D2LC01109C.
- Saorin, Gloria; Caligiuri, Isabella; Rizzolio, Flavio (30 липня 2023). Microfluidic organoids-on-a-chip: The future of human models. Seminars in Cell & Developmental Biology. Т. 144. с. 41—54. doi:10.1016/j.semcdb.2022.10.001.
- Shoji, Jun‐ya; Davis, Richard P.; Mummery, Christine L.; Krauss, Stefan (7 серпня 2023). Global Meta‐Analysis of Organoid and Organ‐on‐Chip Research. Advanced Healthcare Materials (англ.). doi:10.1002/adhm.202301067.
- Menche, Constantin; Farin, Henner F. (2021-10). Strategies for genetic manipulation of adult stem cell-derived organoids. (англ.). Т. 53, № 10. с. 1483—1494. doi:10.1038/s12276-021-00609-8.
- Haja, Asmaa; Horcas-Nieto, José M.; Bakker, Barbara M.; Schomaker, Lambert (1 січня 2023). Towards automatization of organoid analysis: A deep learning approach to localize and quantify organoid images. Computer Methods and Programs in Biomedicine Update. Т. 3. с. 100101. doi:10.1016/j.cmpbup.2023.100101.
- Matthews, Jonathan M.; Schuster, Brooke; Kashaf, Sara Saheb; Liu, Ping; Ben-Yishay, Rakefet; Ishay-Ronen, Dana; Izumchenko, Evgeny; Shen, Le; Weber, Christopher R. (9 лист. 2022 р.). OrganoID: A versatile deep learning platform for tracking and analysis of single-organoid dynamics. PLOS Computational Biology (англ.). Т. 18, № 11. с. e1010584. doi:10.1371/journal.pcbi.1010584.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Du, Xuan; Chen, Zaozao; Li, Qiwei; Yang, Sheng; Jiang, Lincao; Yang, Yi; Li, Yanhui; Gu, Zhongze (2023-05). Organoids revealed: morphological analysis of the profound next generation in-vitro model with artificial intelligence. Bio-Design and Manufacturing (англ.). Т. 6, № 3. с. 319—339. doi:10.1007/s42242-022-00226-y.
- Park, Taeyun; Kim, Taeyul K.; Han, Yoon Dae; Kim, Kyung-A.; Kim, Hwiyoung; Kim, Han Sang (13 листопада 2023). Development of a deep learning based image processing tool for enhanced organoid analysis. Scientific Reports (англ.). doi:10.1038/s41598-023-46485-2. Процитовано 16 грудня 2023.
- Albanese, Alexandre; Swaney, Justin M.; Yun, Dae Hee; Evans, Nicholas B.; Antonucci, Jenna M. та ін. (8 грудня 2020). Multiscale 3D phenotyping of human cerebral organoids. Scientific Reports (англ.). Т. 10, № 1. doi:10.1038/s41598-020-78130-7.
{{}}
: Явне використання «та ін.» у:|first5=
() - Jacob, Fadi; Schnoll, Jordan G.; Song, Hongjun; Ming, Guo-li (1 січня 2021). Bashaw, Greg J. (ред.). Chapter Twelve - Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Current Topics in Developmental Biology. Т. 142. Academic Press. с. 477—530. doi:10.1016/bs.ctdb.2020.12.011. PMC 8363060. PMID 33706925.
{{}}
: Обслуговування CS1: Сторінки з PMC з іншим форматом () - Adlakha, Yogita K. (3 липня 2023). Human 3D brain organoids: steering the demolecularization of brain and neurological diseases. Cell Death Discovery (англ.). Т. 9, № 1. с. 1—17. doi:10.1038/s41420-023-01523-w.
- Eichmüller, Oliver L.; Knoblich, Juergen A. (2022-11). Human cerebral organoids — a new tool for clinical neurology research. Nature Reviews Neurology (англ.). Т. 18, № 11. с. 661—680. doi:10.1038/s41582-022-00723-9.
- Li, Xiaodong; Shopit, Abdullah; Wang, Jingmin (5 грудня 2022). A Comprehensive Update of Cerebral Organoids between Applications and Challenges. Oxidative Medicine and Cellular Longevity (англ.). Т. 2022. с. e7264649. doi:10.1155/2022/7264649.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Mulder, Lance A.; Depla, Josse A.; Sridhar, Adithya; Wolthers, Katja; Pajkrt, Dasja; Vieira de Sá, Renata (15 квітня 2023). A beginner’s guide on the use of brain organoids for neuroscientists: a systematic review. Stem Cell Research & Therapy (англ.). Т. 14, № 1. doi:10.1186/s13287-023-03302-x.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Li, Yang; Zeng, Peng-Ming; Wu, Jian; Luo, Zhen-Ge (24 травня 2023). Advances and Applications of Brain Organoids. Neuroscience Bulletin (англ.). doi:10.1007/s12264-023-01065-2.
- Makrygianni, Evanthia A.; Chrousos, George P. (2021). From Brain Organoids to Networking Assembloids: Implications for Neuroendocrinology and Stress Medicine. Frontiers in Physiology. Т. 12. doi:10.3389/fphys.2021.621970.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Roth, Julien G.; Brunel, Lucia G.; Huang, Michelle S.; Liu, Yueming; Cai, Betty; Sinha, Sauradeep; Yang, Fan; Pașca, Sergiu P.; Shin, Sungchul (19 липня 2023). Spatially controlled construction of assembloids using bioprinting. Nature Communications (англ.). Т. 14, № 1. с. 4346. doi:10.1038/s41467-023-40006-5.
- Cakir, Bilal; Xiang, Yangfei; Tanaka, Yoshiaki; Kural, Mehmet H.; Parent, Maxime; Kang, Young-Jin; Chapeton, Kayley; Patterson, Benjamin; Yuan, Yifan (2019-11). Engineering of human brain organoids with a functional vascular-like system. Nature Methods (англ.). Т. 16, № 11. с. 1169—1175. doi:10.1038/s41592-019-0586-5.
- LaMontagne, Erin; Muotri, Alysson R.; Engler, Adam J. (2022). Recent advancements and future requirements in vascularization of cortical organoids. Frontiers in Bioengineering and Biotechnology. Т. 10. doi:10.3389/fbioe.2022.1048731.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Ye, Bing (8 трав. 2023 р.). Approaches to vascularizing human brain organoids. (англ.). Т. 21, № 5. с. e3002141. doi:10.1371/journal.pbio.3002141.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Matsui, Takeshi K.; Tsuru, Yuichiro; Hasegawa, Koichi; Kuwako, Ken-ichiro (1 серпня 2021). Vascularization of Human Brain Organoids. Stem Cells (англ.). Т. 39, № 8. с. 1017—1024. doi:10.1002/stem.3368.
- Zhou, Jin-Qi; Zeng, Ling-Hui; Li, Chen-Tao; He, Da-Hong; Zhao, Hao-Duo; Xu, Yan-Nan; Jin, Zi-Tian; Gao, Chong (2023-09). Brain organoids are new tool for drug screening of neurological diseases. Neural Regeneration Research (амер.). Т. 18, № 9. с. 1884. doi:10.4103/1673-5374.367983.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Madhavan, Mayur; Nevin, Zachary S.; Shick, H. Elizabeth; Garrison, Eric; Clarkson-Paredes, Cheryl; Karl, Molly; Clayton, Benjamin L. L.; Factor, Daniel C.; Allan, Kevin C. (2018-09). Induction of myelinating oligodendrocytes in human cortical spheroids. Nature Methods (англ.). Т. 15, № 9. с. 700—706. doi:10.1038/s41592-018-0081-4.
- Ma, Ling; Mei, Yuting; Xu, Peibo; Cheng, Yan; You, Zhiwen; Ji, Xiaoli; Zhuang, Deyi; Zhou, Wenhao; Chen, Yuejun (2022-10). Fast generation of forebrain oligodendrocyte spheroids from human embryonic stem cells by transcription factors. iScience. Т. 25, № 10. с. 105172. doi:10.1016/j.isci.2022.105172.
- Yoon, Se-Jin; Elahi, Lubayna S.; Pașca, Anca M.; Marton, Rebecca M.; Gordon, Aaron; Revah, Omer; Miura, Yuki; Walczak, Elisabeth M.; Holdgate, Gwendolyn M. (2019-01). Reliability of human cortical organoid generation. Nature Methods (англ.). Т. 16, № 1. с. 75—78. doi:10.1038/s41592-018-0255-0.
- Park, Yoonseok; Franz, Colin K.; Ryu, Hanjun; Luan, Haiwen; Cotton, Kristen Y.; Kim, Jong Uk; Chung, Ted S.; Zhao, Shiwei; Vazquez-Guardado, Abraham (19 березня 2021). Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Science Advances (англ.). Т. 7, № 12. doi:10.1126/sciadv.abf9153.
- De Kleijn, Kim M. A.; Zuure, Wieteke A.; Straasheijm, Kirsten R.; Martens, Marijn B.; Avramut, M. Cristina; Koning, Roman I.; Martens, Gerard J. M. (23 березня 2023). Human cortical spheroids with a high diversity of innately developing brain cell types. Stem Cell Research & Therapy (англ.). Т. 14, № 1. doi:10.1186/s13287-023-03261-3.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow (2016-08). Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell (англ.). Т. 19, № 2. с. 248—257. doi:10.1016/j.stem.2016.07.005.
- Sabate‐Soler, Sonia; Nickels, Sarah Louise; Saraiva, Cláudia; Berger, Emanuel; Dubonyte, Ugne; Barmpa, Kyriaki; Lan, Yan Jun; Kouno, Tsukasa; Jarazo, Javier (2022-07). Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia (англ.). Т. 70, № 7. с. 1267—1288. doi:10.1002/glia.24167.
- Mohamed, Nguyen-Vi; Lépine, Paula; Lacalle-Aurioles, María; Sirois, Julien; Mathur, Meghna; Reintsch, Wolfgang; Beitel, Lenore K.; Fon, Edward A.; Durcan, Thomas M. (1 липня 2022). Microfabricated disk technology: Rapid scale up in midbrain organoid generation. Methods. Т. 203. с. 465—477. doi:10.1016/j.ymeth.2021.07.008.
- Sozzi, Edoardo; Nilsson, Fredrik; Kajtez, Janko; Parmar, Malin; Fiorenzano, Alessandro (2022-09). Generation of Human Ventral Midbrain Organoids Derived from Pluripotent Stem Cells. Current Protocols (англ.). Т. 2, № 9. doi:10.1002/cpz1.555.
- Toh, Hilary S Y; Choo, Xin Yi; Sun, Alfred Xuyang (2023). Midbrain organoids—development and applications in Parkinson’s disease. Oxford Open Neuroscience. Т. 2. doi:10.1093/oons/kvad009.
- Huang, Wei-Kai; Wong, Samuel Zheng Hao; Pather, Sarshan R.; Nguyen, Phuong T.T.; Zhang, Feng; Zhang, Daniel Y.; Zhang, Zhijian; Lu, Lu; Fang, Wanqi (2021-09). Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell (англ.). Т. 28, № 9. с. 1657—1670.e10. doi:10.1016/j.stem.2021.04.006.
- Ozaki, Hajime; Suga, Hidetaka; Arima, Hiroshi (2021-02). Hypothalamic–pituitary organoid generation through the recapitulation of organogenesis. Development, Growth & Differentiation (англ.). Т. 63, № 2. с. 154—165. doi:10.1111/dgd.12719.
- Sarrafha, Lily; Neavin, Drew R.; Parfitt, Gustavo M.; Kruglikov, Ilya A.; Whitney, Kristen; Reyes, Ricardo; Coccia, Elena; Kareva, Tatyana; Goldman, Camille (2023-09). Novel human pluripotent stem cell-derived hypothalamus organoids demonstrate cellular diversity. iScience. Т. 26, № 9. с. 107525. doi:10.1016/j.isci.2023.107525.
- Afanasyeva, Tess A. V.; Corral-Serrano, Julio C.; Garanto, Alejandro; Roepman, Ronald; Cheetham, Michael E.; Collin, Rob W. J. (1 жовтня 2021). A look into retinal organoids: methods, analytical techniques, and applications. Cellular and Molecular Life Sciences (англ.). Т. 78, № 19. с. 6505—6532. doi:10.1007/s00018-021-03917-4.
- Wahle, Philipp; Brancati, Giovanna; Harmel, Christoph; He, Zhisong; Gut, Gabriele; del Castillo, Jacobo Sarabia; Xavier da Silveira dos Santos, Aline; Yu, Qianhui; Noser, Pascal (8 травня 2023). Multimodal spatiotemporal phenotyping of human retinal organoid development. Nature Biotechnology (англ.). с. 1—11. doi:10.1038/s41587-023-01747-2.
- Ludwig, Allison L.; Mayerl, Steven J.; Gao, Yu; Banghart, Mark; Bacig, Cole; Fernandez Zepeda, Maria A.; Zhao, Xinyu; Gamm, David M. (10 січня 2023). Re-formation of synaptic connectivity in dissociated human stem cell-derived retinal organoid cultures. Proceedings of the National Academy of Sciences (англ.). Т. 120, № 2. doi:10.1073/pnas.2213418120.
- Tresenrider, Amy; Sridhar, Akshayalakshmi; Eldred, Kiara C.; Cuschieri, Sophia; Hoffer, Dawn; Trapnell, Cole; Reh, Thomas A. (28 серпня 2023). Single-cell sequencing of individual retinal organoids reveals determinants of cell-fate heterogeneity. Cell Reports Methods. Т. 3, № 8. с. 100548. doi:10.1016/j.crmeth.2023.100548.
- Isla-Magrané, Helena; Veiga, Anna; García-Arumí, José; Duarri, Anna (22 листопада 2021). Multiocular organoids from human induced pluripotent stem cells displayed retinal, corneal, and retinal pigment epithelium lineages. Stem Cell Research & Therapy (англ.). Т. 12, № 1. doi:10.1186/s13287-021-02651-9.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Kaluthantrige Don, Flaminia; Kalebic, Nereo (2022). Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. Frontiers in Cell and Developmental Biology. Т. 10. doi:10.3389/fcell.2022.917166.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Gabriel, Elke; Albanna, Walid; Pasquini, Giovanni; Ramani, Anand; Josipovic, Natasa; Mariappan, Aruljothi; Riparbelli, Maria Giovanna; Callaini, Giuliano; Karch, Celeste M. (2023-06). Generation of iPSC-derived human forebrain organoids assembling bilateral eye primordia. Nature Protocols (англ.). Т. 18, № 6. с. 1893—1929. doi:10.1038/s41596-023-00814-x.
- Birey, Fikri; Andersen, Jimena; Makinson, Christopher D.; Islam, Saiful; Wei, Wu; Huber, Nina; Fan, H. Christina; Metzler, Kimberly R. Cordes; Panagiotakos, Georgia (4 травня 2017). Assembly of functionally integrated human forebrain spheroids. Nature (англ.). Т. 545, № 7652. с. 54—59. doi:10.1038/nature22330.
- Birey, Fikri; Li, Min-Yin; Gordon, Aaron; Thete, Mayuri V.; Valencia, Alfredo M.; Revah, Omer; Paşca, Anca M.; Geschwind, Daniel H.; Paşca, Sergiu P. (2022-02). Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell. Т. 29, № 2. с. 248—264.e7. doi:10.1016/j.stem.2021.11.011.
- Birey, Fikri; Pașca, Sergiu P. (16 вересня 2022). Imaging neuronal migration and network activity in human forebrain assembloids. STAR Protocols. Т. 3, № 3. с. 101478. doi:10.1016/j.xpro.2022.101478.
- Song, Liqing; Yuan, Xuegang; Jones, Zachary; Vied, Cynthia; Miao, Yu; Marzano, Mark; Hua, Thien; Sang, Qing-Xiang Amy; Guan, Jingjiao (30 липня 2019). Functionalization of Brain Region-specific Spheroids with Isogenic Microglia-like Cells. Scientific Reports (англ.). Т. 9, № 1. doi:10.1038/s41598-019-47444-6.
- Zhang, Wendiao; Jiang, Jiamei; Xu, Zhenhong; Yan, Hongye; Tang, Beisha та ін. (2023-01). Microglia-containing human brain organoids for the study of brain development and pathology. Molecular Psychiatry (англ.). Т. 28, № 1. с. 96—107. doi:10.1038/s41380-022-01892-1.
{{}}
: Явне використання «та ін.» у:|first5=
() - Zhang, Wendiao; Jiang, Jiamei; Xu, Zhenhong; Yan, Hongye; Tang, Beisha; Liu, Chunyu; Chen, Chao; Meng, Qingtuan (2023-01). Microglia-containing human brain organoids for the study of brain development and pathology. Molecular Psychiatry (англ.). Т. 28, № 1. с. 96—107. doi:10.1038/s41380-022-01892-1.
- Hong, Yiling; Dong, Xu; Chang, Lawrence; Xie, Chen; Chang, Mariann; Aguilar, Jose S.; Lin, Jimmy; Lin, Juncheng; Li, Qingshun Q. (2023-03). Microglia-containing cerebral organoids derived from induced pluripotent stem cells for the study of neurological diseases. iScience. Т. 26, № 3. с. 106267. doi:10.1016/j.isci.2023.106267.
- Schafer, Simon T.; Mansour, Abed AlFatah; Schlachetzki, Johannes C.M.; Pena, Monique; Ghassemzadeh, Saeed; Mitchell, Lisa; Mar, Amanda; Quang, Daphne; Stumpf, Sarah (2023-05). An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell. Т. 186, № 10. с. 2111—2126.e20. doi:10.1016/j.cell.2023.04.022.
- D’Aiuto, Leonardo; Bloom, David C.; Naciri, Jennifer N.; Smith, Adam; Edwards, Terri G.; McClain, Lora; Callio, Jason A.; Jessup, Morgan; Wood, Joel (2019-05). Sandri-Goldin, Rozanne M. (ред.). Modeling Herpes Simplex Virus 1 Infections in Human Central Nervous System Neuronal Cells Using Two- and Three-Dimensional Cultures Derived from Induced Pluripotent Stem Cells. Journal of Virology (англ.). Т. 93, № 9. doi:10.1128/JVI.00111-19.
- Selejan, Ovidiu (31 липня 2023). Differentiation of neurosphere after transplantation into the damaged spinal cord • JML Journal of Medicine and Life. JML Journal of Medicine and Life (амер.). doi:10.25122/jml-2022-0346.
- Krencik, Robert; Seo, Kyounghee; van Asperen, Jessy V.; Basu, Nupur; Cvetkovic, Caroline; Barlas, Saba; Chen, Robert; Ludwig, Connor; Wang, Chao (2017-12). Systematic Three-Dimensional Coculture Rapidly Recapitulates Interactions between Human Neurons and Astrocytes. Stem Cell Reports. Т. 9, № 6. с. 1745—1753. doi:10.1016/j.stemcr.2017.10.026.
- Sloan, Steven A.; Darmanis, Spyros; Huber, Nina; Khan, Themasap A.; Birey, Fikri; Caneda, Christine; Reimer, Richard; Quake, Stephen R.; Barres, Ben A. (2017-08). Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells. Neuron (англ.). Т. 95, № 4. с. 779—790.e6. doi:10.1016/j.neuron.2017.07.035.
- Szebényi, Kornélia; Wenger, Léa M. D.; Sun, Yu; Dunn, Alexander W. E.; Limegrover, Colleen A.; Gibbons, George M.; Conci, Elena; Paulsen, Ole; Mierau, Susanna B. (2021-11). Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nature Neuroscience (англ.). Т. 24, № 11. с. 1542—1554. doi:10.1038/s41593-021-00923-4.
- James, Owen G.; Selvaraj, Bhuvaneish T.; Magnani, Dario; Burr, Karen; Connick, Peter; Barton, Samantha K.; Vasistha, Navneet A.; Hampton, David W.; Story, David (2022-01). iPSC-derived myelinoids to study myelin biology of humans. Developmental Cell. Т. 57, № 1. с. 146. doi:10.1016/j.devcel.2021.12.009.
- Ma, Cuili; Seong, Hwanwook; Li, Xiaowei; Yu, Xiao; Xu, Shunliang; Li, Yujing (25 серпня 2022). Human Brain Organoid: A Versatile Tool for Modeling Neurodegeneration Diseases and for Drug Screening. Stem Cells International (англ.). Т. 2022. с. e2150680. doi:10.1155/2022/2150680.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Bergmann, Sonja; Lawler, Sean E.; Qu, Yuan; Fadzen, Colin M.; Wolfe, Justin M.; Regan, Michael S.; Pentelute, Bradley L.; Agar, Nathalie Y. R.; Cho, Choi-Fong (2018-12). Blood–brain-barrier organoids for investigating the permeability of CNS therapeutics. Nature Protocols (англ.). Т. 13, № 12. с. 2827—2843. doi:10.1038/s41596-018-0066-x.
- Mayhew, Christopher N.; Singhania, Richa (17 березня 2023). A review of protocols for brain organoids and applications for disease modeling. STAR Protocols. Т. 4, № 1. с. 101860. doi:10.1016/j.xpro.2022.101860.
- Chen, Hao; Jin, Xin; Li, Tie; Ye, Zhuang (2022). Brain organoids: Establishment and application. Frontiers in Cell and Developmental Biology. Т. 10. doi:10.3389/fcell.2022.1029873.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Kilpatrick, Savannah; Irwin, Courtney; Singh, Karun K. (21 червня 2023). Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Translational Psychiatry (англ.). Т. 13, № 1. с. 1—21. doi:10.1038/s41398-023-02510-6.
- Santos, John Lenon de Souza; Araújo, Cecília de Almeida; Rocha, Clarissa Araújo Gurgel; Costa-Ferro, Zaquer Suzana Munhoz; Souza, Bruno Solano de Freitas (2023-02). Modeling Autism Spectrum Disorders with Induced Pluripotent Stem Cell-Derived Brain Organoids. Biomolecules (англ.). Т. 13, № 2. с. 260. doi:10.3390/biom13020260.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Fair, Summer R; Schwind, Wesley; Julian, Dominic L; Biel, Alecia; Guo, Gongbo; Rutherford, Ryan; Ramadesikan, Swetha; Westfall, Jesse; Miller, Katherine E (8 липня 2022). Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain. Т. 146, № 1. с. 387—404. doi:10.1093/brain/awac244.
- Haase, Florencia D.; Coorey, Bronte; Riley, Lisa; Cantrill, Laurence C.; Tam, Patrick P. L.; Gold, Wendy A. (2021). Pre-clinical Investigation of Rett Syndrome Using Human Stem Cell-Based Disease Models. Frontiers in Neuroscience. Т. 15. doi:10.3389/fnins.2021.698812.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Yildirim, Murat; Delepine, Chloe; Feldman, Danielle; Pham, Vincent A; Chou, Stephanie; Ip, Jacque; Nott, Alexi; Tsai, Li-Huei; Ming, Guo-Li (29 липня 2022). Chin, Jeannie (ред.). Label-free three-photon imaging of intact human cerebral organoids for tracking early events in brain development and deficits in Rett syndrome. eLife. Т. 11. с. e78079. doi:10.7554/eLife.78079.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Sen, Dilara; Voulgaropoulos, Alexis; Drobna, Zuzana; Keung, Albert J. (2020-10). Human Cerebral Organoids Reveal Early Spatiotemporal Dynamics and Pharmacological Responses of UBE3A. Stem Cell Reports. Т. 15, № 4. с. 845—854. doi:10.1016/j.stemcr.2020.08.006.
- Sun, Alfred Xuyang; Yuan, Qiang; Fukuda, Masahiro; Yu, Weonjin; Yan, Haidun; Lim, Grace Gui Yin; Nai, Mui Hoon; D’Agostino, Giuseppe Alessandro; Tran, Hoang-Dai (20 грудня 2019). Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science (англ.). Т. 366, № 6472. с. 1486—1492. doi:10.1126/science.aav5386.
- Blair, John D.; Hockemeyer, Dirk; Bateup, Helen S. (2018-10). Genetically engineered human cortical spheroid models of tuberous sclerosis. Nature Medicine (англ.). Т. 24, № 10. с. 1568—1578. doi:10.1038/s41591-018-0139-y.
- Eichmüller, Oliver L.; Corsini, Nina S.; Vértesy, Ábel; Morassut, Ilaria; Scholl, Theresa; Gruber, Victoria-Elisabeth; Peer, Angela M.; Chu, Julia; Novatchkova, Maria (28 січня 2022). Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science (англ.). Т. 375, № 6579. doi:10.1126/science.abf5546.
- Xu, Jie; Wen, Zhexing (10 вересня 2021). Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells International (англ.). Т. 2021. с. e5902824. doi:10.1155/2021/5902824.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Kim, Soo-hyun; Chang, Mi-Yoon (2023-01). Application of Human Brain Organoids—Opportunities and Challenges in Modeling Human Brain Development and Neurodevelopmental Diseases. International Journal of Molecular Sciences (англ.). Т. 24, № 15. с. 12528. doi:10.3390/ijms241512528.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Park, Jong-Chan; Jang, So-Yeong; Lee, Dongjoon; Lee, Jeongha; Kang, Uiryong; Chang, Hongjun; Kim, Haeng Jun; Han, Sun-Ho; Seo, Jinsoo (12 січня 2021). A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids. Nature Communications (англ.). Т. 12, № 1. с. 280. doi:10.1038/s41467-020-20440-5.
- Venkataraman, Lalitha; Fair, Summer R.; McElroy, Craig A.; Hester, Mark E.; Fu, Hongjun (1 лютого 2022). Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: focus on Alzheimer’s disease. Stem Cell Reviews and Reports (англ.). Т. 18, № 2. с. 696—717. doi:10.1007/s12015-020-10068-9.
- Sreenivasamurthy, Sai; Laul, Mahek; Zhao, Nan; Kim, Tiffany; Zhu, Donghui (2023-03). Current progress of cerebral organoids for modeling Alzheimer's disease origins and mechanisms. Bioengineering & Translational Medicine (англ.). Т. 8, № 2. doi:10.1002/btm2.10378.
- Cerneckis, Jonas; Bu, Guojun; Shi, Yanhong (2023-08). Pushing the boundaries of brain organoids to study Alzheimer’s disease. Trends in Molecular Medicine. Т. 29, № 8. с. 659—672. doi:10.1016/j.molmed.2023.05.007.
- Lavekar, Sailee S.; Harkin, Jade; Hernandez, Melody; Gomes, Cátia; Patil, Shruti; Huang, Kang-Chieh; Puntambekar, Shweta S.; Lamb, Bruce T.; Meyer, Jason S. (24 серпня 2023). Development of a three-dimensional organoid model to explore early retinal phenotypes associated with Alzheimer’s disease. Scientific Reports (англ.). Т. 13, № 1. с. 13827. doi:10.1038/s41598-023-40382-4.
- Wulansari, Noviana; Darsono, Wahyu Handoko Wibowo; Woo, Hye-Ji; Chang, Mi-Yoon; Kim, Jinil; Bae, Eun-Jin; Sun, Woong; Lee, Ju-Hyun; Cho, Il-Joo (19 лютого 2021). Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson’s disease-linked DNAJC6 mutations. Science Advances (англ.). Т. 7, № 8. doi:10.1126/sciadv.abb1540.
- Smits, Lisa M.; Reinhardt, Lydia; Reinhardt, Peter; Glatza, Michael; Monzel, Anna S.; Stanslowsky, Nancy; Rosato-Siri, Marcelo D.; Zanon, Alessandra; Antony, Paul M. (5 квітня 2019). Modeling Parkinson’s disease in midbrain-like organoids. npj Parkinson's Disease (англ.). Т. 5, № 1. с. 1—8. doi:10.1038/s41531-019-0078-4.
- McComish, Sarah F.; MacMahon Copas, Adina N.; Caldwell, Maeve A. (2022). Human Brain-Based Models Provide a Powerful Tool for the Advancement of Parkinson’s Disease Research and Therapeutic Development. Frontiers in Neuroscience. Т. 16. doi:10.3389/fnins.2022.851058.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Pereira, João D.; DuBreuil, Daniel M.; Devlin, Anna-Claire; Held, Aaron; Sapir, Yechiam; Berezovski, Eugene; Hawrot, James; Dorfman, Katherine; Chander, Vignesh (6 серпня 2021). Human sensorimotor organoids derived from healthy and amyotrophic lateral sclerosis stem cells form neuromuscular junctions. Nature Communications (англ.). Т. 12, № 1. с. 4744. doi:10.1038/s41467-021-24776-4.
- Szebényi, Kornélia; Wenger, Léa M. D.; Sun, Yu; Dunn, Alexander W. E.; Limegrover, Colleen A.; Gibbons, George M.; Conci, Elena; Paulsen, Ole; Mierau, Susanna B. (2021-11). Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nature Neuroscience (англ.). Т. 24, № 11. с. 1542—1554. doi:10.1038/s41593-021-00923-4.
- Chen, Eric; Daviaud, Nicolas; Sadiq, Saud (13 квітня 2021). Effect of multiple sclerosis patient genetic background on cerebral organoid cell populations. (4296). Neurology (англ.). Т. 96, № 15 Supplement.
- Daviaud, Nicolas; Chen, Eric; Edwards, Tara; Sadiq, Saud A. (6 березня 2023). Cerebral organoids in primary progressive multiple sclerosis reveal stem cell and oligodendrocyte differentiation defect. Biology Open. Т. 12, № 3. doi:10.1242/bio.059845.
- Conforti, P.; Besusso, D.; Bocchi, V. D.; Faedo, A.; Cesana, E.; Rossetti, G.; Ranzani, V.; Svendsen, C. N.; Thompson, L. M. (23 січня 2018). Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proceedings of the National Academy of Sciences (англ.). Т. 115, № 4. doi:10.1073/pnas.1715865115.
- Liu, Chunyue; Fu, Zixing; Wu, Shanshan; Wang, Xiaosong; Zhang, Shengrong; Chu, Chu; Hong, Yuan; Wu, Wenbo; Chen, Shengqi (7 липня 2022). Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Huntington's disease. EMBO Molecular Medicine (англ.). Т. 14, № 7.
- Conner, LT; Srinageshwar, B.; Bakke, JL; Dunbar, GL; Rossignol, J. (1 липня 2023). Advances in stem cell and other therapies for Huntington’s disease: An update. Brain Research Bulletin. Т. 199. с. 110673. doi:10.1016/j.brainresbull.2023.110673.
- Groveman, Bradley R.; Ferreira, Natalia C.; Foliaki, Simote T.; Walters, Ryan O.; Winkler, Clayton W.; Race, Brent; Hughson, Andrew G.; Zanusso, Gianluigi; Haigh, Cathryn L. (9 березня 2021). Human cerebral organoids as a therapeutic drug screening model for Creutzfeldt–Jakob disease. Scientific Reports (англ.). Т. 11, № 1. с. 5165. doi:10.1038/s41598-021-84689-6.
- Pellegrini, Laura; Lancaster, Madeline A. (2021-08). Modeling neurodegeneration with mutant-tau organoids. Cell. Т. 184, № 17. с. 4377—4379. doi:10.1016/j.cell.2021.07.031.
- Wang, Qinying; Dong, Xiaoxu; Hu, Tingting; Qu, Chao; Lu, Jing; Zhou, Yue; Li, Jinsong; Pei, Gang (2021-01). Constitutive Activity of Serotonin Receptor 6 Regulates Human Cerebral Organoids Formation and Depression-like Behaviors. Stem Cell Reports. Т. 16, № 1. с. 75—88. doi:10.1016/j.stemcr.2020.11.015.
- Lu, Kaiqin; Hong, Yuan; Tao, Mengdan; Shen, Luping; Zheng, Zhilong; Fang, Kaiheng; Yuan, Fang; Xu, Min; Wang, Chun (11 січня 2023). Depressive patient‐derived GABA interneurons reveal abnormal neural activity associated with HTR2C. EMBO Molecular Medicine (англ.). Т. 15, № 1. doi:10.15252/emmm.202216364.
- Kathuria, Annie; Lopez-Lengowski, Kara; Jagtap, Smita S.; McPhie, Donna; Perlis, Roy H.; Cohen, Bruce M.; Karmacharya, Rakesh (1 липня 2020). Transcriptomic Landscape and Functional Characterization of Induced Pluripotent Stem Cell–Derived Cerebral Organoids in Schizophrenia. JAMA Psychiatry (англ.). Т. 77, № 7. с. 745. doi:10.1001/jamapsychiatry.2020.0196.
- Notaras, Michael; Lodhi, Aiman; Dündar, Friederike; Collier, Paul; Sayles, Nicole M.; Tilgner, Hagen; Greening, David; Colak, Dilek (2022-03). Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Molecular Psychiatry (англ.). Т. 27, № 3. с. 1416—1434. doi:10.1038/s41380-021-01316-6.
- Kathuria, Annie; Lopez-Lengowski, Kara; Vater, Magdalena; McPhie, Donna; Cohen, Bruce M.; Karmacharya, Rakesh (19 квітня 2020). Transcriptome analysis and functional characterization of cerebral organoids in bipolar disorder. Genome Medicine. Т. 12, № 1. с. 34. doi:10.1186/s13073-020-00733-6.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Hewitt, Tristen; Alural, Begüm; Tilak, Manali; Wang, Jennifer; Becke, Natalina; Chartley, Ellis; Perreault, Melissa; Haggarty, Stephen J.; Sheridan, Steven D. (4 липня 2023). Bipolar disorder-iPSC derived neural progenitor cells exhibit dysregulation of store-operated Ca2+ entry and accelerated differentiation. Molecular Psychiatry (англ.). с. 1—14. doi:10.1038/s41380-023-02152-6.
- Dixon, Thomas Anthony; Muotri, Alysson R. (2023-01). Advancing preclinical models of psychiatric disorders with human brain organoid cultures. Molecular Psychiatry (англ.). Т. 28, № 1. с. 83—95.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Organoyid ce miniatyurna ta sproshena trivimirna versiya organu stvorena in vitro yaka imituye klyuchovu funkcionalnu strukturnu ta biologichnu skladnist cogo organu OrganoyidOchikuvana trivalist zhittya80 den 1 Z materialustovburovi klitini Organoyid u VikishovishiViroshuvannya in vitro embrionalnoyi slinnoyi zalozi mishi dlya transplantaciyi Organoyidi ce trivimirni 3D klitinni strukturi yaki pohodyat zi stovburovih klitin abo tkaninospecifichnih klitin poperednikiv i tochno imituyut mikroarhitekturu ta funkcionalnist konkretnih organiv abo tkanin v organizmi lyudini chi tvarini Fluorescentna mikrofotografiya organoyidiv mishi Naukovci biomedicini ta biomedichni inzheneri vikoristovuyut organoyidi dlya vivchennya normalnogo rozvitku modelyuvannya zahvoryuvan u laboratoriyi vidkrittya ta rozrobki likiv personalizovanoyi diagnostiki ta medicini regenerativnoyi medicini klitinnoyi terapiyi stovburovimi klitinami tkaninnoyi inzheneriyi ta doslidzhen mozhlivostej druku organiv Cerebralni organoyidi lyudini pid chas rozvitku IstoriyaRanni eksperimenti 1900 ti Kultivuvannya organoyidiv micno bazuyetsya na metodologiyi 3D kultivuvannya klitin rozroblenij protyagom ostannogo stolittya She v 1906 roci tak zvanij metod visyachoyi krapli dozvolyav kultivuvati klitini v 3D Odnochasno doslidniki vivchali zdatnist disocijovanih klitin do regeneraciyi Sprobi stvoriti organi in vitro rozpochalisya z odnogo z pershih eksperimentiv disociaciyi reagregaciyi koli Genri Van Piters Vilson u 1907 roci prodemonstruvav sho mehanichno disocijovani klitini gubki mozhut reagreguvatis ta samoorganizovuvatisya dlya stvorennya cilogo organizmu Vilson pokazav sho gubki mozhna rozshepiti na okremi klitini yaki zdatni povtorno asociyuvatisya v tkaninopodibni strukturi Te zh same piznishe pokazali na prikladi kishkovoporozhninnih u 1914 roci ta embrionalnih klitin amfibij u 1940 h rokah 1920 1970 ti roki U 1920 h rokah uvaga doslidnikiv zoseredilas na embriologiyi zokrema na morfogenezi kincivok sho prizvelo do rozvitku trubchastih kultur i metodu godinnikovogo skla Trubchasti kulturi peredbachali viroshuvannya tkanin na uvignutij sklyanij poverhni na yaku vbudovuvali ta kultivuvali fragmenti tkanin abo zachatki organiv Metod godinnikovogo skla zaprovadzhenij Fellom i Robisonom u 1929 roci vikoristovuvav uvignutu sklyanu poverhnyu sho utrimuye plazmovij zgustok dlya kultivuvannya fragmentiv tkanini Do 1950 h rokiv rizni organi uspishno kultivuvali in vitro hocha j z obmezhennyami V osnovnomu doslidniki pracyuvali nad tim shob uniknuti migraciyi klitin iz zrazka tkanini namagalisya optimizuvati umovi gazoobminu zmenshiti nekroz Metod linzovogo paperu takozh dozvoliv kultivuvati tonki zrizi organiv protyagom cogo periodu Na pochatku 1950 h rokiv robota Moskona z kincivkami kuryachogo embriona ta zachatkami nirok privela do stvorennya metodiv fermentativnogo travlennya suspenzijnoyi kulturi ta reagregaciyi klitin Takozh u cyu epohu pochali z yavlyatisya metodi kulturi na osnovi kolagenu U 1930 h rokah Huzella eksperimentuvav z kultivuvannyam klitin na voloknistomu kolageni Znachnij rozvitok vidbuvsya v 1956 roci koli Robert Ermann i Dzhordzh Gej predstavili metod vidnovlennya kolagenu viluchenogo z suhozhil shuryachogo hvosta u viglyadi prozorogo gelyu Ce novovvedennya polegshilo kultivuvannya riznih klitinnih linij i tkanin pokrashuyuchi yih vizhivannya Rokom piznishe Lasfarg stvoriv metod vikoristovuyuchi kolagenazu dlya disociaciyi tkanini molochnoyi zalozi dorosloyi mishi utvoryuyuchi organoyidi molochnoyi zalozi fragmenti protok pozbavleni fibroblastiv i adipocitiv Ce bulo peredumovoyu yaka zgodom prizvela do stvorennya metodu otrimannya miljoniv zhittyezdatnih gepatocitiv Berri ta Frendom u 1969 roci shlyahom perfuziyi pechinki ciyeyu samoyu kolagenazoyu U 1970 h rokah doslidniki pomitili sho zmina fizichnij vpliv na substrat ta klitini mozhe viklikati specifichnu diferenciaciyu klitin V toj zhe chas Richard Svarm i jogo komanda pracyuvali nad pozaklitinnim matriksom hondrosarkom vidilyayuchi z nih gel z harakteristikami bazalnoyi membrani vidomij nini yak en Cej gel bagatij lamininom kolagenom IV i fibronektinom zigrav virishalnu rol u vdoskonalenni metodiv kultivuvannya organoyidiv 1980 2010 ti roki 1980 ti roki oznamenuvali znachnij progres u biologiyi stovburovih klitin Vidilennya ta harakteristika embrionalnih stovburovih klitin ESK buli klyuchovimi dosyagnennyami v cyu epohu ESK z yih potencialom stvoryuvati riznomanitni tipi klitin nadihnuli doslidnikiv doslidzhuvati yih korisnist u stvorenni organopodibnih struktur Ne mensh vagomimi doslidzhennyami dlya galuzi organoyidiv buli doslidzhennya vplivu kulturalnogo seredovisha chi pozaklitinnogo matriksu na diferenciaciyu klitin Dekilka takih doslidzhen v 1980 h rokah pokazali znachnu rol pozaklitinnogo matriksu u regulyaciyi ekspresiyi geniv ta morfogenezu Podalshi doslidzhennya 1990 h rokiv prolili she bilshe svitla na rol pozaklitinnogo matriksu v diferenciaciyi klitin ta utvorenni tkaninopodibnih struktur zokrema na vzayemodiyu pozaklitinnogo matriksu z receptorami klitin integrinami sho prizvodit do kaskadu reakcij zminyuyuchih ekspresiyu geniv ta diferenciaciyu klitin Podalshi doslidzhennya pokazali sho morfogenez zalezhit vid vzayemodiyi faktoriv rostu morfogeniv i matriksnih metaloproteyinaz a takozh vid geometriyi tkanin U 2006 roci Yakov Nahmias i Devid Odde prodemonstruvali samozbirku sudinnih organoyidiv pechinki yaki pidtrimuvalisya protyagom ponad 50 dniv in vitro U 2008 roci Joshiki Sasayi ta jogo komanda z institutu RIKEN prodemonstruvali sho stovburovi klitini mozhlivo peretvoriti na kulki nervovih klitin yaki samoorganizuyutsya v harakterni shari U 2009 roci Sato ta komanda opublikuvali v Nature svoye doslidzhennya v yakomu voni vikoristali stovburovi klitini yaki ekspresuyut LGR5 izolovani iz pervinnoyi kishkovoyi tkanini i pokazali sho ci stovburovi klitini mozhut klonalno generuvati arhitekturu kript vorsinok u 3D kulturi Bazuyuchis na literaturi pro molochni zalozi zgadanij ranishe ci avtori takozh vikoristovuvali Matrigel dlya provedennya svoyih 3D kultur i dopovnyuvali yih faktorami neobhidnimi dlya rostu epiteliyu kishkivnika Buli stvoreni organoyidi sho skladayutsya z centralnogo prosvitu vistelenogo vorsinchastim epiteliyem i kilkoh otochuyuchih kriptopodibnih domeniv Potim cya metodologiya bula uspishno vikoristana v kulturah shlunka pidshlunkovoyi zalozi tovstoyi kishki ta pechinki Mishachi ta lyudski embrionalni stovburovi klitini ESK takozh vikoristovuvalisya dlya generuvannya organoyidiv in vitro takih yak polyarizovana kortikalna tkanina mozku ta zorovi chashi Takozh u 2010 roci bulo prodemonstruvano virobnictvo nirkovih organoyidiv iz renogennih stovburovih klitin mishachogo plodu Lekciya Nobelevskogo laureata z fiziologiyi ta medicini Sin ya Yamanaka Nova era medicini z klitinami iPS poslannya majbutnim vchenim 2012 Indukovani plyuripotentni stovburovi klitini otrimani zavdyaki epigenetichnomu pereprogramuvannyu yaki stali naukovim prorivom u 2006 roci za yakij Sin ya Yamanaka ta Dzhon Gerdon otrimali Nobelivsku premiyu z himiyi u 2012 roci stali takozh dodatkovim instrumentom dlya vivchennya morfogenezu i zgodom stali odnim z osnovnih dzherel klitin dlya konstruyuvannya organoyidiv U 2013 roci Lankaster z komandoyu stvorili metod kultivuvannya yakij dozvoliv generuvati en z indukovanih plyuripotentnih stovburovih klitin otrimanih iz fibroblastiv shkiri U 2014 roci Cyun Van i jogo kolegi rozrobili geli na osnovi kolagenu I ta sintetichni spineni biomateriali dlya kultivuvannya ta dostavki kishkovih organoyidiv i inkapsulyuvali funkcionalizovani DNK nanochastinki zolota v kishkovi organoyidi shob sformuvati mehanizm dlya dostavki likiv i genoterapiyi Takozh u 2014 roci bulo prodemonstrovano sho sercevo sudinni organoyidi mozhut utvoryuvatisya z ESK shlyahom modulyaciyi zhorstkosti substratu do yakogo voni prilipayut Krim togo u 2014 roci buli stvoreni pershi organoyidi sitkivki U 2015 roci Takebe z komandoyu prodemonstruvali uzagalnenij metod formuvannya zachatka organu z riznomanitnih tkanin shlyahom poyednannya specifichnih tkanin poperednikiv otrimanih iz plyuripotentnih stovburovih klitin abo vidpovidnih zrazkiv tkanini z endotelialnimi klitinami ta mezenhimalnimi stovburovimi klitinami U 2017 roci bula zaproponovana nova metodika utvorennya cerebralnih organoyidiv a zhurnal Nature Methods viznav organoyidi Metodom roku 2017 Zagalom u 2010 h rokah sposterigavsya znachnij splesk doslidzhen organoyidiv ta yih vikoristannya dlya modelyuvannya normalnogo rozvitku chi rozvitku zahvoryuvan dlya rozrobki j testuvannya likiv ta dlya regenerativnoyi medicini 2020 suchasnist Cherez znachnij potencial vikoristannya organoyidiv v bagatoh galuzyah biomedicini kilkist doslidzhen organoyidiv shoroku zbilshuyetsya porivnyano z pochatkom 2010 h eksponencijno 2021 otrimani z embrionalnih stovburovih klitin lyudini cerebralni organoyidi uspishno transplantovani v miscya kontrolovanogo travmatichnogo urazhennya golovnogo mozku mishej Transplantovani organoyidi vizhili ta diferenciyuvalisya v rizni tipi nejronalnih klitin utvoryuvali novi zv yazki ta demonstruvali spontannu aktivnist takozh buli viyavleni indukovana vaskulyarizaciya ta zmenshennya glialnogo rubcya Sho bilsh vazhlivo prostorove navchannya ta pam yat mishej pokrashilisya pislya transplantaciyi organoyidiv Ci visnovki zasvidchili pro te sho cerebralnij organoyid implantovanij u miscya travmatichnogo urazhennya ye potencijnim terapevtichnim metodom dlya ChMT 2022 korkovi cerebralni organoyidi otrimani zi stovburovih klitin lyudini j transplantovani v somatosensornu koru novonarodzhenih beztimusnih shuriv rozvivayut zrili tipi klitin yaki integruyutsya v sensorni ta motivacijni nejronni shemi V kinci grudnya bulo opublikovane doslidzhennya sho pokazalo uspishnu integraciyu mozkovih organoyidiv z zorovoyu koroyu mishi 2023 organoyidi lyudskogo mozku znovu buli uspishno integrovani z zorovoyu sistemoyu doroslogo shura pislya transplantaciyi u veliki poshkodzheni porozhnini v zorovij kori Doslidzhennya pokazalo uspishne vidnovlennya funkciyi pislya integraciyi mozkovogo organoyida v dilyanku ishemichnogo insultu mishi Takozh bulo predstavleno precizijnu robotizovanu platformu kultur klitin Cell X dlya efektivnogo virobnictva specifichnih dlya paciyenta iPSK i organoyidiv sitkivki demonstruyuchi potencial dlya klinichnogo konveyernogo virobnictva iPSK dlya autologichnoyi zamini klitin sitkivki piznishe v serpni bulo predstavleno she odnu tehnologiyu avtomatizovanogo druku organoyidiv dlya testuvannya ta skriningu likiv U serpni vijshlo doslidzhennya sho opisuye uspishnu transplantaciyu shuram sercevih organoyidiv skonstrujovanih z elektroprovidnimi kremniyevimi nanodrotami v miscya urazhennya infarktom miorkarda sho spriyalo znachnomu funkcionalnomu vidnovlennyu sercya VlastivostiShematichne zobrazhennya riznih organoyidiv Organoyidi kultivovani zi stovburovih klitin abo tkaninospecifichnih poperednikiv ye trivimirnimi strukturami sho vidobrazhayut strukturu ta funkcionalnist realnih organiv Do nih osnovnih vlastivostej vidnosyatsya klitinna geterogennist sho dozvolyaye vivchati skladni procesi ta zahvoryuvannya samoorganizaciya sho dozvolyaye vidtvoryuvati organopodibni strukturi i funkcionalnist sho imituyuye fiziologiyu organiv dlya doslidzhennya funkcij organiv mehanizmiv zahvoryuvannya ta reakciyi na liki Lankaster i Knoblih viznachayut organoyid yak sukupnist organospecifichnih tipiv klitin yaki rozvivayutsya zi stovburovih klitin abo organiv poperednikiv samoorganizuyutsya shlyahom sortuvannya klitin i prostorovo obmezheni podibno do in vivo i demonstruye nastupni vlastivosti organoyid maye kilka organiv specifichnih tipiv klitin organoyid zdatnij povtoryuvati deyaki specifichni funkciyi organu napriklad skorochennya nervova aktivnist endokrinna sekreciya filtraciya vidilennya jogo klitini zgrupovani razom i prostorovo organizovani podibno do organu Rozrobka organoyidiv source source source source source source source source Epitelialni organoyidi nanofotografiya Rozrobka organoyidiv vklyuchaye skladnij proces yakij spryamovanij na povtorennya skladnih struktur i funkcij riznih tkanin i organiv u kontrolovanomu laboratornomu seredovishi Sposobi utvorennya organoyidiv 2D proti 3D kulturnih sistem Utvorennya organoyidiv mozhe vidbuvatisya yak u dvovimirnih 2D tak i v trivimirnih 3D kulturalnih sistemah U toj chas yak 2D kulturi vikoristovuvalisya dlya deyakih rannih doslidzhen 3D kulturi nabuli populyarnosti zavdyaki yihnij zdatnosti bilsh tochno vidtvoryuvati seredovishe in vivo U 3D rezhimi klitini vzayemodiyut odna z odnoyu ta navkolishnoyu matriceyu takim chinom sho tochno imituye prirodnu arhitekturu tkanin u rezultati chogo utvoryuyutsya organoyidi yaki krashe povtoryuyut fiziologichni funkciyi Pohidni zi stovburovih klitin proti pervinnih organoyidiv otrimanih iz tkanin Suchasni vikliki tehnologij virobnictva organoyidiv Organoyidi mozhut buti stvoreni abo zi stovburovih klitin abo z pervinnih zrazkiv tkanin Organoyidi otrimani zi stovburovih klitin chasto z indukovanih plyuripotentnih stovburovih klitin iPSC metodom epigenetichnogo pereprogramuvannya proponuyut perevagu plyuripotentnosti ta mozhut buti spryamovani na diferenciaciyu v rizni tipi klitin Navpaki pervinni organoyidi ce taki sho otrimani z tkanin in vivo Obidva pidhodi mayut svoyi perevagi organoyidi otrimani zi stovburovih klitin zabezpechuyut masshtabovanist i mozhlivist vivchati bilsh shirokij spektr tkanin todi yak organoyidi otrimani z pervinnih tkanin zberigayut genetichni ta fenotipovi harakteristiki vihidnoyi tkanini Matriksi ta faktori rostu Vibir pozaklitinnogo matriksu i faktoriv rostu vidigraye virishalnu rol u formuvanni organoyidiv Komponenti pozakritinnogo matriksu taki yak Matrigel kolagen abo laminin zabezpechuyut strukturnu pidtrimku ta biohimichni signali neobhidni dlya klitinnoyi adgeziyi proliferaciyi ta diferenciaciyi Faktori rostu taki yak agonisti en i en chasto vikoristovuyutsya dlya spryamuvannya konkretnih shlyahiv rozvitku pid chas dozrivannya organoyidiv Ci matriksi ta faktori vibirayutsya na osnovi tipu tkanini ta bazhanih harakteristik organoyidiv Koloyidni fotonni kristali proponuyut chislenni perevagi dlya organoyidnoyi inzheneriyi vklyuchayuchi yih unikalni strukturi mozhlivosti optichnogo manipulyuvannya universalnist funkcionalnosti ta legkist integraciyi v standartizovani virobnichi procesi Tkaninospecifichni mikrootochennya Odniyeyu z klyuchovih determinant uspishnogo formuvannya organoyidiv ye vidnovlennya tkaninospecifichnogo mikroseredovisha Ci mikroseredovisha skladayutsya z unikalnih kombinacij komponentiv pozaklitinnogo matriksu faktoriv rostu ta mizhklitinnih vzayemodij Doslidniki retelno rozroblyayut umovi kultivuvannya shob vidtvoriti ci mikroseredovisha dozvolyayuchi organoyidam rozvivatisya u sposib yakij duzhe nagaduye yih analogi in vivo Cej pidhid vidigrav vazhlivu rol u stvorenni organoyidiv yaki povtoryuyut strukturu ta funkciyi riznih organiv vklyuchayuchi mozok kishkivnik pechinku nirki pidshlunkovu zalozu legeni serce sudini sitkivku vnutrishnye vuho ta inshi 3D mikroflyuyidni pristroyi dlya pidtrimki masshtabovanosti ta dovgostrokovogo gomeostazu organoyidiv mozkuDosyagnennya v tehnologiyi utvorennya organoyidiv Ostanni dosyagnennya v tehnici utvorennya organoyidiv rozshirili masshtab i mozhlivosti ciyeyi galuzi Ci innovaciyi vklyuchayut integraciyu mikroflyuyidiki dlya tochnogo kontrolyu umov kultivuvannya rozrobku sistem organoyid na chipi dlya visokoproduktivnogo skriningu div takozh Organ na chipi riznomanitni pidhodi genetichnoyi inzheneriyi zastosuvannya shtuchnogo intelektu ta mashinnogo navchannya dlya pokrashenogo analizu organoyidiv ta navit stvorennya robotizovanih avtomatichnih sistem dlya masovogo virobnictva iPSK ta organoyidiv Ci peredovi tehnologiyi mayut potencial dlya priskorennya doslidzhennya organoyidiv ta yih zastosuvannya v tkaninnij inzheneriyi regenerativnij medicini personalizovanij medicini ta vidkritti likiv Tipi organoyidivMultimasshtabnij bagatovimirnij analiz cerebralnih organoyidiv Bagato riznih struktur organiv buli povtoreni za dopomogoyu organoyidiv Cerebralnij organoyid Shema stvorennya cerebralnih organoyidiv en ce organoyid golovnogo mozku na potochnomu etapi rozvitku pevnoyi jogo region specifichnoyi dilyanki yak ot kora chi perednij mozok Organoyidi golovnogo mozku vidigrayut vazhlivu rol u vivchenni normalnogo ta patologichnogo nejrorozvitku modelyuvanni zahvoryuvan mozku takih yak hvoroba Alcgejmera ta hvoroba Parkinsona doslidzhenni vplivu likiv na nervovu tkaninu i takozh vidkrivayut znachni mozhlivosti dlya inzheneriyi nervovoyi tkanini ta regenerativnoyi medicini travm golovnogo mozku insultu nejrodegenerativnih hvorob tosho Pershi cerebralni organoyidi buli stvoreni v 2013 roci shlyahom kultivuvannya plyuripotentnih stovburovih klitin lyudini v trivimirnij strukturi za dopomogoyu rotacijnogo en ta rozvivalis protyagom misyaciv A vzhe cherez 8 rokiv u preklinichnomu doslidzheni na tvarinah bulo pokazano sho cerebralni organoyidi mozhut vidnoviti funkciyu v urazhenih travmoyu chi insultom dilyankah golovnogo mozku Tipi Isnuye bagato tipiv cerebralnih organoyidiv yaki imituyut pevnij region mozku i vidriznyayutsya tipami klitin ta inshimi harakteristikami j vikoristovuyutsya dlya riznih cilej Sered cih tipiv okremo vidilyayut asembloyidi ce zliti organoyidi specifichni dlya regionu yaki namagayutsya povtoriti mizhregionalni ta mizhklitinni vzayemodiyi a takozh rozvitok nejronnih lancyugiv shlyahom poyednannya kilkoh oblastej mozku ta abo linij klitin Krim togo okremo vidilyayut bilsh progresivnij tip organoyidiv vaskulyarizovanij tobto z nayavnoyu krovonosnoyu sistemoyu sho zabezpechuye krovopostachannya klitin neobhidne dlya normalnogo funcionuvannya klitin pri dovgotrivalih doslidzhennyah Okrim dostavki kisnyu ta zhivlennya nakopicheni dokazi svidchat pro te sho sudinna sistema mozku regulyuye nejronnu diferenciaciyu migraciyu ta formuvannya konturiv pid chas rozvitku Imunofluorescentne zobrazhennya riznih tipiv kortikalnih organoyidiv viroshenih z plyuripotentnih stovburovih klitin Oglyad 2022 roku ta oglyad 2023 roku ta kilka inshih statej zaznachenih dali vidilyayut nastupni tipi organoyidiv oligokortikalni sferoyidi kortikalni sferoyidi organoyidi serednogo mozku gipotalamichni organoyidi organoyidi sitkivki ta multiokulyarni organoyidi organoyidi perednogo mozku asembloyidi perednogo mozku organoyidi z mikrogliyeyu en asteroyidi z astrocitiv miyelinizovani organoyidi miyelinoyidi ta deyaki inshi Zastosuvannya Modelyuvannya zahvoryuvan ta skrining likiv Farmacevtichni kompaniyi ta naukovi kolektivi vikoristovuyut cerebralni organoyidi dlya skriningu ta rozrobki likiv cherez yihni harakteristiki maksimalno nablizheni do in vivo Osnovni potochni doslidzhennya cerebralnih organoyidiv v modelyuvanni hvorob ta testuvannya likiv dlya nih napravleni na doslidzhennya takih patologij Patologiyi nejrorozvitku rozladi autistichnogo spektra mikrocefaliya sindrom Retta sindrom Angelmana tuberoznij skleroz ta in Nejrodegenerativni hvorobi hvoroba Alcgejmera hvoroba Parkinsona bichnij amiotrofichnij skleroz rozsiyanij skleroz hvoroba Gantingtona hvoroba Krojcfelda Yakoba ta in Psihiatrichni rozladi depresivni rozladi shizofreniya bipolyarnij afektivnij rozlad ta in Puhlini mozku glioblastoma meduloblastoma meningioma ta in Infekcijni zahvoryuvannya CNS malyariya virus Zika SARS CoV 2 Yaponskij encefalit virus prostogo gerpesu ta in Krim togo organoyidi doslidzhuyutsya na vpliv ekzogennih himichnih rechovin takih yak zabrudnyuyuchi rechovini toksini liki ta promislovi himikati na zdorov ya mozku Personalizovana medicina ta individualne likuvannya Cerebralni organoyidi mayut veliki perspektivi v galuzi personalizovanoyi medicini Otrimavshi organoyidi z iPSK okremih paciyentiv doslidniki mozhut stvoriti individualni modeli paciyentiv dlya vivchennya mehanizmiv zahvoryuvannya ta testuvannya personalizovanih strategij likuvannya Takij pidhid dozvolyaye provoditi bilsh adaptovane ta efektivne terapevtichne vtruchannya osoblivo u vipadkah ridkisnih genetichnih rozladiv i staniv iz znachnim genetichnim komponentom Suchasni doslidzhennya takozh fokusuyutsya na vikoristanni organoyidiv mozku dlya doslidzhen v personalizovanij medicini v poyednanni z riznimi peredovimi metodami takimi yak redaguvannya genoma CRISPR Cas9 integrativnij multiomiksnij analiz 3D ochishennya mozkovoyi tkanini ta peredovih sistem vizualizaciyi metodom konfokalnoyi mikroskopiyi Takozh perspektivnim vvazhayetsya poyednannya mashinnogo navchannya ta modelyuvannya organoyidiv mozku dlya cilej personalizovanoyi medicini Transplantaciya korkovih organoyidiv lyudini v koru golovnogo mozku shuriv sho rozvivayetsyaTkaninna inzheneriya ta regenerativna medicina Cerebralni organoyidi ye perspektivnimi dlya regenerativnoyi medicini osoblivo v konteksti travm golovnogo mozku ta degenerativnih rozladiv U 2021 roci bulo pokazano sho cerebralni organoyidi mozhut vidnoviti funkciyu v urazhenih travmoyu dilyankah golovnogo mozku U 2022 j 2023 rokah kilka doslidzhen pokazali sho organoyidi lyudskogo mozku buli uspishno integrovani z zorovoyu sistemoyu doroslogo shura pislya transplantaciyi u veliki poshkodzheni porozhnini zorovoyi kori She odne doslidzhennya 2023 roku opublikovane v npj Regenerative Medicine pokazalo uspishne vidnovlennya funkciyi vrazhenoyi insultom dilyanki mozku mishi pislya integraciyi v neyi mozkovogo organoyid Cherez kilka misyaciv mi viyavili sho transplantovani organoyidi dobre vizhili v urazhenomu infarktom yadri diferenciyuvalisya v cilovi nejroni vidnovlyuvali infarktnu tkaninu posilali aksoni do viddalenih mishenej mozku ta integruvalisya v nejronnij lancyug gospodarya tim samim usuvayuchi sensomotorni defekti povedinki mishej yaki perenesli insult todi yak transplantaciya disocijovanih okremih klitin z organoyidiv ne privela do vidnovlennya urazhenoyi infarktom tkanini Metodologichnij progres u generaciyi organoyidiv mozkuShematichne zobrazhennya riznih strategij vaskulyarizaciyi organoyidu mozku Takozh doslidzhennya 2023 roku prodemonstruvalo virobnictvo in vitro ta in vivo miyelinizuyuchih oligodendrocitiv iz kulturi nejroepitelialnih stovburovih lt NES klitin otrimanih v lyudskih iPSK yaka takozh daye pochatok nejronam zi zdatnistyu integruvatisya v poshkodzheni insultom korkovi merezhi doroslih shuriv ta miyelinizuvati demiyelinizovani aksoni shura Ce vidkrivaye novi mozhlivosti v likuvanni nejrodegenerativnih zahvoryuvan z porushennyam miyelinizaciyi nervovih volokon Div takozh Inzheneriya nervovoyi tkanini Tkaninna inzheneriya Regenerativna medicina Rozuminnya biologiyi rozvitku Cerebralni organoyidi ye bezcinnimi instrumentami dlya vivchennya riznih aspektiv rozvitku lyudskogo mozku Doslidniki sered inshogo mozhut doslidzhuvati Nejrogenez organoyidi dozvolyayut sposterigati za diferenciyuvannyam nervovih stovburovih klitin i formuvannyam riznih pidtipiv nejroniv en yak aksoni rostut i peremishuyutsya do cilovih oblastej pid chas rozvitku mozku Formuvannya ansambliv j merezh en kortikalne zgortannya chi zgortannya kori ce proces formuvannya harakternih skladok kori golovnogo mozku Klitinni vzayemodiyi cerebralni organoyidi polegshuyut vivchennya klitinnih vzayemodij u tomu chisli za uchastyu nejroniv glialnih klitin i krovonosnih sudin Organoyidnij intelekt Doslidzhennya organoyidnogo intelektu Organoyidnij intelekt OI ce nova mizhdisciplinarna galuz zoseredzhena na rozrobci biologichnih obchislen iz vikoristannyam organoyidiv mozku i tehnologij nejrokomp yuternogo interfesu Biobchislyuvalni sistemi na osnovi OI mayut potencial dlya shvidshogo prijnyattya rishen bezperervnogo navchannya pid chas vikonannya zavdan i bilshoyi efektivnosti vikoristannya energiyi ta obchislennya danih nizh obchislennya na osnovi kremniyevih tranzistoriv ta shtuchnogo intelektu Rozvitok OI mozhe pokrashiti nashe rozuminnya rozvitku mozku navchannya pam yati ta potencijno mozhe dopomogti znajti likuvannya nevrologichnih rozladiv takih yak demenciya chi autizm OI vklyuchaye zbilshennya cerebralnih organoyidiv u skladni micni 3D strukturi zbagacheni klitinami ta genami pov yazanimi z navchannyam pidklyuchennya yih do pristroyiv vvedennya ta vivedennya nastupnogo pokolinnya ta sistem ShI mashinnogo navchannya Dlya cogo potribni novi modeli algoritmi ta tehnologiyi interfejsu shob spilkuvatisya z organoyidami mozku rozumiti yak voni navchayutsya ta obchislyuyut a takozh obroblyati ta zberigati velichezni obsyagi danih yaki voni generuyut Krim togo vikoristannya takih organoyidiv yaki mozhut rozvinuti vidchuttya ta jmovirno v podalshomu svidomist ye predmetom diskusij v nejroetici ta bioetici Takozh doslidzhuyetsya aparatnij pidhid shtuchnogo intelektu yakij vikoristovuye adaptivne rezervuarne obchislennya biologichnih nejronnih merezh v organoyidi mozku U comu pidhodi yakij nazivayetsya Brainoware obchislennya vikonuyutsya shlyahom nadsilannya ta otrimannya informaciyi vid organoyida mozku za dopomogoyu en visokoyi shilnosti Zastosovuyuchi prostorovo chasovu elektrichnu stimulyaciyu dosyagayetsya nelinijna dinamika ta vlastivosti zapam yatovuvannya a takozh nekontrolovane navchannya na osnovi trenuvalnih danih shlyahom zmini funkcionalnih zv yazkiv v organoyidah Buv prodemonstrovanij praktichnij potencial ciyeyi metodiki vikoristovuyuchi yiyi dlya rozpiznavannya movlennya ta prognozuvannya nelinijnih rivnyan u sistemi rezervuarnih obchislen Organoyid kishki Kishkovij organoyid viroshenij zi stovburovih klitin Lgr5 Kishkovi organoyidi zazvichaj otrimuyut iz plyuripotentnih stovburovih klitin abo stovburovih klitin dorosloyi tkanini Ci 3D strukturi skladayutsya z riznih tipiv klitin znajdenih u kishkivniku lyudini vklyuchayuchi enterociti kelihopodibni klitini en ta en Kishkovi organoyidi zazvichaj skladayutsya z odnogo sharu polyarizovanih kishkovih epitelialnih klitin sho otochuyut centralnij prosvit i povtoryuyut strukturu kript vorsinok kishkivnika ta jogo funkciyi fiziologiyu ta organizaciyu zberigayuchi vsi tipi klitin yaki zazvichaj zustrichayutsya v strukturi vklyuchayuchi stovburovi klitini kishkivnika Takim chinom kishkovi organoyidi ye cinnoyu modellyu dlya vivchennya kishkovogo transportu pozhivnih rechovin vsmoktuvannya ta dostavki likiv nanomaterialiv i nanomedicini sekreciyi gormonu inkretinu ta infikuvannya riznimi enteropatogenami Odniyeyu z sfer doslidzhennya kishkovih organoyidiv ye doslidzhennya nishi stovburovih klitin Kishkovi organoyidi vikoristovuvalisya dlya vivchennya prirodi nishi kishkovih stovburovih klitin i doslidzhennya provedeni z nimi prodemonstruvali pozitivnu rol IL 22 u pidtrimci kishkovih stovburovih klitin razom iz demonstraciyeyu roli inshih tipiv klitin takih yak nejroni ta fibroblasti v pidtrimci stovburovih klitin kishechnika U galuzi infekcijnoyi biologiyi buli doslidzheni rizni modelni sistemi kishkovih organoyidiv Z odnogo boku organoyidi mozhut buti infikovani masovo prosto zmishavshi yih iz cikavim enteropatogenom Odnak dlya modelyuvannya infekciyi bilsh prirodnim shlyahom pochinayuchi z prosvitu kishechnika neobhidna mikroin yekciya zbudnika Krim togo polyarnist kishkovih organoyidiv mozhna invertuvati i yih navit mozhna rozdiliti na okremi klitini ta kultivuvati yak dvovimirni monoshari dlya togo shob apikalna ta bazolateralna storoni epiteliyu buli legshe dostupni Kishkovi organoyidi takozh prodemonstruvali terapevtichnij potencial v likuvanni cukrovogo diabetu koli naukovci peretvorili klitini organoyida kishki u beta klitini pidshlunkovoyi zalozi sho produkuyut insulin Kishkovij organoyid virostaye za 7 dniv Masshtabni smugi stanovlyat 200 mkm Dlya bilsh tochnoyi rekapitulyaciyi kishechnika in vivo buli rozrobleni spilni kulturi kishkovih organoyidiv ta imunnih klitin Krim togo modeli organ na chipi poyednuyut kishkovi organoyidi z inshimi tipami klitin takimi yak endotelialni abo imunni klitini a takozh peristaltichnij potik Zastosuvannya Rozuminnya rozvitku ta fiziologiyi kishkovi organoyidi dayut zmogu zrozumiti rozvitok strukturu ta fiziologiyu kishechnika lyudini Doslidniki mozhut vivchati taki procesi yak diferenciaciya klitin onovlennya epiteliyu rozvitok imunnoyi sistemi kishkivnika ta nishi stovburovih klitin poglinannya pozhivnih rechovin vzayemodiya hazyayina ta mikroba ta bagato inshih Modelyuvannya zahvoryuvan Doslidniki vikoristovuyut kishkovi organoyidi dlya modelyuvannya riznomanitnih en vklyuchayuchi en mukoviscidoz ta infekcijni zahvoryuvannya taki yak norovirus rotavirus ta in Vvodyachi specifichni dlya zahvoryuvannya mutaciyi abo patogeni vcheni mozhut vivchati mehanizmi zahvoryuvannya ta testuvati mozhlivi metodi likuvannya Skrining i rozrobka likiv farmacevtichni kompaniyi ta doslidniki vikoristovuyut kishkovi organoyidi dlya ocinki bezpeki ta efektivnosti preparativ kandidativ dlya shlunkovo kishkovih rozladiv Ci modeli proponuyut fiziologichno vidpovidnu sistemu dlya skriningu potencijnih terapevtichnih zasobiv Personalizovana medicina kishkovi organoyidi otrimani z klitin paciyentiv mozhna vikoristovuvati dlya vivchennya individualnih reakcij na liki ta hvorobi Cej pidhid ye perspektivnim dlya pristosuvannya likuvannya do konkretnih paciyentiv Regenerativna medicina Organoyidna terapiya zasnovana na kultivuvanni in vitro z podalshim vidborom i rozmnozhennyam zdorovih kishkovih stovburovih klitin z metoyu transplantaciyi v slizovu obolonku kishechnika lyudini Transplantovani kishkovi organoyidi mozhna zastosovuvati dlya spriyannya regeneraciyi epiteliyu ta vidnovlennya normalnoyi fiziologiyi kishechnika Doslidzhennya toksikologiyi ta farmakokinetiki Kishkovi organoyidi vikoristovuyutsya v toksikologichnih doslidzhennyah dlya ocinki vplivu himichnih rechovin i toksiniv na kishechnik a takozh farmakokinetiku i metabolizm likarskih zasobiv Organoyid shlunka Shlunkovi organoyidi prinajmni chastkovo povtoryuyut fiziologiyu shlunka Organoyidi shlunka buli stvoreni bezposeredno z plyuripotentnih stovburovih klitin shlyahom timchasovih manipulyacij signalnimi shlyahami FGF WNT BMP retinoyevoyi kisloti ta EGF v umovah trivimirnoyi kulturi Pershi shlunkovi organoyidi takozh buli stvoreni z vikoristannyam LGR5 sho ekspresuye dorosli stovburovi klitini shlunka Organoyidi shlunka vikoristovuvalisya yak model dlya vivchennya normalnogo ta patologichnogo rozvitku ta raku Organoyid pechinki Organoyidi pechinki povtoryuyut strukturni ta funkcionalni osoblivosti pechinki vklyuchayuchi gepatociti ta epitelialni klitini zhovchnih shlyahiv Zastosuvannya Modelyuvannya zahvoryuvan Organoyidi pechinki vikoristovuyutsya dlya modelyuvannya shirokogo spektru en vklyuchayuchi virusnij gepatit nealkogolnu zhirovu hvorobu pechinki genetichni zahvoryuvannya pechinki medikamentozne urazhennya pechinki en rak pechinki ta inshi Skrining i rozrobka likiv farmacevtichni kompaniyi vikoristovuyut organoyidi pechinki dlya ocinki toksichnosti j efektivnosti preparativ kandidativ ta yih metabolizmu v pechinci Ci modeli zabezpechuyut fiziologichno relevantnu sistemu dlya ocinki metabolizmu likiv gepatotoksichnosti ta vzayemodiyi likiv Regenerativna medicina organoyidi pechinki proponuyut platformu dlya doslidzhen regeneraciyi pechinki ta transplantaciyi pechinkovih organoyidiv i bioshtuchnih pristroyiv pechinki Personalizovana medicina organoyidi pechinki otrimani z klitin paciyenta dayut zmogu vikoristovuvati personalizovani pidhodi do medicini Vikoristovuyuchi vlasni klitini paciyenta dlya stvorennya organoyidiv doslidniki mozhut pereviryati reakciyu na liki ta rozroblyati individualni metodi likuvannya zahvoryuvan pechinki Doslidzhennya rozvitku pechinki organoyidi pechinki dayut zmogu zrozumiti rozvitok pechinki ta organogenez Doslidniki mozhut doslidzhuvati procesi diferenciaciyi gepatoblastiv formuvannya zhovchnih protok i dozrivannya pechinki Toksikologichni doslidzhennya ci organoyidi ye cinnimi instrumentami dlya vivchennya vplivu toksiniv himichnih rechovin ta inshih ksenobiotikiv na pechinku Voni mozhut dopomogti viznachiti potencijnu nebezpeku ta ociniti bezpeku riznih spoluk Organoyid pidshlunkovoyi zalozi Organoyidi pidshlunkovoyi zalozi vidtvoryuyut klitinne riznomanittya ta funkcionalnist pidshlunkovoyi zalozi vklyuchayuchi tipi endokrinnih ta ekzokrinnih klitin j stromalnih komponentiv Organoyidi pidshlunkovoyi zalozi dayut cinnu informaciyu pro rozvitok pidshlunkovoyi zalozi modelyuvannya zahvoryuvan testuvannya likiv i vidkrivayut cinni mozhlivosti dlya regenerativnoyi medicini Zastosuvannya Modelyuvannya zahvoryuvan Organoyidi pidshlunkovoyi zalozi vidigrali vazhlivu rol u vivchenni zahvoryuvan pidshlunkovoyi zalozi takih yak cukrovij diabet pankreatit mukoviscidoz i rak pidshlunkovoyi zalozi Doslidniki mozhut indukuvati mutaciyi specifichni dlya zahvoryuvannya abo piddavati organoyidi vplivu seredovisha pov yazanogo z epigenomnimi zminami pri zahvoryuvannyah shob zrozumiti mehanizmi zahvoryuvannya Skrining likiv farmacevtichni kompaniyi vikoristovuyut organoyidi pidshlunkovoyi zalozi yaki mozhut tochnishe peredbachati reakciyu na liki nizh tradicijni dvovimirni klitinni kulturi dopomagayuchi identifikuvati potencijni terapevtichni zasobi Regenerativna medicina organoyidi pidshlunkovoyi zalozi mozhut buti dzherelom klitin poperednikiv pidshlunkovoyi zalozi dlya transplantaciyi potencijno zabezpechuyuchi likuvannya cukrovogo diabetu 1 tipu vidnovlyuyuchi populyaciyu ostrivciv Langergansa z beta klitinami produkuyuchih insulin v tili div takozh Transplantaciya pidshlunkovoyi zalozi Takozh doslidzhennya 2023 roku pokazalo mozhlivist en kontrolyu vidilennya insulinu transplantovanimi mishi organoyidami pidshlunkovoyi zalozi Personalizovana medicina Organoyidi pidshlunkovoyi zalozi otrimani zi specifichnih klitin paciyenta dozvolyayut vikoristovuvati pidhodi do personalizovanoyi medicini Doslidniki mozhut pereviriti reakciyu na liki na organoyidah stvorenih iz vlasnih klitin paciyenta pristosovuyuchi likuvannya do individualnih potreb Organoyid nirok Plastina z testovimi kamerami sho mistyat organoyidi nirok yaki buli stvoreni robotami zi stovburovih klitin lyudini Organoyidi nirok imituyut nefronovi strukturi nirki vklyuchayuchi klubochki ta nirkovi kanalci Zastosuvannya Biologiya rozvitku organoyidi nirok dozvolyayut vivchati rozvitok i diferenciyuvannya nirok prolivayuchi svitlo na molekulyarni mehanizmi yaki keruyut formuvannyam i funkciyeyu nirok Modelyuvannya zahvoryuvan Doslidniki vikoristovuyut organoyidi nirok dlya vivchennya zahvoryuvan pov yazanih z nirkami takih yak polikistoz nirok nefrotichnij sindrom vrodzheni zahvoryuvannya nirok ta in Vprovadzhuyuchi specifichni dlya zahvoryuvannya mutaciyi abo klitini otrimani vid paciyentiv vcheni otrimuyut uyavlennya pro mehanizmi zahvoryuvannya ta potencijni metodi likuvannya Skrining i rozrobka likiv Viprobuvannya na nefrotoksichnist organoyidi nirok vikoristovuyutsya dlya ocinki nefrotoksichnosti likiv i himichnih rechovin sho dopomagaye identifikuvati rechovini yaki mozhut poshkoditi nirki Personalizovana medicina vikoristovuyuchi klitini otrimani vid paciyentiv doslidniki pragnut rozrobiti personalizovane likuvannya maksimalno efektivne dlya konkretnogo paciyenta Regenerativna medicina ta transplantaciyi nirok Shob pidvishiti funkcionalnist organoyidiv nirok zusillya zoseredzheni na pokrashenni vaskulyarizaciyi ta integraciyi z tkaninoyu gospodarya sho zrobit yih bilsh pridatnimi dlya transplantaciyi ta regenerativnoyi medicini Organoyid legen Organoyidi legen ce skladni trivimirni modeli in vitro yaki imituyut strukturu ta funkciyu legeniv lyudini chi tvarin Ci miniatyurni strukturi stali bezcinnimi instrumentami dlya riznomanitnih biomedichnih zastosuvan proponuyuchi uyavlennya pro rozvitok legen modelyuvannya zahvoryuvan skrining likiv i potencijnu regenerativnu terapiyu Legenevi organoyidi zazvichaj utvoryuyut z indukovanih plyuripotentnih embrionalnih i doroslih stovburovih klitin Signalni shlyahi TGF b BMP SMAD FGF i Wnt b kateninu pidtrimuyut rozvitok legenevih organoyidiv Legenevi organoyidi mistyat riznomanitnist klitin legeniv vklyuchayuchi klitini bronhiv alveol ta rizni tipi klitin taki yak epitelialni mezenhimalni ta imunni klitini Zastosuvannya Modelyuvannya zahvoryuvan Doslidniki vikoristovuyut legenevi organoyidi dlya vivchennya zahvoryuvan legeniv vklyuchayuchi hronichne obstruktivne zahvoryuvannya legen HOZL idiopatichnij legenevij fibroz respiratorni infekciyi mukoviscidoz rak legen ta in Vprovadzhuyuchi specifichni dlya hvorobi mutaciyi abo piddayuchi organoyidi diyi faktoriv pov yazanih iz hvoroboyu vcheni otrimuyut uyavlennya pro mehanizmi hvorobi Takozh legenevi organoyidi vidigrayut vazhlivu rol u vivchenni respiratornih infekcij takih yak grip i SARS CoV 2 Voni stvoryuyut kontrolovane seredovishe dlya doslidzhennya vzayemodiyi virusu ta gospodarya ta testuvannya protivirusnih metodiv likuvannya Skrining likiv ta personalizovana medicina Regenerativna medicina Legenevi organoyidi ye perspektivnimi dlya regenerativnoyi medicini zokrema u vidnovlenni poshkodzhenoyi legenevoyi tkanini Doslidniki pragnut stvoriti funkcionalnu legenevu tkaninu dlya transplantaciyi sho potencijno prinese korist paciyentam iz terminalnoyu stadiyeyu zahvoryuvan legeniv Organoyid sercya Organoyidi sercya ce skladni trivimirni strukturi stvoreni dlya povtorennya arhitekturi ta funkciyi sercya Sercevi organoyidi zazvichaj stvoryuyut iz plyuripotentnih stovburovih klitin lyudini takih yak indukovani plyuripotentni stovburovi klitini abo embrionalni stovburovi klitini Ci organoyidi mayut na meti imituvati skladnist lyudskogo sercya vklyuchayuchi rizni tipi klitin taki yak kardiomiociti fibroblasti periciti ta endotelialni klitini Epikardioidi novitni modeli sercevih organoyidiv sho imituyut strukturu yak miokarda tak i epikarda Zastosuvannya Modelyuvannya rozvitku ta zahvoryuvan Doslidniki vikoristovuyut sercevi organoyidi dlya vivchennya normalnogo rozvitku ta modelyuvannya riznih zahvoryuvan sercya takih yak kardiomiopatiyi vrodzheni vadi sercya aritmiyi infarkt miokarda serceva nedostatnist ta inshih Vprovadzhuyuchi specifichni dlya zahvoryuvannya genetichni mutaciyi abo vikoristovuyuchi klitini vzyati u paciyentiv vcheni otrimuyut uyavlennya pro mehanizmi zahvoryuvannya ta potencijni terapevtichni cili Skrining i rozrobka likiv Regenerativna medicina Sercevi organoyidi doslidzhuyutsya na predmet mozhlivosti aktivaciyi signalnih shlyahiv vidpovidalnih za regeneraciyu v serci a takozh cherez yihnij potencial u bezposerednomu vidnovlenni poshkodzhenoyi tkanini sercya napriklad pislya infarktu miokarda Dosyagnennya nalezhnoyi vaskulyarizaciyi ta integraciyi z tkaninoyu gospodarya maye vazhlive znachennya dlya funkcionalnosti sercevih organoyidiv Doslidniki zoseredzhuyutsya na vdoskonalenni cih aspektiv shob zrobiti yih bilsh pridatnimi dlya transplantaciyi ta regenerativnoyi terapiyi Elektrofiziologichni doslidzhennya Sercevi organoyidi zabezpechuyut platformu dlya elektrofiziologichnih doslidzhen dopomagayuchi zrozumiti porushennya sercevogo ritmu Ci modeli dozvolyayut doslidnikam doslidzhuvati yak kardiomiociti skorochuyutsya ta elektrichno spilkuyutsya Organoyidi sitkivki Organoyid sitkivki Organoyidi sitkivki ce trivimirni in vitro modeli sitkivki lyudini yaki proponuyut cinnu platformu dlya vivchennya rozvitku sitkivki zahvoryuvan i potencijnih terapevtichnih vtruchan Organoyidi sitkivki takozh otrimuyut iz plyuripotentnih stovburovih klitin takih yak indukovani plyuripotentni stovburovi klitini abo embrionalni stovburovi klitini Voni povtoryuyut skladnu strukturu sitkivki lyudini vklyuchayuchi rizni tipi klitin sitkivki taki yak fotoreceptori gangliozni klitini sitkivki ta gliya Myullera Zastosuvannya Modelyuvannya zahvoryuvan Doslidniki vikoristovuyut organoyidi sitkivki dlya modelyuvannya riznih zahvoryuvan sitkivki vklyuchayuchi pigmentnij retinit vikovu degeneraciyu zhovtoyi plyami makulodistrofiya glaukomu ta inshi Zavdyaki takim organoyidam vcheni mozhut otrimati uyavlennya pro mehanizmi zahvoryuvannya ta pereviriti potencijni metodi likuvannya Skrining i rozrobka likiv toksikologichni doslidzhennya Takozh organoyidi sitkivki ta organoyidi na chipi sitkivki vikoristovuyutsya dlya modelyuvannya vnutrishnoochnoyi dostavki likiv Regenerativna medicina Naukovci doslidzhuyut mozhlivist transplantaciyi klitin sitkivki otrimanih z organoyidiv paciyentam z zahvoryuvannyami sitkivki dlya vidnovlennya zoru Takozh deyaki doslidzhennya vivchayut vikoristannya organoyidiv sitkivki dlya doslidzhennya regeneraciyi zorovogo nerva sho ye skladnim aspektom likuvannya nejropatij zorovogo nerva Vidnovlennya zoru v paciyentiv yaki oslipli vnaslidok piznih nejropatij zorovogo nerva potrebuye tehnologij yaki mozhut abo vryatuvati poshkodzheni ta zapobigti podalshij degeneraciyi ganglioznih klitin sitkivki abo zaminiti vtracheni gangliozni klitini i organoyidi sitkivki ye perspektivnim dzherelom cih klitin Takozh u 2023 roci bulo predstavleno precizijnu robotizovanu platformu kultur klitin Cell X dlya efektivnogo virobnictva specifichnih dlya paciyenta iPSK i organoyidiv sitkivki demonstruyuchi potencial dlya klinichnogo konveyernogo virobnictva iPSK dlya autologichnoyi zamini klitin sitkivki Redaguvannya geniv Instrument redaguvannya geniv CRISPR Cas9 zastosovuyetsya do organoyidiv sitkivki dlya vipravlennya hvorobotvornih mutacij abo vvedennya pevnih genetichnih modifikacij Ce dozvolyaye vivchati funkciyu geniv i potencijni metodi redaguvannya genoma ta genoterapiyi pri oftalmologichnih patologiyah Organoyid yazika Yazikovi lingvalni organoyidi ce organoyidi yaki povtoryuyut prinajmni chastkovo aspekti fiziologiyi yazika Epitelialni yazikovi organoyidi buli stvoreni z vikoristannyam BMI1 sho ekspresuyut epitelialni stovburovi klitini v umovah trivimirnoyi kulturi za dopomogoyu manipulyaciyi z EGF WNT i TGF b Odnak cya organoyidna kultura ne maye smakovih receptoriv oskilki ci klitini ne vinikayut iz epitelialnih stovburovih klitin sho ekspresuyut Bmi1 Organoyidi yazikovoyi smakovoyi brunki sho mistyat smakovi klitini odnak buli stvoreni z vikoristannyam stovburovih progenitornih klitin LGR5 abo CD44 tkanini cirkumvallyatnogo CV sosochka Ci organoyidi smakovih receptoriv buli uspishno stvoreni bezposeredno z izolovanih stovburovih klitin klitin poperednikiv sho ekspresuyut smak Lgr5 abo LGR6 i oposeredkovano cherez vidilennya ta podalshe kultivuvannya tkanini cirkumvallyatnogo sosochka sho mistit Lgr5 abo CD44 stovburovi klitini klitini poperedniki Suspenzijno kultivovani organoyidi mozhut zabezpechiti efektivnu model dlya imitaciyi smakovih receptoriv in vivo porivnyano zi zvichajnimi organoyidami kultivovanimi v Matrigel Inshi tipi organoyidiv Viroshuvannya in vitro embrionalnoyi slinnoyi zalozi mishi dlya transplantaciyiEpitelialna tkanina slinnih zaloz roste in vitroOrganoyid shitopodibnoyi zalozi Organoyid timusa Testikulyarnij organoyid Organoyid prostati Epitelialnij organoyid endometriyu matki nosu Blastoyid Endometrialnij organoyid ta asembloyid Organoyid sudin Organoyid shkiri Organoyid gematoencefalichnogo bar yeru Okrim organoyidiv ostannim chasom z yavilisya inshi bilsh skladni 3D modeli yaki nabuvayut velikoyi populyarnosti Obrobka trivimirnih agregativ stovburovih klitin Wnt prizvodit do porushennya simetriyi z podalshim polyarizovanim rostom shodo troh ortogonalnih osej Cej proces formuye podovzheni trivimirni strukturi tak zvani en Asembloyidi ce trivimirni sistemi klitinnoyi kulturi yaki ye rezultatom integraciyi dekilkoh tipiv organoyidiv abo mistyat specializovani tipi klitin i demonstruyut osoblivosti samoorganizaciyi Div takozhTkaninna inzheneriya Druk organiv Regenerativna medicina Biomedichna inzheneriya Inzheneriya nervovoyi tkanini Organ na chipi Stovburovi klitini Kultura klitinDodatkova literaturaKnigi K Paul Manash red 28 veresnya 2022 Organoid Bioengineering Advances Applications and Challenges Biomedical Engineering angl 13 IntechOpen ISBN 978 1 80355 768 7 Yahaya Badrul Hisham red 2022 Organoid Technology for Disease Modelling and Personalized Treatment Stem Cell Biology and Regenerative Medicine angl 71 Cham Springer International Publishing Springer Nature ISBN 978 3 030 93055 4 Spence Jason R red 2020 Human Pluripotent Stem Cell Derived Organoid Models Methods in Cell Biology 1st edition Cambridge MA San Diego CA Oxford London Academic Press an imprint of Elsevier ISBN 978 0 12 821531 9 Turksen Kursad red 2019 Organoids stem cells structure and function Methods in molecular biology New York NY Humana Press Springer ISBN 978 1 4939 7616 4 Zhurnali Organoid Cell Stem Cell sajt Cell Press Stem Cell Reports sajt Cell Press Statti Vandana J Jeya Manrique Cassandra Lacko Lauretta A Chen Shuibing 2023 05 Human pluripotent stem cell derived organoids for drug discovery and evaluation Cell Stem Cell 30 5 doi 10 1016 j stem 2023 04 011 Suhito Intan Rosalina Kim Tae Hyung 25 kvitnya 2022 Recent advances and challenges in organoid on a chip technology Organoid angl 2 doi 10 51335 organoid 2022 2 e4 Lee Hanbyeol Trends in the global organoid technology and industry from organogenesis in a dish to the commercialization of organoids angl Hanbyeol Lee Jeong Suk Im Da Bin Choi et al Organoid 2021 Vol 1 15 July DOI 10 51335 organoid 2021 1 e11 Corro Claudia A brief history of organoids angl Claudia Corro Laura Novellasdemunt Vivian S W Li American Journal of Physiology Cell Physiology 2020 Vol 319 no 1 1 July P 151 165 DOI 10 1152 ajpcell 00120 2020 PosilannyaOrganoid NewsPrimitkihttps www sciencealert com this mini brain is made from real tissue and it has huge potential Zhao Zixuan Chen Xinyi Dowbaj Anna M Sljukic Aleksandra Bratlie Kaitlin Lin Luda Fong Eliza Li Shan Balachander Gowri Manohari Chen Zhaowei 1 grudnya 2022 Organoids Nature Reviews Methods Primers angl T 2 1 s 1 21 doi 10 1038 s43586 022 00174 y ISSN 2662 8449 PMC 10270325 PMID 37325195 Procitovano 2 veresnya 2023 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki z PMC z inshim formatom posilannya Hofer Moritz Lutolf Matthias P 2021 05 Engineering organoids Nature Reviews Materials angl T 6 5 s 402 420 doi 10 1038 s41578 021 00279 y ISSN 2058 8437 Procitovano 2 veresnya 2023 Tang Xiao Yan Wu Shanshan Wang Da Chu Chu Hong Yuan Tao Mengdan Hu Hao Xu Min Guo Xing 24 travnya 2022 Human organoids in basic research and clinical applications Signal Transduction and Targeted Therapy angl T 7 1 s 1 17 doi 10 1038 s41392 022 01024 9 ISSN 2059 3635 Procitovano 3 veresnya 2023 Mullard Asher 16 lyutogo 2023 Mini organs attract big pharma Nature Reviews Drug Discovery angl T 22 3 s 175 176 doi 10 1038 d41573 023 00030 y Procitovano 2 veresnya 2023 NIAID scientists develop mini brain model of human prion disease National Institutes of Health NIH EN 14 chervnya 2019 Procitovano 3 veresnya 2023 Simian Marina Bissell Mina J 28 grudnya 2016 Organoids A historical perspective of thinking in three dimensions Journal of Cell Biology T 216 1 s 31 40 doi 10 1083 jcb 201610056 ISSN 0021 9525 PMC 5223613 PMID 28031422 Procitovano 2 veresnya 2023 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki z PMC z inshim formatom posilannya Lancaster Madeline A Knoblich Juergen A 18 lipnya 2014 Organogenesis in a dish Modeling development and disease using organoid technologies Science angl T 345 6194 doi 10 1126 science 1247125 ISSN 0036 8075 Wilson H V 7 chervnya 1907 A New Method by Which Sponges May Be Artificially Reared Science angl T 25 649 s 912 915 doi 10 1126 science 25 649 912 De Morgan W Drew late G Harold 1914 10 A Study of the Restitution Masses formed by the Dissociated Cells of the Hydroids Antennularia Ramosa and A Antennina Journal of the Marine Biological Association of the United Kingdom angl T 10 3 s 440 463 doi 10 1017 S0025315400008237 ISSN 0025 3154 Holtfreter J 1944 Experimental studies on the development of the pronephros Rev Can Biol 3 220 250 Holtfreter J 1948 The mechanism of embryonic induction and its relation to parthenogenesis and malignancy In Symposia of the Society for Experimental Biology Cambridge University Press Cambridge England UK 17 Corro et al 2020 s Experimental studies on the differentiation of embryonic tissues growing in vivo and in vitro II The development of the isolated early embryonic eye of the fowl when cultivated in vitro Proceedings of the Royal Society of London Series B Containing Papers of a Biological Character angl T 100 703 1926 09 s 273 283 doi 10 1098 rspb 1926 0049 ISSN 0950 1193 Fell Honor Bridget Robison Robert 1 sichnya 1929 The growth development and phosphatase activity of embryonic avian femora and limb buds cultivated in vitro Biochemical Journal angl T 23 4 s 767 784 5 doi 10 1042 bj0230767 ISSN 0306 3283 Trowell O A 1 sichnya 1954 A modified technique for organ culture in vitro Experimental Cell Research T 6 1 s 246 248 doi 10 1016 0014 4827 54 90169 X ISSN 0014 4827 Trowell O A 1955 03 EXPERIMENTS ON LYMPH NODES COLTURED IN VITRO Annals of the New York Academy of Sciences angl T 59 5 s 1066 1069 doi 10 1111 j 1749 6632 1955 tb46002 x Moscona A Moscona H 1952 07 The dissociation and aggregation of cells from organ rudiments of the early chick embryo Journal of Anatomy T 86 Pt 3 s 287 301 ISSN 0021 8782 PMC 1273752 PMID 12980879 Moscona A A 1959 05 Tissues from Dissociated Cells Scientific American T 200 5 s 132 144 doi 10 1038 scientificamerican0559 132 ISSN 0036 8733 Moscona A 1 sichnya 1961 Rotation mediated histogenetic aggregation of dissociated cells A quantifiable approach to cell interactions in vitro Experimental Cell Research T 22 s 455 475 doi 10 1016 0014 4827 61 90122 7 ISSN 0014 4827 Steinberg M S 1 listopada 1962 The role of temperature in the control of aggregation of dissociated embryonic cells Experimental Cell Research T 28 1 s 1 10 doi 10 1016 0014 4827 62 90306 3 ISSN 0014 4827 Hayes Raymond L 1 sichnya 1965 An in vitro technique for reaggregation of dissociated tissue in a centrifugal field Experimental Cell Research T 37 1 s 1 11 doi 10 1016 0014 4827 65 90152 7 ISSN 0014 4827 Huzella T 1932 Orientation de la croissance des cultures de tissus sur la trame fibrillaire artificielle coagulee de la solution de collagene SAC r Soc Biol Paris 109 515 Ehrmann R L Gey G O 1956 06 The growth of cells on a transparent gel of reconstituted rat tail collagen Journal of the National Cancer Institute T 16 6 Lasfargues Etienne Y 1957 01 Cultivation and behavior in vitro of the normal mammary epithelium of the adult mouse The Anatomical Record angl T 127 1 s 117 129 doi 10 1002 ar 1091270111 ISSN 0003 276X Berry M N Friend D S 1 grudnya 1969 HIGH YIELD PREPARATION OF ISOLATED RAT LIVER PARENCHYMAL CELLS The Journal of Cell Biology T 43 3 s 506 520 doi 10 1083 jcb 43 3 506 Michalopoulos G Pitot H C 1975 08 Primary culture of parenchymal liver cells on collagen membranes Experimental Cell Research angl T 94 1 s 70 78 doi 10 1016 0014 4827 75 90532 7 Emerman Joanne T Pitelka Dorothy R 1 travnya 1977 Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes In Vitro angl T 13 5 s 316 328 doi 10 1007 BF02616178 Kleinman Hynda K Martin George R 1 zhovtnya 2005 Matrigel Basement membrane matrix with biological activity Seminars in Cancer Biology T 15 5 s 378 386 doi 10 1016 j semcancer 2005 05 004 Kim Suran Min Sungjin Choi Yi Sun Jo Sung Hyun Jung Jae Hun Han Kyusun Kim Jin An Soohwan Ji Yong Woo 30 bereznya 2022 Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids Nature Communications angl T 13 1 s 1692 doi 10 1038 s41467 022 29279 4 Kozlowski Mark T Crook Christiana J Ku Hsun Teresa 10 grudnya 2021 Towards organoid culture without Matrigel Communications Biology angl T 4 1 s 1 15 doi 10 1038 s42003 021 02910 8 Evans M J Kaufman M H 1981 07 Establishment in culture of pluripotential cells from mouse embryos Nature angl T 292 5819 s 154 156 doi 10 1038 292154a0 ISSN 1476 4687 Martin G R 1981 12 Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells Proceedings of the National Academy of Sciences angl T 78 12 s 7634 7638 doi 10 1073 pnas 78 12 7634 Chambard M Gabrion J Mauchamp J 1 zhovtnya 1981 Influence of collagen gel on the orientation of epithelial cell polarity follicle formation from isolated thyroid cells and from preformed monolayers The Journal of Cell Biology angl T 91 1 s 157 166 doi 10 1083 jcb 91 1 157 Bissell Mina J Hall H Glenn Parry Gordon 7 listopada 1982 How does the extracellular matrix direct gene expression Journal of Theoretical Biology T 99 1 s 31 68 doi 10 1016 0022 5193 82 90388 5 Lee E Y Parry G Bissell M J 1 sichnya 1984 Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata The Journal of Cell Biology T 98 1 s 146 155 doi 10 1083 jcb 98 1 146 Hadley M A Byers S W Suarez Quian C A Kleinman H K Dym M 1 zhovtnya 1985 Extracellular matrix regulates Sertoli cell differentiation testicular cord formation and germ cell development in vitro The Journal of Cell Biology angl T 101 4 s 1511 1522 doi 10 1083 jcb 101 4 1511 Li M L Aggeler J Farson D A Hatier C Hassell J Bissell M J 1987 01 Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells Proceedings of the National Academy of Sciences angl T 84 1 s 136 140 doi 10 1073 pnas 84 1 136 Schuetz Erin G Li Donna Omiecinski Curtis J Muller Eberhard Ursula Kleinman Hynda K Elswick Barbara Guzelian Philip S 1988 03 Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix Journal of Cellular Physiology angl T 134 3 s 309 323 doi 10 1002 jcp 1041340302 Streuli C H Bissell M J 1 kvitnya 1990 Expression of extracellular matrix components is regulated by substratum The Journal of Cell Biology angl T 110 4 s 1405 1415 doi 10 1083 jcb 110 4 1405 Schmidhauser C Bissell M J Myers C A Casperson G F 1990 12 Extracellular matrix and hormones transcriptionally regulate bovine beta casein 5 sequences in stably transfected mouse mammary cells Proceedings of the National Academy of Sciences angl T 87 23 s 9118 9122 doi 10 1073 pnas 87 23 9118 Schmidhauser C Casperson G F Myers C A Sanzo K T Bolten S Bissell M J 1992 06 A novel transcriptional enhancer is involved in the prolactin and extracellular matrix dependent regulation of beta casein gene expression Molecular Biology of the Cell angl T 3 6 s 699 709 doi 10 1091 mbc 3 6 699 Streuli C H Schmidhauser C Bailey N Yurchenco P Skubitz A P Roskelley C Bissell M J 1 travnya 1995 Laminin mediates tissue specific gene expression in mammary epithelia The Journal of Cell Biology angl T 129 3 s 591 603 doi 10 1083 jcb 129 3 591 Muschler John Lochter Andre Roskelley Calvin D Yurchenco Peter Bissell Mina J 1999 09 Nelson W James red Division of Labor among the a6b4 Integrin b1 Integrins and an E3 Laminin Receptor to Signal Morphogenesis and b Casein Expression in Mammary Epithelial Cells Molecular Biology of the Cell angl T 10 9 s 2817 2828 doi 10 1091 mbc 10 9 2817 Streuli C H Bailey N Bissell M J 1 grudnya 1991 Control of mammary epithelial differentiation basement membrane induces tissue specific gene expression in the absence of cell cell interaction and morphological polarity The Journal of Cell Biology angl T 115 5 s 1383 1395 doi 10 1083 jcb 115 5 1383 Simian Marina Hirai Yohei Navre Marc Werb Zena Lochter Andre Bissell Mina J 15 serpnya 2001 The interplay of matrix metalloproteinases morphogens and growth factors is necessary for branching of mammary epithelial cells Development T 128 16 s 3117 3131 doi 10 1242 dev 128 16 3117 Nelson Celeste M VanDuijn Martijn M Inman Jamie L Fletcher Daniel A Bissell Mina J 13 zhovtnya 2006 Tissue Geometry Determines Sites of Mammary Branching Morphogenesis in Organotypic Cultures Science angl T 314 5797 s 298 300 doi 10 1126 science 1131000 Nahmias Yaakov Schwartz Robert E Hu Wei Shou Verfaillie Catherine M Odde David J 2006 06 Endothelium Mediated Hepatocyte Recruitment in the Establishment of Liver like Tissue In Vitro Tissue Engineering T 12 6 s 1627 1638 doi 10 1089 ten 2006 12 1627 Yong Ed 28 serpnya 2013 Lab Grown Model Brains The Scientist Procitovano 26 grudnya 2013 Sato Toshiro Vries Robert G Snippert Hugo J van de Wetering Marc Barker Nick Stange Daniel E van Es Johan H Abo Arie Kujala Pekka 2009 05 Single Lgr5 stem cells build crypt villus structures in vitro without a mesenchymal niche Nature angl T 459 7244 s 262 265 doi 10 1038 nature07935 Barker Nick Huch Meritxell Kujala Pekka van de Wetering Marc Snippert Hugo J van Es Johan H Sato Toshiro Stange Daniel E Begthel Harry 2010 01 Lgr5 ve Stem Cells Drive Self Renewal in the Stomach and Build Long Lived Gastric Units In Vitro Cell Stem Cell angl T 6 1 s 25 36 doi 10 1016 j stem 2009 11 013 Huch Meritxell Bonfanti Paola Boj Sylvia F Sato Toshiro Loomans Cindy J M van de Wetering Marc Sojoodi Mozhdeh Li Vivian S W Schuijers Jurian 17 veresnya 2013 Unlimited in vitro expansion of adult bi potent pancreas progenitors through the Lgr5 R spondin axis The EMBO Journal T 32 20 s 2708 2721 doi 10 1038 emboj 2013 204 Sato Toshiro Stange Daniel E Ferrante Marc Vries Robert G J van Es Johan H van den Brink Stieneke van Houdt Winan J Pronk Apollo van Gorp Joost 2011 11 Long term Expansion of Epithelial Organoids From Human Colon Adenoma Adenocarcinoma and Barrett s Epithelium Gastroenterology angl T 141 5 s 1762 1772 doi 10 1053 j gastro 2011 07 050 Huch Meritxell Dorrell Craig Boj Sylvia F van Es Johan H Li Vivian S W van de Wetering Marc Sato Toshiro Hamer Karien Sasaki Nobuo 14 lyutogo 2013 In vitro expansion of single Lgr5 liver stem cells induced by Wnt driven regeneration Nature angl T 494 7436 s 247 250 doi 10 1038 nature11826 Eiraku Mototsugu Watanabe Kiichi Matsuo Takasaki Mami Kawada Masako Yonemura Shigenobu Matsumura Michiru Wataya Takafumi Nishiyama Ayaka Muguruma Keiko 2008 11 Self Organized Formation of Polarized Cortical Tissues from ESCs and Its Active Manipulation by Extrinsic Signals Cell Stem Cell angl T 3 5 s 519 532 doi 10 1016 j stem 2008 09 002 Eiraku Mototsugu Takata Nozomu Ishibashi Hiroki Kawada Masako Sakakura Eriko Okuda Satoru Sekiguchi Kiyotoshi Adachi Taiji Sasai Yoshiki 2011 04 Self organizing optic cup morphogenesis in three dimensional culture Nature angl T 472 7341 s 51 56 doi 10 1038 nature09941 Nakano Tokushige Ando Satoshi Takata Nozomu Kawada Masako Muguruma Keiko Sekiguchi Kiyotoshi Saito Koichi Yonemura Shigenobu Eiraku Mototsugu 2012 06 Self Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs Cell Stem Cell angl T 10 6 s 771 785 doi 10 1016 j stem 2012 05 009 Unbekandt Mathieu Davies Jamie A 2010 03 Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues Kidney International T 77 5 s 407 416 doi 10 1038 ki 2009 482 Takahashi Kazutoshi Yamanaka Sin ya 2006 08 Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors Cell T 126 4 s 663 676 doi 10 1016 j cell 2006 07 024 Takahashi Kazutoshi Tanabe Koji Ohnuki Mari Narita Megumi Ichisaka Tomoko Tomoda Kiichiro Yamanaka Sin ya 2007 11 Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors Cell angl T 131 5 s 861 872 doi 10 1016 j cell 2007 11 019 Yu Junying Vodyanik Maxim A Smuga Otto Kim Antosiewicz Bourget Jessica Frane Jennifer L Tian Shulan Nie Jeff Jonsdottir Gudrun A Ruotti Victor 21 grudnya 2007 Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells Science angl T 318 5858 s 1917 1920 doi 10 1126 science 1151526 Park In Hyun Lerou Paul H Zhao Rui Huo Hongguang Daley George Q 2008 07 Generation of human induced pluripotent stem cells Nature Protocols angl T 3 7 s 1180 1186 doi 10 1038 nprot 2008 92 Xu Ziran Yang Jiaxu Xin Xianyi Liu Chengrun Li Lisha Mei Xianglin Li Meiying 2023 Merits and challenges of iPSC derived organoids for clinical applications Frontiers in Cell and Developmental Biology T 11 doi 10 3389 fcell 2023 1188905 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Lancaster Madeline A Renner Magdalena Martin Carol Anne Wenzel Daniel Bicknell Louise S Hurles Matthew E Homfray Tessa Penninger Josef M Jackson Andrew P 19 veresnya 2013 Cerebral organoids model human brain development and microcephaly Nature angl T 501 7467 s 373 379 doi 10 1038 nature12517 Procitovano 2 veresnya 2023 Peng Haisheng Poovaiah Nitya Forrester Michael Cochran Eric Wang Qun 12 sichnya 2015 Ex Vivo Culture of Primary Intestinal Stem Cells in Collagen Gels and Foams ACS Biomaterials Science amp Engineering angl T 1 1 s 37 42 doi 10 1021 ab500041d Peng Haisheng Wang Chao Xu Xiaoyang Yu Chenxu Wang Qun 26 lyutogo 2015 An intestinal Trojan horse for gene delivery Nanoscale angl T 7 10 s 4354 4360 doi 10 1039 C4NR06377E Shkumatov Artem Baek Kwanghyun Kong Hyunjoon 14 kvit 2014 r Matrix Rigidity Modulated Cardiovascular Organoid Formation from Embryoid Bodies PLOS ONE angl T 9 4 s e94764 doi 10 1371 journal pone 0094764 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Zhong Xiufeng Gutierrez Christian Xue Tian Hampton Christopher Vergara M Natalia Cao Li Hui Peters Ann Park Tea Soon Zambidis Elias T 10 chervnya 2014 Generation of three dimensional retinal tissue with functional photoreceptors from human iPSCs Nature Communications angl T 5 1 s 4047 doi 10 1038 ncomms5047 Takebe Takanori Enomura Masahiro Yoshizawa Emi Kimura Masaki Koike Hiroyuki Ueno Yasuharu Matsuzaki Takahisa Yamazaki Takashi Toyohara Takafumi 2015 05 Vascularized and Complex Organ Buds from Diverse Tissues via Mesenchymal Cell Driven Condensation Cell Stem Cell T 16 5 s 556 565 doi 10 1016 j stem 2015 03 004 Zhu Yujuan Wang Li Yu Hao Yin Fangchao Wang Yaqing Liu Haitao Jiang Lei Qin Jianhua 22 serpnya 2017 In situ generation of human brain organoids on a micropillar array Lab on a Chip angl T 17 17 s 2941 2950 doi 10 1039 C7LC00682A Method of the Year 2017 Organoids Nature Methods angl T 15 1 2018 01 s 1 1 doi 10 1038 nmeth 4575 Fatehullah Aliya Tan Si Hui Barker Nick 2016 03 Organoids as an in vitro model of human development and disease Nature Cell Biology angl T 18 3 s 246 254 doi 10 1038 ncb3312 Clevers Hans 2016 06 Modeling Development and Disease with Organoids Cell T 165 7 s 1586 1597 doi 10 1016 j cell 2016 05 082 Cala Giuseppe Sina Beatrice De Coppi Paolo Giobbe Giovanni Giuseppe Gerli Mattia Francesco Maria 2023 Primary human organoids models Current progress and key milestones Frontiers in Bioengineering and Biotechnology T 11 doi 10 3389 fbioe 2023 1058970 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Bao Zhongyuan Fang Kaiheng Miao Zong Li Chong Yang Chaojuan Yu Qiang Zhang Chen Miao Zengli Liu Yan 22 listopada 2021 Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice Oxidative Medicine and Cellular Longevity angl T 2021 s e6338722 doi 10 1155 2021 6338722 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Revah Omer Gore Felicity Kelley Kevin W Andersen Jimena Sakai Noriaki Chen Xiaoyu Li Min Yin Birey Fikri Yang Xiao 2022 10 Maturation and circuit integration of transplanted human cortical organoids Nature angl T 610 7931 s 319 326 doi 10 1038 s41586 022 05277 w Wilson Madison N Thunemann Martin Liu Xin Lu Yichen ta in 26 grudnya 2022 Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex Nature Communications angl T 13 1 doi 10 1038 s41467 022 35536 3 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Yavne vikoristannya ta in u first4 dovidka Jgamadze Dennis Lim James T Zhang Zhijian Harary Paul M Germi James Mensah Brown Kobina Adam Christopher D Mirzakhalili Ehsan Singh Shikha 2023 02 Structural and functional integration of human forebrain organoids with the injured adult rat visual system Cell Stem Cell T 30 2 s 137 152 e7 doi 10 1016 j stem 2023 01 004 Cao Shi Ying Yang Di Huang Zhen Quan Lin Yu Hui Wu Hai Yin Chang Lei Luo Chun Xia Xu Yun Liu Yan 30 travnya 2023 Cerebral organoids transplantation repairs infarcted cortex and restores impaired function after stroke npj Regenerative Medicine angl T 8 1 s 1 14 doi 10 1038 s41536 023 00301 7 Bohrer Laura R Stone Nicholas E Mullin Nathaniel K Voigt Andrew P Anfinson Kristin R Fick Jessica L Luangphakdy Viviane Hittle Bradley Powell Kimerly 28 lyutogo 2023 Automating iPSC generation to enable autologous photoreceptor cell replacement therapy Journal of Translational Medicine angl T 21 1 doi 10 1186 s12967 023 03966 2 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Kang Soo Yeon Kimura Masaki Shrestha Sunil Lewis Phillip Lee Sangjoon Cai Yuqi Joshi Pranav Acharya Prabha Liu Jiafeng 24 serpnya 2023 A Pillar and Perfusion Plate Platform for Robust Human Organoid Culture and Analysis Advanced Healthcare Materials angl doi 10 1002 adhm 202302502 Tan Yu Coyle Robert C Barrs Ryan W Silver Sophia E Li Mei Richards Dylan J Lin Yiliang Jiang Yuanwen Wang Hongjun 4 serpnya 2023 Nanowired human cardiac organoid transplantation enables highly efficient and effective recovery of infarcted hearts Science Advances angl T 9 31 doi 10 1126 sciadv adf2898 Takasato Minoru Er Pei X Chiu Han S Little Melissa H 2016 09 Generation of kidney organoids from human pluripotent stem cells Nature Protocols angl T 11 9 s 1681 1692 doi 10 1038 nprot 2016 098 Sachs Norman Papaspyropoulos Angelos Zomer van Ommen Domenique D Heo Inha Bottinger Lena ta in 15 lyutogo 2019 Long term expanding human airway organoids for disease modeling The EMBO Journal angl T 38 4 doi 10 15252 embj 2018100300 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Yavne vikoristannya ta in u last6 dovidka McCracken Kyle W Cata Emily M Crawford Calyn M Sinagoga Katie L Schumacher Michael Rockich Briana E Tsai Yu Hwai Mayhew Christopher N Spence Jason R 2014 12 Modelling human development and disease in pluripotent stem cell derived gastric organoids Nature angl T 516 7531 s 400 404 doi 10 1038 nature13863 Huang Kai Li Qiwei Xue Yufei Wang Qiong Chen Zaozao Gu Zhongze 1 zhovtnya 2023 Application of colloidal photonic crystals in study of organoids Advanced Drug Delivery Reviews T 201 s 115075 doi 10 1016 j addr 2023 115075 Yin Xiaolei Mead Benjamin E Safaee Helia Langer Robert Karp Jeffrey M Levy Oren 2016 01 Engineering Stem Cell Organoids Cell Stem Cell T 18 1 s 25 38 doi 10 1016 j stem 2015 12 005 Ha Jeongmin Kang Ji Su Lee Minhyung Baek Areum Kim Seongjun Chung Sun Ku Lee Mi Ok Kim Janghwan 2020 Simplified Brain Organoids for Rapid and Robust Modeling of Brain Disease Frontiers in Cell and Developmental Biology T 8 doi 10 3389 fcell 2020 594090 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Sun Xin Yao Ju Xiang Chun Li Yang Zeng Peng Ming Wu Jian Zhou Ying Ying Shen Li Bing Dong Jian Chen Yue Jun 4 travnya 2022 Gleeson Joseph G red Generation of vascularized brain organoids to study neurovascular interactions eLife T 11 s e76707 doi 10 7554 eLife 76707 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Jang Hyunsoo Kim Seo Hyun Koh Youmin Yoon Ki Jun 28 lyutogo 2022 Engineering Brain Organoids Toward Mature Neural Circuitry with an Intact Cytoarchitecture International Journal of Stem Cells angl T 15 1 s 41 59 doi 10 15283 ijsc22004 Jusop Amirah Syamimi Thanaskody Kalaiselvaan Tye Gee Jun Dass Sylvia Annabel Wan Kamarul Zaman Wan Safwani Nordin Fazlina 2023 Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling a glance through Frontiers in Molecular Neuroscience T 16 doi 10 3389 fnmol 2023 1173433 ISSN 1662 5099 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya D Antoni Chiara Mautone Lorenza Sanchini Caterina Tondo Lucrezia Grassmann Greta Cidonio Gianluca Bezzi Paola Cordella Federica Di Angelantonio Silvia 28 chervnya 2023 Unlocking Neural Function with 3D In Vitro Models A Technical Review of Self Assembled Guided and Bioprinted Brain Organoids and Their Applications in the Study of Neurodevelopmental and Neurodegenerative Disorders International Journal of Molecular Sciences angl T 24 13 s 10762 doi 10 3390 ijms241310762 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Qu Molong Xiong Liang Lyu Yulin Zhang Xiannian Shen Jie Guan Jingyang Chai Peiyuan Lin Zhongqing Nie Boyao 2021 03 Establishment of intestinal organoid cultures modeling injury associated epithelial regeneration Cell Research angl T 31 3 s 259 271 doi 10 1038 s41422 020 00453 x Kardia Egi Frese Michael Smertina Elena Strive Tanja Zeng Xi Lei Estes Mary Hall Robyn N 8 bereznya 2021 Culture and differentiation of rabbit intestinal organoids and organoid derived cell monolayers Scientific Reports angl T 11 1 s 5401 doi 10 1038 s41598 021 84774 w Kasendra Magdalena Troutt Misty Broda Taylor Bacon W Clark Wang Timothy C Niland Joyce C Helmrath Michael A 1 lipnya 2021 Intestinal organoids roadmap to the clinic American Journal of Physiology Gastrointestinal and Liver Physiology angl T 321 1 s G1 G10 doi 10 1152 ajpgi 00425 2020 Taelman Jasin Diaz Monica Guiu Jordi 2022 Human Intestinal Organoids Promise and Challenge Frontiers in Cell and Developmental Biology T 10 doi 10 3389 fcell 2022 854740 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Tanimizu Naoki Ichinohe Norihisa Sasaki Yasushi Itoh Tohru Sudo Ryo Yamaguchi Tomoko Katsuda Takeshi Ninomiya Takafumi Tokino Takashi 7 chervnya 2021 Generation of functional liver organoids on combining hepatocytes and cholangiocytes with hepatobiliary connections ex vivo Nature Communications angl T 12 1 s 3390 doi 10 1038 s41467 021 23575 1 Liu Qianglin Zeng Anqi Liu Zibo Wu Chunjie Song Linjiang 2022 Liver organoids From fabrication to application in liver diseases Frontiers in Physiology T 13 doi 10 3389 fphys 2022 956244 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Kim Hyo Jin Kim Gyeongmin Chi Kyun Yoo Kim Hyemin Jang Yu Jin Jo Seongyea Lee Jihun Lee Youngseok Woo Dong Hun 3 lyutogo 2023 Generation of multilineage liver organoids with luminal vasculature and bile ducts from human pluripotent stem cells via modulation of Notch signaling Stem Cell Research amp Therapy angl T 14 1 doi 10 1186 s13287 023 03235 5 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Harrison Sean P Siller Richard Tanaka Yoshiaki Chollet Maria Eugenia de la Morena Barrio Maria Eugenia Xiang Yangfei Patterson Benjamin Andersen Elisabeth Bravo Perez Carlos 1 veresnya 2023 Scalable production of tissue like vascularized liver organoids from human PSCs Experimental amp Molecular Medicine angl s 1 20 doi 10 1038 s12276 023 01074 1 Khoshdel Rad Niloofar Ahmadi Amin Moghadasali Reza 2022 02 Kidney organoids current knowledge and future directions Cell and Tissue Research angl T 387 2 s 207 224 doi 10 1007 s00441 021 03565 x Kim Hye Youn Yu Seyoung Choi Yo Jun Gee Heon Yung 25 chervnya 2023 Kidney organoids development and applications Organoid English T 3 doi 10 51335 organoid 2023 3 e10 Casamitjana Joan Espinet Elisa Rovira Meritxell 2022 Pancreatic Organoids for Regenerative Medicine and Cancer Research Frontiers in Cell and Developmental Biology T 10 doi 10 3389 fcell 2022 886153 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Liu Yuxiang Li Nianshuang Zhu Yin 2023 01 Pancreatic Organoids A Frontier Method for Investigating Pancreatic Related Diseases International Journal of Molecular Sciences angl T 24 4 s 4027 doi 10 3390 ijms24044027 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Miller Alyssa J Dye Briana R Ferrer Torres Daysha Hill David R Overeem Arend W Shea Lonnie D Spence Jason R 2019 02 Generation of lung organoids from human pluripotent stem cells in vitro Nature Protocols angl T 14 2 s 518 540 doi 10 1038 s41596 018 0104 8 Bosakova Veronika De Zuani Marco Sladkova Lucie Garlikova Zuzana Jose Shyam Sushama Zelante Teresa Hortova Kohoutkova Marcela Fric Jan 2022 Lung Organoids The Ultimate Tool to Dissect Pulmonary Diseases Frontiers in Cell and Developmental Biology T 10 doi 10 3389 fcell 2022 899368 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Demchenko Anna Lavrov Alexander Smirnikhina Svetlana 2022 12 Lung organoids current strategies for generation and transplantation Cell and Tissue Research angl T 390 3 s 317 333 doi 10 1007 s00441 022 03686 x Hoang Plansky Wang Jason Conklin Bruce R Healy Kevin E Ma Zhen 2018 04 Generation of spatial patterned early developing cardiac organoids using human pluripotent stem cells Nature Protocols angl T 13 4 s 723 737 doi 10 1038 nprot 2018 006 Kim Hyeonyu Kamm Roger D Vunjak Novakovic Gordana Wu Joseph C 2022 04 Progress in multicellular human cardiac organoids for clinical applications Cell Stem Cell T 29 4 s 503 514 doi 10 1016 j stem 2022 03 012 Lee Seul Gi Kim Ye Ji Son Mi Young Oh Min Seok Kim Jin Ryu Bokyeong Kang Kyu Ree Baek Jieun Chung Gujin 1 listopada 2022 Generation of human iPSCs derived heart organoids structurally and functionally similar to heart Biomaterials T 290 s 121860 doi 10 1016 j biomaterials 2022 121860 Sahara Makoto 2023 01 Recent Advances in Generation of In Vitro Cardiac Organoids International Journal of Molecular Sciences angl T 24 7 s 6244 doi 10 3390 ijms24076244 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Volmert Brett Kiselev Artem Juhong Aniwat Wang Fei Riggs Ashlin Kostina Aleksandra O Hern Colin Muniyandi Priyadharshni Wasserman Aaron 12 grudnya 2023 A patterned human primitive heart organoid model generated by pluripotent stem cell self organization Nature Communications angl T 14 1 s 8245 doi 10 1038 s41467 023 43999 1 Procitovano 16 grudnya 2023 Wimmer Reiner A Leopoldi Alexandra Aichinger Martin Wick Nikolaus Hantusch Brigitte Novatchkova Maria Taubenschmid Jasmin Hammerle Monika Esk Christopher 2019 01 Human blood vessel organoids as a model of diabetic vasculopathy Nature angl T 565 7740 s 505 510 doi 10 1038 s41586 018 0858 8 Afanasyeva Tess A V Corral Serrano Julio C Garanto Alejandro Roepman Ronald Cheetham Michael E Collin Rob W J 1 zhovtnya 2021 A look into retinal organoids methods analytical techniques and applications Cellular and Molecular Life Sciences angl T 78 19 s 6505 6532 doi 10 1007 s00018 021 03917 4 Li Jinyan Chen Yijia Ouyang Shuai Ma Jingyu Sun Hui Luo Lixia Chen Shuyi Liu Yizhi 2021 Generation and Staging of Human Retinal Organoids Based on Self Formed Ectodermal Autonomous Multi Zone System Frontiers in Cell and Developmental Biology T 9 doi 10 3389 fcell 2021 732382 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Kim Hantai Kim Young Sun Kim Yeon Ju Ha Jungho Sung Siung Jang Jeong Hun Park Sunho Kim Jangho Kim Kyunghoon 25 kvitnya 2023 Development of otic organoids and their current status Organoid English T 3 doi 10 51335 organoid 2023 3 e7 Smirnova Lena Caffo Brian S Gracias David H Huang Qi Morales Pantoja Itzy E Tang Bohao Zack Donald J Berlinicke Cynthia A Boyd J Lomax 28 lyutogo 2023 Organoid intelligence OI the new frontier in biocomputing and intelligence in a dish Frontiers in Science T 1 s 1017235 doi 10 3389 fsci 2023 1017235 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Hetzel Laura Ann Ali Ahmed Corbo Vincenzo Hankemeier Thomas 2023 01 Microfluidics and Organoids the Power Couple of Developmental Biology and Oncology Studies International Journal of Molecular Sciences angl T 24 13 s 10882 doi 10 3390 ijms241310882 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Zhu Yujuan Zhang Xiaoxuan Sun Lingyu Wang Yu Zhao Yuanjin 2023 04 Engineering Human Brain Assembloids by Microfluidics Advanced Materials angl T 35 14 doi 10 1002 adma 202210083 Wu Lei Ai Yongjian Xie Ruoxiao Xiong Jialiang Wang Yu Liang Qionglin 1 bereznya 2023 Organoids organs on a chip new frontiers of intestinal pathophysiological models Lab on a Chip angl T 23 5 s 1192 1212 doi 10 1039 D2LC00804A Fang Guocheng Chen Yu Cheng Lu Hongxu Jin Dayong 2023 05 Advances in Spheroids and Organoids on a Chip Advanced Functional Materials angl T 33 19 doi 10 1002 adfm 202215043 Wang Yaqing Qin Jianhua 1 lyutogo 2023 Advances in human organoids on chips in biomedical research Life Medicine angl T 2 1 doi 10 1093 lifemedi lnad007 Tan Sin Yen Feng Xiaohan Cheng Lily Kwan Wai Wu Angela Ruohao 13 chervnya 2023 Vascularized human brain organoid on chip Lab on a Chip angl T 23 12 s 2693 2709 doi 10 1039 D2LC01109C Saorin Gloria Caligiuri Isabella Rizzolio Flavio 30 lipnya 2023 Microfluidic organoids on a chip The future of human models Seminars in Cell amp Developmental Biology T 144 s 41 54 doi 10 1016 j semcdb 2022 10 001 Shoji Jun ya Davis Richard P Mummery Christine L Krauss Stefan 7 serpnya 2023 Global Meta Analysis of Organoid and Organ on Chip Research Advanced Healthcare Materials angl doi 10 1002 adhm 202301067 Menche Constantin Farin Henner F 2021 10 Strategies for genetic manipulation of adult stem cell derived organoids Experimental amp Molecular Medicine angl T 53 10 s 1483 1494 doi 10 1038 s12276 021 00609 8 Haja Asmaa Horcas Nieto Jose M Bakker Barbara M Schomaker Lambert 1 sichnya 2023 Towards automatization of organoid analysis A deep learning approach to localize and quantify organoid images Computer Methods and Programs in Biomedicine Update T 3 s 100101 doi 10 1016 j cmpbup 2023 100101 Matthews Jonathan M Schuster Brooke Kashaf Sara Saheb Liu Ping Ben Yishay Rakefet Ishay Ronen Dana Izumchenko Evgeny Shen Le Weber Christopher R 9 list 2022 r OrganoID A versatile deep learning platform for tracking and analysis of single organoid dynamics PLOS Computational Biology angl T 18 11 s e1010584 doi 10 1371 journal pcbi 1010584 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Du Xuan Chen Zaozao Li Qiwei Yang Sheng Jiang Lincao Yang Yi Li Yanhui Gu Zhongze 2023 05 Organoids revealed morphological analysis of the profound next generation in vitro model with artificial intelligence Bio Design and Manufacturing angl T 6 3 s 319 339 doi 10 1007 s42242 022 00226 y Park Taeyun Kim Taeyul K Han Yoon Dae Kim Kyung A Kim Hwiyoung Kim Han Sang 13 listopada 2023 Development of a deep learning based image processing tool for enhanced organoid analysis Scientific Reports angl doi 10 1038 s41598 023 46485 2 Procitovano 16 grudnya 2023 Albanese Alexandre Swaney Justin M Yun Dae Hee Evans Nicholas B Antonucci Jenna M ta in 8 grudnya 2020 Multiscale 3D phenotyping of human cerebral organoids Scientific Reports angl T 10 1 doi 10 1038 s41598 020 78130 7 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Yavne vikoristannya ta in u first5 dovidka Jacob Fadi Schnoll Jordan G Song Hongjun Ming Guo li 1 sichnya 2021 Bashaw Greg J red Chapter Twelve Building the brain from scratch Engineering region specific brain organoids from human stem cells to study neural development and disease Current Topics in Developmental Biology T 142 Academic Press s 477 530 doi 10 1016 bs ctdb 2020 12 011 PMC 8363060 PMID 33706925 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite book title Shablon Cite book cite book a Obslugovuvannya CS1 Storinki z PMC z inshim formatom posilannya Adlakha Yogita K 3 lipnya 2023 Human 3D brain organoids steering the demolecularization of brain and neurological diseases Cell Death Discovery angl T 9 1 s 1 17 doi 10 1038 s41420 023 01523 w Eichmuller Oliver L Knoblich Juergen A 2022 11 Human cerebral organoids a new tool for clinical neurology research Nature Reviews Neurology angl T 18 11 s 661 680 doi 10 1038 s41582 022 00723 9 Li Xiaodong Shopit Abdullah Wang Jingmin 5 grudnya 2022 A Comprehensive Update of Cerebral Organoids between Applications and Challenges Oxidative Medicine and Cellular Longevity angl T 2022 s e7264649 doi 10 1155 2022 7264649 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Mulder Lance A Depla Josse A Sridhar Adithya Wolthers Katja Pajkrt Dasja Vieira de Sa Renata 15 kvitnya 2023 A beginner s guide on the use of brain organoids for neuroscientists a systematic review Stem Cell Research amp Therapy angl T 14 1 doi 10 1186 s13287 023 03302 x a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Li Yang Zeng Peng Ming Wu Jian Luo Zhen Ge 24 travnya 2023 Advances and Applications of Brain Organoids Neuroscience Bulletin angl doi 10 1007 s12264 023 01065 2 Makrygianni Evanthia A Chrousos George P 2021 From Brain Organoids to Networking Assembloids Implications for Neuroendocrinology and Stress Medicine Frontiers in Physiology T 12 doi 10 3389 fphys 2021 621970 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Roth Julien G Brunel Lucia G Huang Michelle S Liu Yueming Cai Betty Sinha Sauradeep Yang Fan Pașca Sergiu P Shin Sungchul 19 lipnya 2023 Spatially controlled construction of assembloids using bioprinting Nature Communications angl T 14 1 s 4346 doi 10 1038 s41467 023 40006 5 Cakir Bilal Xiang Yangfei Tanaka Yoshiaki Kural Mehmet H Parent Maxime Kang Young Jin Chapeton Kayley Patterson Benjamin Yuan Yifan 2019 11 Engineering of human brain organoids with a functional vascular like system Nature Methods angl T 16 11 s 1169 1175 doi 10 1038 s41592 019 0586 5 LaMontagne Erin Muotri Alysson R Engler Adam J 2022 Recent advancements and future requirements in vascularization of cortical organoids Frontiers in Bioengineering and Biotechnology T 10 doi 10 3389 fbioe 2022 1048731 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Ye Bing 8 trav 2023 r Approaches to vascularizing human brain organoids angl T 21 5 s e3002141 doi 10 1371 journal pbio 3002141 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Matsui Takeshi K Tsuru Yuichiro Hasegawa Koichi Kuwako Ken ichiro 1 serpnya 2021 Vascularization of Human Brain Organoids Stem Cells angl T 39 8 s 1017 1024 doi 10 1002 stem 3368 Zhou Jin Qi Zeng Ling Hui Li Chen Tao He Da Hong Zhao Hao Duo Xu Yan Nan Jin Zi Tian Gao Chong 2023 09 Brain organoids are new tool for drug screening of neurological diseases Neural Regeneration Research amer T 18 9 s 1884 doi 10 4103 1673 5374 367983 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Madhavan Mayur Nevin Zachary S Shick H Elizabeth Garrison Eric Clarkson Paredes Cheryl Karl Molly Clayton Benjamin L L Factor Daniel C Allan Kevin C 2018 09 Induction of myelinating oligodendrocytes in human cortical spheroids Nature Methods angl T 15 9 s 700 706 doi 10 1038 s41592 018 0081 4 Ma Ling Mei Yuting Xu Peibo Cheng Yan You Zhiwen Ji Xiaoli Zhuang Deyi Zhou Wenhao Chen Yuejun 2022 10 Fast generation of forebrain oligodendrocyte spheroids from human embryonic stem cells by transcription factors iScience T 25 10 s 105172 doi 10 1016 j isci 2022 105172 Yoon Se Jin Elahi Lubayna S Pașca Anca M Marton Rebecca M Gordon Aaron Revah Omer Miura Yuki Walczak Elisabeth M Holdgate Gwendolyn M 2019 01 Reliability of human cortical organoid generation Nature Methods angl T 16 1 s 75 78 doi 10 1038 s41592 018 0255 0 Park Yoonseok Franz Colin K Ryu Hanjun Luan Haiwen Cotton Kristen Y Kim Jong Uk Chung Ted S Zhao Shiwei Vazquez Guardado Abraham 19 bereznya 2021 Three dimensional multifunctional neural interfaces for cortical spheroids and engineered assembloids Science Advances angl T 7 12 doi 10 1126 sciadv abf9153 De Kleijn Kim M A Zuure Wieteke A Straasheijm Kirsten R Martens Marijn B Avramut M Cristina Koning Roman I Martens Gerard J M 23 bereznya 2023 Human cortical spheroids with a high diversity of innately developing brain cell types Stem Cell Research amp Therapy angl T 14 1 doi 10 1186 s13287 023 03261 3 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Jo Junghyun Xiao Yixin Sun Alfred Xuyang Cukuroglu Engin Tran Hoang Dai Goke Jonathan Tan Zi Ying Saw Tzuen Yih Tan Cheng Peow 2016 08 Midbrain like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin Producing Neurons Cell Stem Cell angl T 19 2 s 248 257 doi 10 1016 j stem 2016 07 005 Sabate Soler Sonia Nickels Sarah Louise Saraiva Claudia Berger Emanuel Dubonyte Ugne Barmpa Kyriaki Lan Yan Jun Kouno Tsukasa Jarazo Javier 2022 07 Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality Glia angl T 70 7 s 1267 1288 doi 10 1002 glia 24167 Mohamed Nguyen Vi Lepine Paula Lacalle Aurioles Maria Sirois Julien Mathur Meghna Reintsch Wolfgang Beitel Lenore K Fon Edward A Durcan Thomas M 1 lipnya 2022 Microfabricated disk technology Rapid scale up in midbrain organoid generation Methods T 203 s 465 477 doi 10 1016 j ymeth 2021 07 008 Sozzi Edoardo Nilsson Fredrik Kajtez Janko Parmar Malin Fiorenzano Alessandro 2022 09 Generation of Human Ventral Midbrain Organoids Derived from Pluripotent Stem Cells Current Protocols angl T 2 9 doi 10 1002 cpz1 555 Toh Hilary S Y Choo Xin Yi Sun Alfred Xuyang 2023 Midbrain organoids development and applications in Parkinson s disease Oxford Open Neuroscience T 2 doi 10 1093 oons kvad009 Huang Wei Kai Wong Samuel Zheng Hao Pather Sarshan R Nguyen Phuong T T Zhang Feng Zhang Daniel Y Zhang Zhijian Lu Lu Fang Wanqi 2021 09 Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells Cell Stem Cell angl T 28 9 s 1657 1670 e10 doi 10 1016 j stem 2021 04 006 Ozaki Hajime Suga Hidetaka Arima Hiroshi 2021 02 Hypothalamic pituitary organoid generation through the recapitulation of organogenesis Development Growth amp Differentiation angl T 63 2 s 154 165 doi 10 1111 dgd 12719 Sarrafha Lily Neavin Drew R Parfitt Gustavo M Kruglikov Ilya A Whitney Kristen Reyes Ricardo Coccia Elena Kareva Tatyana Goldman Camille 2023 09 Novel human pluripotent stem cell derived hypothalamus organoids demonstrate cellular diversity iScience T 26 9 s 107525 doi 10 1016 j isci 2023 107525 Afanasyeva Tess A V Corral Serrano Julio C Garanto Alejandro Roepman Ronald Cheetham Michael E Collin Rob W J 1 zhovtnya 2021 A look into retinal organoids methods analytical techniques and applications Cellular and Molecular Life Sciences angl T 78 19 s 6505 6532 doi 10 1007 s00018 021 03917 4 Wahle Philipp Brancati Giovanna Harmel Christoph He Zhisong Gut Gabriele del Castillo Jacobo Sarabia Xavier da Silveira dos Santos Aline Yu Qianhui Noser Pascal 8 travnya 2023 Multimodal spatiotemporal phenotyping of human retinal organoid development Nature Biotechnology angl s 1 11 doi 10 1038 s41587 023 01747 2 Ludwig Allison L Mayerl Steven J Gao Yu Banghart Mark Bacig Cole Fernandez Zepeda Maria A Zhao Xinyu Gamm David M 10 sichnya 2023 Re formation of synaptic connectivity in dissociated human stem cell derived retinal organoid cultures Proceedings of the National Academy of Sciences angl T 120 2 doi 10 1073 pnas 2213418120 Tresenrider Amy Sridhar Akshayalakshmi Eldred Kiara C Cuschieri Sophia Hoffer Dawn Trapnell Cole Reh Thomas A 28 serpnya 2023 Single cell sequencing of individual retinal organoids reveals determinants of cell fate heterogeneity Cell Reports Methods T 3 8 s 100548 doi 10 1016 j crmeth 2023 100548 Isla Magrane Helena Veiga Anna Garcia Arumi Jose Duarri Anna 22 listopada 2021 Multiocular organoids from human induced pluripotent stem cells displayed retinal corneal and retinal pigment epithelium lineages Stem Cell Research amp Therapy angl T 12 1 doi 10 1186 s13287 021 02651 9 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Kaluthantrige Don Flaminia Kalebic Nereo 2022 Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution Frontiers in Cell and Developmental Biology T 10 doi 10 3389 fcell 2022 917166 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Gabriel Elke Albanna Walid Pasquini Giovanni Ramani Anand Josipovic Natasa Mariappan Aruljothi Riparbelli Maria Giovanna Callaini Giuliano Karch Celeste M 2023 06 Generation of iPSC derived human forebrain organoids assembling bilateral eye primordia Nature Protocols angl T 18 6 s 1893 1929 doi 10 1038 s41596 023 00814 x Birey Fikri Andersen Jimena Makinson Christopher D Islam Saiful Wei Wu Huber Nina Fan H Christina Metzler Kimberly R Cordes Panagiotakos Georgia 4 travnya 2017 Assembly of functionally integrated human forebrain spheroids Nature angl T 545 7652 s 54 59 doi 10 1038 nature22330 Birey Fikri Li Min Yin Gordon Aaron Thete Mayuri V Valencia Alfredo M Revah Omer Pasca Anca M Geschwind Daniel H Pasca Sergiu P 2022 02 Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome Cell Stem Cell T 29 2 s 248 264 e7 doi 10 1016 j stem 2021 11 011 Birey Fikri Pașca Sergiu P 16 veresnya 2022 Imaging neuronal migration and network activity in human forebrain assembloids STAR Protocols T 3 3 s 101478 doi 10 1016 j xpro 2022 101478 Song Liqing Yuan Xuegang Jones Zachary Vied Cynthia Miao Yu Marzano Mark Hua Thien Sang Qing Xiang Amy Guan Jingjiao 30 lipnya 2019 Functionalization of Brain Region specific Spheroids with Isogenic Microglia like Cells Scientific Reports angl T 9 1 doi 10 1038 s41598 019 47444 6 Zhang Wendiao Jiang Jiamei Xu Zhenhong Yan Hongye Tang Beisha ta in 2023 01 Microglia containing human brain organoids for the study of brain development and pathology Molecular Psychiatry angl T 28 1 s 96 107 doi 10 1038 s41380 022 01892 1 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Yavne vikoristannya ta in u first5 dovidka Zhang Wendiao Jiang Jiamei Xu Zhenhong Yan Hongye Tang Beisha Liu Chunyu Chen Chao Meng Qingtuan 2023 01 Microglia containing human brain organoids for the study of brain development and pathology Molecular Psychiatry angl T 28 1 s 96 107 doi 10 1038 s41380 022 01892 1 Hong Yiling Dong Xu Chang Lawrence Xie Chen Chang Mariann Aguilar Jose S Lin Jimmy Lin Juncheng Li Qingshun Q 2023 03 Microglia containing cerebral organoids derived from induced pluripotent stem cells for the study of neurological diseases iScience T 26 3 s 106267 doi 10 1016 j isci 2023 106267 Schafer Simon T Mansour Abed AlFatah Schlachetzki Johannes C M Pena Monique Ghassemzadeh Saeed Mitchell Lisa Mar Amanda Quang Daphne Stumpf Sarah 2023 05 An in vivo neuroimmune organoid model to study human microglia phenotypes Cell T 186 10 s 2111 2126 e20 doi 10 1016 j cell 2023 04 022 D Aiuto Leonardo Bloom David C Naciri Jennifer N Smith Adam Edwards Terri G McClain Lora Callio Jason A Jessup Morgan Wood Joel 2019 05 Sandri Goldin Rozanne M red Modeling Herpes Simplex Virus 1 Infections in Human Central Nervous System Neuronal Cells Using Two and Three Dimensional Cultures Derived from Induced Pluripotent Stem Cells Journal of Virology angl T 93 9 doi 10 1128 JVI 00111 19 Selejan Ovidiu 31 lipnya 2023 Differentiation of neurosphere after transplantation into the damaged spinal cord JML Journal of Medicine and Life JML Journal of Medicine and Life amer doi 10 25122 jml 2022 0346 Krencik Robert Seo Kyounghee van Asperen Jessy V Basu Nupur Cvetkovic Caroline Barlas Saba Chen Robert Ludwig Connor Wang Chao 2017 12 Systematic Three Dimensional Coculture Rapidly Recapitulates Interactions between Human Neurons and Astrocytes Stem Cell Reports T 9 6 s 1745 1753 doi 10 1016 j stemcr 2017 10 026 Sloan Steven A Darmanis Spyros Huber Nina Khan Themasap A Birey Fikri Caneda Christine Reimer Richard Quake Stephen R Barres Ben A 2017 08 Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells Neuron angl T 95 4 s 779 790 e6 doi 10 1016 j neuron 2017 07 035 Szebenyi Kornelia Wenger Lea M D Sun Yu Dunn Alexander W E Limegrover Colleen A Gibbons George M Conci Elena Paulsen Ole Mierau Susanna B 2021 11 Human ALS FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology Nature Neuroscience angl T 24 11 s 1542 1554 doi 10 1038 s41593 021 00923 4 James Owen G Selvaraj Bhuvaneish T Magnani Dario Burr Karen Connick Peter Barton Samantha K Vasistha Navneet A Hampton David W Story David 2022 01 iPSC derived myelinoids to study myelin biology of humans Developmental Cell T 57 1 s 146 doi 10 1016 j devcel 2021 12 009 Ma Cuili Seong Hwanwook Li Xiaowei Yu Xiao Xu Shunliang Li Yujing 25 serpnya 2022 Human Brain Organoid A Versatile Tool for Modeling Neurodegeneration Diseases and for Drug Screening Stem Cells International angl T 2022 s e2150680 doi 10 1155 2022 2150680 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Bergmann Sonja Lawler Sean E Qu Yuan Fadzen Colin M Wolfe Justin M Regan Michael S Pentelute Bradley L Agar Nathalie Y R Cho Choi Fong 2018 12 Blood brain barrier organoids for investigating the permeability of CNS therapeutics Nature Protocols angl T 13 12 s 2827 2843 doi 10 1038 s41596 018 0066 x Mayhew Christopher N Singhania Richa 17 bereznya 2023 A review of protocols for brain organoids and applications for disease modeling STAR Protocols T 4 1 s 101860 doi 10 1016 j xpro 2022 101860 Chen Hao Jin Xin Li Tie Ye Zhuang 2022 Brain organoids Establishment and application Frontiers in Cell and Developmental Biology T 10 doi 10 3389 fcell 2022 1029873 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Kilpatrick Savannah Irwin Courtney Singh Karun K 21 chervnya 2023 Human pluripotent stem cell hPSC and organoid models of autism opportunities and limitations Translational Psychiatry angl T 13 1 s 1 21 doi 10 1038 s41398 023 02510 6 Santos John Lenon de Souza Araujo Cecilia de Almeida Rocha Clarissa Araujo Gurgel Costa Ferro Zaquer Suzana Munhoz Souza Bruno Solano de Freitas 2023 02 Modeling Autism Spectrum Disorders with Induced Pluripotent Stem Cell Derived Brain Organoids Biomolecules angl T 13 2 s 260 doi 10 3390 biom13020260 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Fair Summer R Schwind Wesley Julian Dominic L Biel Alecia Guo Gongbo Rutherford Ryan Ramadesikan Swetha Westfall Jesse Miller Katherine E 8 lipnya 2022 Cerebral organoids containing an AUTS2 missense variant model microcephaly Brain T 146 1 s 387 404 doi 10 1093 brain awac244 Haase Florencia D Coorey Bronte Riley Lisa Cantrill Laurence C Tam Patrick P L Gold Wendy A 2021 Pre clinical Investigation of Rett Syndrome Using Human Stem Cell Based Disease Models Frontiers in Neuroscience T 15 doi 10 3389 fnins 2021 698812 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Yildirim Murat Delepine Chloe Feldman Danielle Pham Vincent A Chou Stephanie Ip Jacque Nott Alexi Tsai Li Huei Ming Guo Li 29 lipnya 2022 Chin Jeannie red Label free three photon imaging of intact human cerebral organoids for tracking early events in brain development and deficits in Rett syndrome eLife T 11 s e78079 doi 10 7554 eLife 78079 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Sen Dilara Voulgaropoulos Alexis Drobna Zuzana Keung Albert J 2020 10 Human Cerebral Organoids Reveal Early Spatiotemporal Dynamics and Pharmacological Responses of UBE3A Stem Cell Reports T 15 4 s 845 854 doi 10 1016 j stemcr 2020 08 006 Sun Alfred Xuyang Yuan Qiang Fukuda Masahiro Yu Weonjin Yan Haidun Lim Grace Gui Yin Nai Mui Hoon D Agostino Giuseppe Alessandro Tran Hoang Dai 20 grudnya 2019 Potassium channel dysfunction in human neuronal models of Angelman syndrome Science angl T 366 6472 s 1486 1492 doi 10 1126 science aav5386 Blair John D Hockemeyer Dirk Bateup Helen S 2018 10 Genetically engineered human cortical spheroid models of tuberous sclerosis Nature Medicine angl T 24 10 s 1568 1578 doi 10 1038 s41591 018 0139 y Eichmuller Oliver L Corsini Nina S Vertesy Abel Morassut Ilaria Scholl Theresa Gruber Victoria Elisabeth Peer Angela M Chu Julia Novatchkova Maria 28 sichnya 2022 Amplification of human interneuron progenitors promotes brain tumors and neurological defects Science angl T 375 6579 doi 10 1126 science abf5546 Xu Jie Wen Zhexing 10 veresnya 2021 Brain Organoids Studying Human Brain Development and Diseases in a Dish Stem Cells International angl T 2021 s e5902824 doi 10 1155 2021 5902824 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Kim Soo hyun Chang Mi Yoon 2023 01 Application of Human Brain Organoids Opportunities and Challenges in Modeling Human Brain Development and Neurodevelopmental Diseases International Journal of Molecular Sciences angl T 24 15 s 12528 doi 10 3390 ijms241512528 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Park Jong Chan Jang So Yeong Lee Dongjoon Lee Jeongha Kang Uiryong Chang Hongjun Kim Haeng Jun Han Sun Ho Seo Jinsoo 12 sichnya 2021 A logical network based drug screening platform for Alzheimer s disease representing pathological features of human brain organoids Nature Communications angl T 12 1 s 280 doi 10 1038 s41467 020 20440 5 Venkataraman Lalitha Fair Summer R McElroy Craig A Hester Mark E Fu Hongjun 1 lyutogo 2022 Modeling neurodegenerative diseases with cerebral organoids and other three dimensional culture systems focus on Alzheimer s disease Stem Cell Reviews and Reports angl T 18 2 s 696 717 doi 10 1007 s12015 020 10068 9 Sreenivasamurthy Sai Laul Mahek Zhao Nan Kim Tiffany Zhu Donghui 2023 03 Current progress of cerebral organoids for modeling Alzheimer s disease origins and mechanisms Bioengineering amp Translational Medicine angl T 8 2 doi 10 1002 btm2 10378 Cerneckis Jonas Bu Guojun Shi Yanhong 2023 08 Pushing the boundaries of brain organoids to study Alzheimer s disease Trends in Molecular Medicine T 29 8 s 659 672 doi 10 1016 j molmed 2023 05 007 Lavekar Sailee S Harkin Jade Hernandez Melody Gomes Catia Patil Shruti Huang Kang Chieh Puntambekar Shweta S Lamb Bruce T Meyer Jason S 24 serpnya 2023 Development of a three dimensional organoid model to explore early retinal phenotypes associated with Alzheimer s disease Scientific Reports angl T 13 1 s 13827 doi 10 1038 s41598 023 40382 4 Wulansari Noviana Darsono Wahyu Handoko Wibowo Woo Hye Ji Chang Mi Yoon Kim Jinil Bae Eun Jin Sun Woong Lee Ju Hyun Cho Il Joo 19 lyutogo 2021 Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson s disease linked DNAJC6 mutations Science Advances angl T 7 8 doi 10 1126 sciadv abb1540 Smits Lisa M Reinhardt Lydia Reinhardt Peter Glatza Michael Monzel Anna S Stanslowsky Nancy Rosato Siri Marcelo D Zanon Alessandra Antony Paul M 5 kvitnya 2019 Modeling Parkinson s disease in midbrain like organoids npj Parkinson s Disease angl T 5 1 s 1 8 doi 10 1038 s41531 019 0078 4 McComish Sarah F MacMahon Copas Adina N Caldwell Maeve A 2022 Human Brain Based Models Provide a Powerful Tool for the Advancement of Parkinson s Disease Research and Therapeutic Development Frontiers in Neuroscience T 16 doi 10 3389 fnins 2022 851058 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Pereira Joao D DuBreuil Daniel M Devlin Anna Claire Held Aaron Sapir Yechiam Berezovski Eugene Hawrot James Dorfman Katherine Chander Vignesh 6 serpnya 2021 Human sensorimotor organoids derived from healthy and amyotrophic lateral sclerosis stem cells form neuromuscular junctions Nature Communications angl T 12 1 s 4744 doi 10 1038 s41467 021 24776 4 Szebenyi Kornelia Wenger Lea M D Sun Yu Dunn Alexander W E Limegrover Colleen A Gibbons George M Conci Elena Paulsen Ole Mierau Susanna B 2021 11 Human ALS FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology Nature Neuroscience angl T 24 11 s 1542 1554 doi 10 1038 s41593 021 00923 4 Chen Eric Daviaud Nicolas Sadiq Saud 13 kvitnya 2021 Effect of multiple sclerosis patient genetic background on cerebral organoid cell populations 4296 Neurology angl T 96 15 Supplement Daviaud Nicolas Chen Eric Edwards Tara Sadiq Saud A 6 bereznya 2023 Cerebral organoids in primary progressive multiple sclerosis reveal stem cell and oligodendrocyte differentiation defect Biology Open T 12 3 doi 10 1242 bio 059845 Conforti P Besusso D Bocchi V D Faedo A Cesana E Rossetti G Ranzani V Svendsen C N Thompson L M 23 sichnya 2018 Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes Proceedings of the National Academy of Sciences angl T 115 4 doi 10 1073 pnas 1715865115 Liu Chunyue Fu Zixing Wu Shanshan Wang Xiaosong Zhang Shengrong Chu Chu Hong Yuan Wu Wenbo Chen Shengqi 7 lipnya 2022 Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Huntington s disease EMBO Molecular Medicine angl T 14 7 Conner LT Srinageshwar B Bakke JL Dunbar GL Rossignol J 1 lipnya 2023 Advances in stem cell and other therapies for Huntington s disease An update Brain Research Bulletin T 199 s 110673 doi 10 1016 j brainresbull 2023 110673 Groveman Bradley R Ferreira Natalia C Foliaki Simote T Walters Ryan O Winkler Clayton W Race Brent Hughson Andrew G Zanusso Gianluigi Haigh Cathryn L 9 bereznya 2021 Human cerebral organoids as a therapeutic drug screening model for Creutzfeldt Jakob disease Scientific Reports angl T 11 1 s 5165 doi 10 1038 s41598 021 84689 6 Pellegrini Laura Lancaster Madeline A 2021 08 Modeling neurodegeneration with mutant tau organoids Cell T 184 17 s 4377 4379 doi 10 1016 j cell 2021 07 031 Wang Qinying Dong Xiaoxu Hu Tingting Qu Chao Lu Jing Zhou Yue Li Jinsong Pei Gang 2021 01 Constitutive Activity of Serotonin Receptor 6 Regulates Human Cerebral Organoids Formation and Depression like Behaviors Stem Cell Reports T 16 1 s 75 88 doi 10 1016 j stemcr 2020 11 015 Lu Kaiqin Hong Yuan Tao Mengdan Shen Luping Zheng Zhilong Fang Kaiheng Yuan Fang Xu Min Wang Chun 11 sichnya 2023 Depressive patient derived GABA interneurons reveal abnormal neural activity associated with HTR2C EMBO Molecular Medicine angl T 15 1 doi 10 15252 emmm 202216364 Kathuria Annie Lopez Lengowski Kara Jagtap Smita S McPhie Donna Perlis Roy H Cohen Bruce M Karmacharya Rakesh 1 lipnya 2020 Transcriptomic Landscape and Functional Characterization of Induced Pluripotent Stem Cell Derived Cerebral Organoids in Schizophrenia JAMA Psychiatry angl T 77 7 s 745 doi 10 1001 jamapsychiatry 2020 0196 Notaras Michael Lodhi Aiman Dundar Friederike Collier Paul Sayles Nicole M Tilgner Hagen Greening David Colak Dilek 2022 03 Schizophrenia is defined by cell specific neuropathology and multiple neurodevelopmental mechanisms in patient derived cerebral organoids Molecular Psychiatry angl T 27 3 s 1416 1434 doi 10 1038 s41380 021 01316 6 Kathuria Annie Lopez Lengowski Kara Vater Magdalena McPhie Donna Cohen Bruce M Karmacharya Rakesh 19 kvitnya 2020 Transcriptome analysis and functional characterization of cerebral organoids in bipolar disorder Genome Medicine T 12 1 s 34 doi 10 1186 s13073 020 00733 6 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Hewitt Tristen Alural Begum Tilak Manali Wang Jennifer Becke Natalina Chartley Ellis Perreault Melissa Haggarty Stephen J Sheridan Steven D 4 lipnya 2023 Bipolar disorder iPSC derived neural progenitor cells exhibit dysregulation of store operated Ca2 entry and accelerated differentiation Molecular Psychiatry angl s 1 14 doi 10 1038 s41380 023 02152 6 Dixon Thomas Anthony Muotri Alysson R 2023 01 Advancing preclinical models of psychiatric disorders with human brain organoid cultures Molecular Psychiatry angl T 28 1 s 83 95