Зорова кора — частина кори головного мозку, яка відіграє важливу роль в обробці візуальної інформації. Вона розташована в потиличній частці, в задній частині черепа.
Зорова кора | |
---|---|
Головний мозок людини. Вигляд ззаду. Червоним позначено Поле Бродмана 17 (первинну зорову кору), помаранчевим - Поле Бродмана 18 і жовтим - 'Поле Бродмана 19 | |
Деталі | |
Ідентифікатори | |
Латина | Cortex visualis |
MeSH | D014793 |
ID | nlx_143552 |
FMA | 242644 |
Анатомічна термінологія [редагувати у Вікіданих] |
Візуальна інформація, яка надходить від очей, проходить через бічні колінчасті ядра таламусу, а потім досягає зорової кори. Частина зорової кори, яка отримує сенсорні входи від таламуса називається первинною зоровою корою, або першою візуальною зоною (V1) (відповідає Полю Бродмана 17), і екстрастріарної кори, яка складається з зорових областей другої (V2), третьої (V3), четвертої (V4), і п'ятої (V5) й відповідає полям Бродмана 18 і 19.
Обидві півкулі мозку містять зорову кору. Зорова кора лівої півкулі отримує сигнали від правого зорового поля, а зорова кора в правій півкулі отримує сигнал від лівого поля зору.
Введення
Первинна зорова кора (V1) знаходиться в шпорній борозні та і навколо неї, в потиличній частці. В кожній півкулі V1 отримує інформацію безпосередньо від іпсілатерального латерального колінчатого тіла , яке, в свою чергу, отримує сигнали від контрлатеральної половини поля зору.
Нейрони в зоровій корі генерують потенціали дії, коли візуальні стимули з'являються в їхньому рецептивному полі. За визначенням, рецептивне поле — це ділянка в межах поля зору, що викликає потенціал дії. Прийняті моделі нейронних налаштувань дозволяють припустити, що нейрони реагують відповідно до різних ступенів схожості між оптимальним подразником нейрона і даним стимулом. Це властивість називається нейрональним т'юнінгом. В ранніх зорових зонах нейрони мають простіші налаштування. Наприклад, нейрон в V1 може спрацювати на будь-який вертикальний стимул у його рецептивному полі. У вищих зорових зонах нейрони мають складніші налаштування. Наприклад, в нижній скроневої корі нейрон може спрацювати лише тоді, коли певне обличчя з'являється в його рецептивному полі.
Зорова кора отримує кровопостачання, насамперед, від шпорної гілки задньої мозкової артерії.
- На малюнку: Right Visual Field - праве зорове поле; Left Visual Field - ліве зорове поле; Right Eye - праве око; Left Eye - ліве око; Optic Nerve - оптичний нерв; Optic Chiasm - зорова хіазма; Lateral Geniculate Nucleus - бічне колінчасте ядро; Primary Visual Cortex - первинна зорова кора; Brain - мозок.
- Поле Бродмана 17
- Поле Бродмана 18
- Поле Бродмана 19
Сучасні дослідження
Дослідження первинної зорової кори може включати в себе запис потенціалів дії від електродів у мозку котів, тхорів, щурів, мишей або мавп, або через запис вбудованих оптичних сигналів від тварин або ЕЕГ, МЕГ, або фМРТ сигнали від поля V1 людини чи мавпи .
Одним з недавніх відкриттів у відношенні зони V1 людини є те, що сигнали, виміряні за допомогою фМРТ показують дуже велику «увагову модуляцію» — зміну сигналу відповідно до уваги, сконцентрованої на подразнику. Цей результат узгоджується з іншим недавнім електрофізіологічним дослідженням, яке показало, що, хоча V1 обробляє візуальну інформацію перед V2 і V4, увагова модуляція відбувається в V4 далі — V2 і потім, нарешті, в V1. Це може означати, що увагова модуляція відбувається за рахунок зворотного зв'язку від вищих зорових областей до нижчого рівня зорових областей Інші поточні дослідження зони V1 мають на меті повністю схарактеризувати його властивості підлаштовування, щоби використовувати цю ділянку як модель «канонічного» кортикального ланцюжка.
Пошкодження первинної зорової кори, як правило, призводять до скотоми, або «дірки» полі зору. Цікаво, що у пацієнти зі скотомами нерідко в змозі використовувати візуальноу інформацію, представлену в їхніх скотомах, але в змозі свідомо сприймати його. Це явище було частково описане в аспекті того, що Ларі Вайскранц (Larry Weiskrantz) з Оксфордського університету назвав «сліпим зором», і широко вивчається іншими вченими в дослідженнях свідомості.
Психологічна модель нейронної обробки візуальної інформації
Вентрально-дорсальна модель
- Вентральний потік починається з V1, йде через зорові зони V2, потім через зорові зони V4 і далі, до нижньої скроневої кори. Його ще іноді називають «Що-шлях», він пов'язаний з розпізнаванням форми та визнанням об'єктів. Він також пов'язаний зі сховищем довготривалої пам'яті.
- Дорзальний потік починається з V1, йде через зорову зону V2, потім прямує до дорзомедіальної зони V6 і середньоскроневої зони V5 і далі до задньотім'яної кори. Дорзальний потік, «Де-шлях» або «Як-шлях», пов'язаний з рухом, місцезнаходженням об'єкта, контролем ока і руки, особливо, коли візуальна інформація використовується для орієнтації саккад (узгоджених рухів очей для розпізнавання об'єкту, обличчя людини) чи досягнення об'єкту рукою.
«Що-» і «де-» функції вентрального й дорзального шляхів були вперше описані Унгерлайдером і Мішкіним (Ungerleider and Mishkin)
Ще зовсім недавно, Гудейл (Goodale) і Мілнер (Milner) висловили ці ідеї й припустили, що вентральний потік має вирішальне значення для візуального сприйняття, тоді як дорсальний потік опосередковує візуальний контроль відпрацьованих дій.Було показано, що зорові ілюзії, такі як ілюзія Еббінгауза (англ. Ebbinghaus illusion) спотворюють уявлення перцептивної природи, але, коли випробуваний відповідає дією, наприклад, хапанням, ніякого спотворення не відбувається.
В одному з досліджень (Scharnowski і Gegenfurtner) припускається, що і система дії, й система сприйняття однаково піддаються таким ілюзіям. Інші дослідження, тим не менш, більше підтримують ідею, що на такі відпрацьовані дії, такі як хапання не впливають ілюзіїі зазначають, що дисоціації дії/сприйняття є корисним прикладом, для описання функціонального розподілу праці між дорсальним і вентральним зоровими шляхами в корі головного мозку.
Первинна зорова кора (V1)
Первинна зорова кора — найкраще вивчена зорова зона в мозку У всіх досліджених ссавців, вона знаходиться у задньому полюсі потиличної частки. Це найпростіша, найбільш рання кіркова зорова зона, спеціалізована для обробки інформації про статичні й рухомі об'єкти, й для розпізнавання самих об'єктів
Функціонально визначена зона первинної зорової кори приблизно відповідає анатомічно визначеній смугастій (стріарній) корі. Назва « смугаста кора» походить від лінії Геннарі, смуги, яка видна неозброєним оком що являє собою мієлінізовані аксони з бічного колінчатого ядра, які закінчуються в шарі IV сірої речовини.
Первинна зорова кора складається із шести функціонально різних шарів, пронумерованих від 1 до 6. Середнє число нейронів, які містяться в первинній зоровій корі дорослої людини, у кожній півкулі, оцінюється в розмірі близько 140 мільйонів.
Функція
V1 має дуже чітко визначені карти просторової інформації. Наприклад, у людини, верхній край шпорної борозни сильно реагує на інформацію з нижньої половині поля зору (нижче центру), а нижній край шпорної борозни — на інформацію з верхньої половини поля зору. Так відбувається трансформація візуального образу від сітківки до V1. Відповідність між цим об'єктом у V1 і в суб'єктивному полі зору дуже точне: навіть сліпі плями відображаються в V1. З точки зору еволюції, ця передача зображення — базова і є у більшості тварин, які мають V1. У людини і тварин з центральною ямкою в сітківці, більша частина V1 відображає невелику центральну ділянку поля зору. Це явище знане як кортикальне збільшення (англ. cortical magnification) . Можливо, з метою точного просторового відображення, нейрони в V1 мають найменший розмір рецептивного поля з усіх ділянок зорової кори.
Властивості V1 нейронів та їхнє реагування значно відрізнятися з плином часу. На початку часу (40 ms і далі) окремі нейрони V1 добре підлаштовані до невеликого набору подразників. Тобто, нейронні реакції можуть розрізняти невеликі зміни візуальної орієнтації, просторової частоти і кольору. Крім того, окремі V1 нейрони людини й тварин з бінокулярним зором мають монокулярне домінування, тобто, налаштування на одне з двох очей. У V1 і первинної сенсорної кори в цілому, нейрони з таким характерним налаштуванням мають тенденцію групуватися разом, в кортикальні колонки. Девід Хьюбел і Торстен Візел запропонували класичну модель організації кортикальної колонки у вигляді «кубику льоду» для пояснення двох властивостей такого налаштування: [en] й [en]. Однак ця модель не може вмістити кольору, просторової частоти і багатьох інших функцій, до яких налаштовані нейрони . Точна модель організації всіх цих кортикальних колонок в V1 залишається актуальною темою сучасних досліджень. Математичне моделювання цієї функції було зроблено на основі моделі перетворення Гарбора (англ. Gabor transforms).
Візуальна інформація ретранслюється на V1 не закодовано у термінах просторових (або оптичних) зображень, а, швидше, у вигляді контурів. Як приклад, для зображень, що скомпоновані з чорної й білої половин, розділова межа між чорним та білим являє собою сильний локальний контраст і кодується, в той самий час, поки декілька нейронів кодують інформацію про яскравість (як чорного, так і білого кольору). Інформація додатково передаються на наступні зорові ділянки. Функціональні моделі простих клітин в V1 було встановлено Ліндебергом (Lindeberg) та іншими вченими
Розбіжності в розмірах V1 також впливають на індивідуальне сприйняття й ілюзії
V2
Зорова зона V2, або вторинна зорова кора, яка ще називається престріарною або предсмугастою корою - друга за значенням ділянкою в зоровій корі, і першою ділянкою в полі візуальних асоціацій. Вона має потужні прямі зв'язки з V1 (прямі й через подушку зорового бугра) і спрямовує волокна до V3, V4 і V5. Зона також має міцний зворотний зв'язок з V1.
З точки зору анатомії, V2 поділяється на чотири квадранти — дорсальне і вентральне представництво в лівій і правій півкулі. Разом, ці чотири регіони забезпечують повну карту візуального світу. V2 має багато спільних з V1 властивостей: клітини налаштовані на прості властивості, такі як орієнтація, просторова частота і колір. Відповіді на багатьох нейронів V2 також модулюються складнішими феноменами, такими як ілюзорні контури, бінокулярна невідповідність, в залежності від того стимул є частиною малюнка чи частиною тла. недавні дослідження показали, що для клітин зони V2 вплив уваги (увагова модуляція) невеликий. Він більший ніж в зоні V1, але менший, ніж у зоні V4. При цьому клітини налаштовані на помірно складні патерни й можуть бути керовані множинними установками в різних субрегіонах одного рецептивного поля. Дослідники стверджують, що весь вентральний зорово-гіпокампальний потік важливий для зорової пам'яті.ця теорія, на відміну від домінуючої, стверджує, що зміни об'єктно-розпізнавальної пам'яті (ОРП) можуть стати результатом внутрішніх процесів у зоні V2, яка має тісні взаємозв'язки в межах вентрального потоку зорової кори. В мозку мавпи, ця ділянка має сильні прямі з'єднання з первинною зоровою корою (V1) і посилає імпульси на інші вторинні ділянки зорової кори (V3, V4 і V5).
У недавньому дослідженні, шар 6 клітин кори V2, як виявилося, грає дуже важливу роль у зберіганні розпізнаного об'єкту пам'яті, а також перетворення об'єкту короткострокової спогадів в об'єкт довгострокової пам'яті.
Третя зорова кора, включно з V3
Термін третій візуальний комплекс стосується області кори, розташованої безпосередньо перед V2, і який включає в області візуальної зони V3 в мозку людини. «Ускладнена» номенклатура обумовлена тим, що деякі розбіжності відносно точних розмірів зони V3 все ще існують деякі дослідники, припускаючи, що ділянка кори, розташована в передній частині V2, може включати в себе два або три функціональних підрозділи. Наприклад, Девід Ван Ессен (David Van Essen) та інші (1986) запропонували існування «дорзальної V3» у верхній частині мозкового півкулі, яка відрізняється від «вентральної V3» , розташованої в нижній частині мозку. Дорзальна й вентральна V3 мають чіткі зв'язки з іншими частинами мозку, з'являються в різних зрізах, забарвлених різними барвниками за різними методиками й містять нейрони, які реагують на різні комбінації візуальних стимулів (наприклад, кольорово-селективні нейрони, більш поширені у вентральній V3). В мозку людини були виділені також додаткові підрозділи, в тому числі V3A і V3B. Ці підрозділи знаходяться поруч з вентральною V3, але не прилягають до V2. Дорзальна V3, яка зазвичай розглядається як частина дорзального потоку, отримує входи від V2 і від первинної зорової кори й сама проєктує інформацію до задньої тім'яної кори. Це може бути анатомічно розташовані в полі Бродмана 19. Braddick, використовуючи фМРТ припустив, що зона V3/V3A може грати роль у загальному сприйнятті руху інші дослідження воліють розглядати дорзальну V3 як частину більш великої дорзомедіальної зони (ДМ), який містить представництво всього поля зору. Нейрони в області ДМ реагують на когерентний рух великих об'єктів, що охоплюють значні частини поля зору (Lui і співавтори, 2006).
Вентральна V3, має набагато слабші з'єднання з первинною зоровою зоною, і тісніші зв'язки з нижньою скроневою корою. У той час як у більш ранніх дослідженнях стверджувалося, що у V3 міститься інформація тільки з верхньої частини поля зору (вище точки фіксації), пізніші роботи показали, що ця область ширша і, як в інших зорових зонах, у ній може міститися повне візуальне подання
V4
Зорова зона V4 — одна із зорових зон в екстрастріарній зоровій корі. У макак, вона розташована спереду від V2 і ззаду від задньотім'яної ділянки. Зона включає як мінімум чотири ділянки (ліва й права V4d, ліва й права V4v), а деякі дослідники зазначають, що V4 містить також ростральні і каудальні підрозділи. Невідомо достеменно, чи існує гомологічна до V4 ділянка в мозку людини, і це питання на даний час — предмет пильної уваги.
Більшість досліджень вказують на те, що вибіркова увага може змінити показники імпульсації в V4 приблизно на 20 %..
Середньотім'яна зорова зона (V5)
Середньотім'яна зорова зона (МТ або V5)- це ділянка екстрастріарної зорової кори. У декількох видів широконосих мавп і мавп Старого Світу МТ зона містить високу кількість напрямок-селективних нейронів. МТ приматів відіграє основну роль у сприйнятті руху, інтеграції локальних рухових сигналів у глобальне сприйняття, й керуванні рухом очей
Зв'язки
МТ під'єднана до широкого спектра кортикальних і підкіркових областей головного мозку. Імпульси до цієї зони надходять із візуальних областей кори головного мозку V1, V2 і V3 (дорсомедиальнї зони), кіноцелюлярних зон, і нижньої подушки зорового бугра. Патерн проєкції на МТ робить зміни в сприйнятті центрального і периферичного поля зору.
Стандартним є уявлення про те, що V1 є «найбільш важливим» входом у MT Однак, кілька досліджень показали, що нейрони в МТ здатні реагувати на візуальну інформацію, часто в напрям-селективному режимі, навіть після знищення або інактивації V1. крім того, дослідження Семіра Зекі (Semir Zeki) й співавторів показали, що певні типи візуальної інформації можуть досягати МТ ще до того, як потраплять до V1.
МТ відправляє свої основні імпульси до ділянок розташованих в корі головного мозку, які безпосередньо оточують його, в тому числі в районах FST, MST, і V4t . Інші виходи з МТ прямують до зон руху очей в лобовій та тім'яній частках.
Функція
Перші дослідження електрофізіологічних властивостей нейронів в зоні МТ показали, що велика частина її клітин налаштовані на швидкість і напрям руху зорових стимулів.
Дослідження з пошкодженням також підтвердили роль МТ в сприйнятті рухів і рухах очей. Нейропсихологічні дослідження пацієнта, який не в змозі побачити рух, який дивиться на світ як на серію статичних кадрів, привели до думки, що зона V5 у приматів гомологічна МТ у людини.
Однак, оскільки нейрони в V1, також налаштовані на напрям і швидкість руху, ці ранні результати залишають відкритим питання про те, що саме МТ може такого зробити, що не зможе зробити V1. Вчені проробили великий обсяг роботи в дослідженні цієї ділянки, аж допоки стало зрозуміло, що саме тут відбувається інтеграція локальних візуальних сигналів руху в глобальні рухи складних об'єктів. Наприклад, пошкодження V5 веде до появи дефіциту в сприйнятті руху і обробки складних подразників. V5 містить багато нейронів, які вибірково обробляють рух складних візуальних об'єктів (кінці ліній, кутів). Мікрополяризація нейрона, розташованого в V5 впливає на сприйняття руху.
Є ще багато суперечок з приводу точної форми обробки інформації в зоні МТ і деякі дослідження показують, що сприйняття руху, по суті, вже існує на нижчих рівнях зорової системи, таких як V1.
Функціональна організація
Було доведено, що нейрони в МТ організовані в правильні стовпчики. DeAngelis стверджував, що в МТ нейрони також організовані на основі їх бінокулярної диспаратності (невідповідності).
V6
Дорсомедиальна зона (ДМ), також знана як зона V6, вбачається, що реагує на візуальні стимули, пов'язані з власним рухом і ширококутніми (в полі зору) об'єктами. V6, як структурний підрозділ зорової кори приматів, уперше описав Джон Оллман і Джон Каас (John Allman and Jon Kaas) у 1975 році.V6 знаходиться у дорзальній частині екстрастріарної кори, поруч з поздовжньою щілиною великого мозку (лат. fissura longitudinalis medialis), і, як правило, також включає в себе частини медіальної кори, такі, як тім'яно-потилична борозна.
Протягом багатьох років вважалося, що ДМ існує тільки у широконосих мавп (мавп Нового Світу). Однак пізніші дослідження показали, що ДМ існує і в мавп Старого Світу і, можливо, у людей. V6 також іноді називають тім'яно-потиличною зоною , хоча відповідність не точна.
Властивості
Нейрони в зоні ДМ/V6 нічної мавпи і ігрунки звичайної мають унікальні властивості реагування, такі як надзвичайно висока вибірковість до орієнтації візуальних контурів, і перевагу довгих, безперервних ліній, що охоплюють значні частини поля зору
Проте, в порівнянні з зоною MT, значно менша частка клітин ДМ показує вибіркову відповідь на напрямок руху візуальних образів. Ще однією помітною різницею з МТ є те, що клітини в ДМ налаштовані на низькі просторові частоти зображення й погано реагують на рухи фактурних об'єктів, таких як поле випадкових точок. Ці реакції припускають, що ДМ і МТ можуть працювати паралельно: перша — аналізуючи власний рух по відношенню до навколишнього середовища, а друга — аналізуючи рухи окремих об'єктів щодо тла.
Нещодавно зона, яка реагує на ширококутні зорові поля, була визначена у людини, і вважається, що вона гомологічна зоні V6 макаки.
Шляхи
Зв'язки та властивості реагування клітин в DM / V6 дозволяють припустити, що ця область є ключовою в складі дорзального потоку, названого деякими дослідниками «дорсомедиальним шляхом». Цей шлях, ймовірно, важливий для контролю скелетомоторної активності, в тому числі постуральних реакцій і рухів, спрямованих на «досягання об'єктів» Ця зона має відносно прямі зв'язки з регіонами лобової частки, що контролюють рухи руки, в тому числі і з премоторною корою (частиною поля Бродмана 6).
Див. також
Примітки
- Mather, George. . School of Life Sciences: University of Sussex (English) . University of Sussex. Архів оригіналу за 3 лютого 2017. Процитовано 6 березня 2017.
- Buffalo, E.A., Fries, P., Landman, R., Liang, H., and Desimone, R. (2010). A backward progression of attentional effects in the ventral stream. Proceedings for the National Academy of Sciences. 107(1), 361—365.
- Ungerleider LG, Mishkin M (1982). Two Cortical Visual Systems. У Ingle DJ, Goodale MA, Mansfield RJ (ред.). Analysis of Visual Behavior. Boston: MIT Press. с. 549—586.
- Goodale MA, Milner AD (1992). Separate pathways for perception and action. Trends in Neuroscience. 15 (1): 20—25. doi:10.1016/0166-2236(92)90344-8. PMID 1374953.
- Aglioti S, DeSouza JF, Goodale MA (1995). Size-contrast illusions deceive the eye but not the hand. Curr. Biol. 5 (6): 679—85. doi:10.1016/S0960-9822(95)00133-3. PMID 7552179.
- Franz VH, Scharnowski F, Gegenfurtner (2005). Illusion effects on grasping are temporally constant not dynamic. J Exp Psychol Hum Percept Perform. 31 (6): 1359—78. doi:10.1037/0096-1523.31.6.1359. PMID 16366795.
- Ganel T, Goodale MA (2003). Visual control of action but not perception requires analytical processing of object shape. Nature. 426 (6967): 664—7. doi:10.1038/nature02156. PMID 14668865.
- Ganel T, Tanzer M, Goodale MA (2008). A double dissociation between action and perception in the context of visual illusions: opposite effects of real and illusory size. Psych. Sci. 19 (3): 221—5. doi:10.1111/j.1467-9280.2008.02071.x. PMID 18315792.
- Goodale MA. (2011). Transforming vision into action. Vision Res. 51 (14): 1567—87. doi:10.1016/j.visres.2010.07.027. PMID 20691202.
- Glickstein M., Rizzolatti G. Francesco Gennari and the structure of the cerebral cortex Trends in Neurosciences, Volume 7, Issue 12, 464—467, 1 December 1984.
- Leuba G; Kraftsik R (1994). Changes in volume, surface estimate, three-dimensional shape and total number of neurons of the human primary visual cortex from midgestation until old age. Anatomy and Embryology. 190 (4): 351—366. doi:10.1007/BF00187293. PMID 7840422.
- Barghout, Lauren (1999). On the Differences Between Peripheral and Foveal Pattern Masking. Berkeley, California, U.S.A.: Masters Thesis. U.C. Berkeley.
- Barghout, Lauren (2003). . Scholar's Press. ISBN . Архів оригіналу за 18 листопада 2016. Процитовано 17 березня 2017.
- Lindeberg, T. A computational theory of visual receptive fields. Biological Cybernetics. 107 (6): 589—635. doi:10.1007/s00422-013-0569-z.
- Lindeberg, T. . Journal of Mathematical Imaging and Vision. 55 (1): 50—88. doi:10.1007/s10851-015-0613-9. Архів оригіналу за 18 березня 2017. Процитовано 17 березня 2017.
- DeAngelis, G. C.; Ohzawa, I.; Freeman, R. D. (1995). Receptive field dynamics in the central visual pathways. Trends Neurosci. 18 (10): 451—457. doi:10.1016/0166-2236(95)94496-r. PMID 8545912.
- G. C. DeAngelis and A. Anzai "A modern view of the classical receptive field: linear and non-linear spatio-temporal processing by V1 neurons. In: Chalupa, L.M., Werner, J.S. (eds.) The Visual Neurosciences, vol. 1, pp. 704—719. MIT Press, Cambridge, 2004.
- Lindeberg, T. Invariance of visual operations at the level of receptive fields. PLOS ONE. 8 (7): e66990. doi:10.1371/journal.pone.0066990.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Schwarzkopf, D Samuel (2011). . Nature Neuroscience. 14 (1): 28—30. doi:10.1038/nn.2706. PMC 3012031. PMID 21131954. Архів оригіналу за 1 вересня 2011. Процитовано 17 березня 2017.
- Gazzaniga, Ivry & Mangun: Cognitive neuroscience, 2002
- von der Heydt, R; Peterhans, E; Baumgartner, G (1984). Illusory contours and cortical neuron responses. Science. 224: 1260—62. doi:10.1126/science.6539501. PMID 6539501.
- Anzai, A; Peng, X; Van Essen, D. C (2007). Neurons in monkey visual area V2 encode combinations of orientations. Nature Neuroscience. 10 (10): 1313—21. doi:10.1038/nn1975. PMID 17873872.
- von der Heydt, R; Zhou, H; Friedman, H. S (2000). Representation of stereoscopic edges in monkey visual cortex. Vision Research. 40: 1955—67. doi:10.1016/s0042-6989(00)00044-4.
- Qiu, F. T; von der Heydt, R (2005). Figure and ground in the visual cortex: V2 combines stereoscopic cues with Gestalt rules. Neuron. 47: 155—66. doi:10.1016/j.neuron.2005.05.028.
- Maruko, I; et alt. (2008). Postnatal Development of Disparity Sensitivity in Visual Area 2 (V2) of Macaque Monkeys. Journal of Neurophysiology. 100 (5): 2486—2495. doi:10.1152/jn.90397.2008.
- Bussey, T J; Saksida, L. M (2007). Memory, perception, and the ventral visual-perirhinal-hippocampal stream: thinking outside of the boxes. Hippocampus. 17 (9): 898—908. doi:10.1002/hipo.20320. PMID 17636546.
- Stepniewska, I; Kaas, J. H. (1996). Topographic patterns of V2 cortical connections in macaque monkeys. The Journal of Comparative Neurology. 371 (1): 129—152. doi:10.1002/(SICI)1096-9861(19960715)371:1<129::AID-CNE8>3.0.CO;2-5. PMID 8835723.
- Gattas, R; Sousa, A. P; Mishkin, M; Ungerleider, L. G. (1997). Cortical projections of area V2 in the macaque. Cerebral Cortex. 7 (2): 110—129. doi:10.1093/cercor/7.2.110.
- Hegdé, Jay; Van Essen, D. C (2000). . The Journal of Neuroscience. 20. Архів оригіналу за 24 жовтня 2016. Процитовано 17 березня 2017.
- Hegdé, Jay; Van Essen, D. C (2004). Temporal dynamics of shape analysis in Macaque visual area V2. Journal of Psychology. 92 (5): 3030—3042. doi:10.1152/jn.00822.2003.
- López-Aranda et alt. (2009). Role of Layer 6 of V2 Visual Cortex in Object Recognition Memory. Science. 325 (5936): 87—89. doi:10.1126/science.1170869. PMID 19574389.
- Braddick, OJ, O'Brien, JM та ін. (2001). Brain areas sensitive to coherent visual motion. Perception. 30 (1): 61—72. doi:10.1068/p3048. PMID 11257978.
- Rosa, MG; Tweedale, R (2000). Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey. J Comp Neurol. 422 (4): 621—51. doi:10.1002/1096-9861(20000710)422:4<621::AID-CNE10>3.0.CO;2-E. PMID 10861530.
- Goddard E; Goddard, Erin; McDonald, J. S.; Solomon, S. G.; Clifford, C. W. G. (2011). Color responsiveness argues against a dorsal component of human V4. Journal of Vision. 11 (4): 3. doi:10.1167/11.4.3. PMID 21467155.
- http://www.sciencemag.org/cgi/content/abstract/229/4715/782)
- Moran, J; Desimone, R (1985). Selective Attention Gates Visual Processing in the Extrastriate Cortex. Science. 229 (4715): 782—4. doi:10.1126/science.4023713. PMID 4023713.
- Born R, Bradley D (2005). Structure and function of visual area MT. Annu Rev Neurosci. 28: 157—89. doi:10.1146/annurev.neuro.26.041002.131052. PMID 16022593.
- Felleman D, Van Essen D (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1 (1): 1—47. doi:10.1093/cercor/1.1.1-a. PMID 1822724.
- Ungerleider L, Desimone R (1986). Cortical connections of visual area MT in the macaque. J Comp Neurol. 248 (2): 190—222. doi:10.1002/cne.902480204. PMID 3722458.
- Sincich L, Park K, Wohlgemuth M, Horton J (2004). Bypassing V1: a direct geniculate input to area MT. Nat Neurosci. 7 (10): 1123—8. doi:10.1038/nn1318. PMID 15378066.
- Warner CE, Goldshmit Y, Bourne JA (2010). Retinal afferents synapse with relay cells targeting the middle temporal area in the pulvinar and lateral geniculate nuclei. Front Neuroanat. 4: 8. doi:10.3389/neuro.05.008.2010. PMC 2826187. PMID 20179789.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Palmer SM, Rosa MG (2006). A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci. 24 (8): 2389—405. doi:10.1111/j.1460-9568.2006.05113.x. PMID 17042793.
- Rodman, HR; Gross, CG; Albright, TD (1989). Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. J Neurosci. 9 (6): 2033—50. PMID 2723765.
- Dubner R, Zeki S (1971). Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res. 35 (2): 528—32. doi:10.1016/0006-8993(71)90494-X. PMID 5002708..
- Maunsell J, Van Essen D (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol. 49 (5): 1127—47. PMID 6864242.
- Dursteler M.R.; Wurtz R.H.; Newsome W.T. (1987). Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. Journal of Neurophysiology. 57 (5): 1262—87. PMID 3585468.
- Hess R.H.; Baker C.L.; Zihl J. (1989). The 'motion-blind' patient: low-level spatial and temporal filters. Journal of Neuroscience. 9 (5): 1628—40. PMID 2723744.
- Baker C.L. Jr; Hess R.F; Zihl J. (1991). Residual motion perception in a 'motion-blind' patient, assessed with limited-lifetime random dot stimuli. Journal of Neuroscience. 11 (2): 454—61. PMID 1992012.
- Movshon, J.A., Adelson, E.H., Gizzi, M.S., & Newsome, W.T. (1985). The analysis of moving visual patterns. In: C. Chagas, R. Gattass, & C. Gross (Eds.), Pattern recognition mechanisms (pp. 117—151), Rome: Vatican Press.
- Britten K.H.; van Wezel R.J. (1998). Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci. 1 (1): 59—63. doi:10.1038/259. PMID 10195110.
- Wilson, H.R.; Ferrera, V.P.; Yo, C. (1992). A psychophysically motivated model for two-dimensional motion perception. Vis Neurosci. 9 (1): 79—97. doi:10.1017/s0952523800006386.
- Tinsley, C.J., Webb, B.S., Barraclough, N.E., Vincent, C.J., Parker, A., & Derrington, A.M. (2003). The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey. J Neurophysiol. 90 (2): 930—7. doi:10.1152/jn.00708.2002. PMID 12711710.
- Pack C.C.; Born R.T.; Livingstone M.S. (2003). Two-dimensional substructure of stereo and motion interactions in macaque visual cortex. Neuron. 37 (3): 525—35. doi:10.1016/s0896-6273(02)01187-x. PMID 12575958.
- Albright T (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol. 52 (6): 1106—30. PMID 6520628.
- DeAngelis G, Newsome W (1999). Organization of disparity-selective neurons in macaque area MT. J Neurosci. 19 (4): 1398—415. PMID 9952417.
- Cardin, V; Smith, AT (2010). Sensitivity of human visual and vestibular cortical regions to stereoscopic depth gradients associated with self-motion. Cerebral Cortex. 20 (8): 1964—73. doi:10.1093/cercor/bhp268.
- Pitzalis et alt. (2006). Wide-Field Retinotopy Defines Human Cortical Visual Area V6. The Journal of Neuroscience. 26 (30): 7962—73. doi:10.1523/jneurosci.0178-06.2006. PMID 16870741.
- Allman JM, Kaas JH (1975). The dorsomedial cortical visual area: a third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). Brain Res. 100 (3): 473—487. doi:10.1016/0006-8993(75)90153-5.
- Galletti C та ін. (2005). The relationship between V6 and PO in macaque extrastriate cortex. Eur J Neurosci. 21: 959—970. doi:10.1111/j.1460-9568.2005.03911.x.
- Galletti C та ін. (2003). Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res. 153: 158—170. doi:10.1007/s00221-003-1589-z.
- Baker JF та ін. (1981). Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): a quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. J Neurophysiol. 45: 397—416.
- Lui LL та ін. (2006). Functional response properties of neurons in the dorsomedial visual area of New World monkeys (Callithrix jacchus). Cereb Cortex. 16 (2): 162—177. doi:10.1093/cercor/bhi094.
- Pitzalis, S., Sereno, M.I., Committeri, G., Fattori, P., Galati, G., Patria, F., & Galletti, C. (2010). Human v6: The medial motion area. Cereb Cortex. 20 (2): 411—424. doi:10.1093/cercor/bhp112.
Посилання
- Університет штата Юта
- at Гарвардський Університет
- Симулятор моделювання візуальних карт [ 9 січня 2014 у Wayback Machine.] На topographica.org
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Zorova kora chastina kori golovnogo mozku yaka vidigraye vazhlivu rol v obrobci vizualnoyi informaciyi Vona roztashovana v potilichnij chastci v zadnij chastini cherepa Zorova koraGolovnij mozok lyudini Viglyad zzadu Chervonim poznacheno Pole Brodmana 17 pervinnu zorovu koru pomaranchevim Pole Brodmana 18 i zhovtim Pole Brodmana 19DetaliIdentifikatoriLatina Cortex visualisMeSH D014793ID nlx 143552FMA 242644Anatomichna terminologiya redaguvati u Vikidanih Vizualna informaciya yaka nadhodit vid ochej prohodit cherez bichni kolinchasti yadra talamusu a potim dosyagaye zorovoyi kori Chastina zorovoyi kori yaka otrimuye sensorni vhodi vid talamusa nazivayetsya pervinnoyu zorovoyu koroyu abo pershoyu vizualnoyu zonoyu V1 vidpovidaye Polyu Brodmana 17 i ekstrastriarnoyi kori yaka skladayetsya z zorovih oblastej drugoyi V2 tretoyi V3 chetvertoyi V4 i p yatoyi V5 j vidpovidaye polyam Brodmana 18 i 19 Obidvi pivkuli mozku mistyat zorovu koru Zorova kora livoyi pivkuli otrimuye signali vid pravogo zorovogo polya a zorova kora v pravij pivkuli otrimuye signal vid livogo polya zoru VvedennyaPervinna zorova kora V1 znahoditsya v shpornij borozni ta i navkolo neyi v potilichnij chastci V kozhnij pivkuli V1 otrimuye informaciyu bezposeredno vid ipsilateralnogo lateralnogo kolinchatogo tila yake v svoyu chergu otrimuye signali vid kontrlateralnoyi polovini polya zoru Nejroni v zorovij kori generuyut potenciali diyi koli vizualni stimuli z yavlyayutsya v yihnomu receptivnomu poli Za viznachennyam receptivne pole ce dilyanka v mezhah polya zoru sho viklikaye potencial diyi Prijnyati modeli nejronnih nalashtuvan dozvolyayut pripustiti sho nejroni reaguyut vidpovidno do riznih stupeniv shozhosti mizh optimalnim podraznikom nejrona i danim stimulom Ce vlastivist nazivayetsya nejronalnim t yuningom V rannih zorovih zonah nejroni mayut prostishi nalashtuvannya Napriklad nejron v V1 mozhe spracyuvati na bud yakij vertikalnij stimul u jogo receptivnomu poli U vishih zorovih zonah nejroni mayut skladnishi nalashtuvannya Napriklad v nizhnij skronevoyi kori nejron mozhe spracyuvati lishe todi koli pevne oblichchya z yavlyayetsya v jogo receptivnomu poli Zorova kora otrimuye krovopostachannya nasampered vid shpornoyi gilki zadnoyi mozkovoyi arteriyi Na malyunku Right Visual Field prave zorove pole Left Visual Field live zorove pole Right Eye prave oko Left Eye live oko Optic Nerve optichnij nerv Optic Chiasm zorova hiazma Lateral Geniculate Nucleus bichne kolinchaste yadro Primary Visual Cortex pervinna zorova kora Brain mozok Pole Brodmana 17 Pole Brodmana 18 Pole Brodmana 19 Suchasni doslidzhennya Doslidzhennya pervinnoyi zorovoyi kori mozhe vklyuchati v sebe zapis potencialiv diyi vid elektrodiv u mozku kotiv thoriv shuriv mishej abo mavp abo cherez zapis vbudovanih optichnih signaliv vid tvarin abo EEG MEG abo fMRT signali vid polya V1 lyudini chi mavpi Odnim z nedavnih vidkrittiv u vidnoshenni zoni V1 lyudini ye te sho signali vimiryani za dopomogoyu fMRT pokazuyut duzhe veliku uvagovu modulyaciyu zminu signalu vidpovidno do uvagi skoncentrovanoyi na podrazniku Cej rezultat uzgodzhuyetsya z inshim nedavnim elektrofiziologichnim doslidzhennyam yake pokazalo sho hocha V1 obroblyaye vizualnu informaciyu pered V2 i V4 uvagova modulyaciya vidbuvayetsya v V4 dali V2 i potim nareshti v V1 Ce mozhe oznachati sho uvagova modulyaciya vidbuvayetsya za rahunok zvorotnogo zv yazku vid vishih zorovih oblastej do nizhchogo rivnya zorovih oblastej Inshi potochni doslidzhennya zoni V1 mayut na meti povnistyu sharakterizuvati jogo vlastivosti pidlashtovuvannya shobi vikoristovuvati cyu dilyanku yak model kanonichnogo kortikalnogo lancyuzhka Poshkodzhennya pervinnoyi zorovoyi kori yak pravilo prizvodyat do skotomi abo dirki poli zoru Cikavo sho u paciyenti zi skotomami neridko v zmozi vikoristovuvati vizualnou informaciyu predstavlenu v yihnih skotomah ale v zmozi svidomo sprijmati jogo Ce yavishe bulo chastkovo opisane v aspekti togo sho Lari Vajskranc Larry Weiskrantz z Oksfordskogo universitetu nazvav slipim zorom i shiroko vivchayetsya inshimi vchenimi v doslidzhennyah svidomosti Psihologichna model nejronnoyi obrobki vizualnoyi informaciyiVentralno dorsalna model Dorzalnij potik zelenij i ventralnij potik fioletovij yaki vihodyat vihodyat z pervinnoyi zorovoyi kori Ventralnij potik pochinayetsya z V1 jde cherez zorovi zoni V2 potim cherez zorovi zoni V4 i dali do nizhnoyi skronevoyi kori Jogo she inodi nazivayut Sho shlyah vin pov yazanij z rozpiznavannyam formi ta viznannyam ob yektiv Vin takozh pov yazanij zi shovishem dovgotrivaloyi pam yati Dorzalnij potik pochinayetsya z V1 jde cherez zorovu zonu V2 potim pryamuye do dorzomedialnoyi zoni V6 i serednoskronevoyi zoni V5 i dali do zadnotim yanoyi kori Dorzalnij potik De shlyah abo Yak shlyah pov yazanij z ruhom misceznahodzhennyam ob yekta kontrolem oka i ruki osoblivo koli vizualna informaciya vikoristovuyetsya dlya oriyentaciyi sakkad uzgodzhenih ruhiv ochej dlya rozpiznavannya ob yektu oblichchya lyudini chi dosyagnennya ob yektu rukoyu Sho i de funkciyi ventralnogo j dorzalnogo shlyahiv buli vpershe opisani Ungerlajderom i Mishkinim Ungerleider and Mishkin She zovsim nedavno Gudejl Goodale i Milner Milner vislovili ci ideyi j pripustili sho ventralnij potik maye virishalne znachennya dlya vizualnogo sprijnyattya todi yak dorsalnij potik oposeredkovuye vizualnij kontrol vidpracovanih dij Bulo pokazano sho zorovi ilyuziyi taki yak ilyuziya Ebbingauza angl Ebbinghaus illusion spotvoryuyut uyavlennya perceptivnoyi prirodi ale koli viprobuvanij vidpovidaye diyeyu napriklad hapannyam niyakogo spotvorennya ne vidbuvayetsya V odnomu z doslidzhen Scharnowski i Gegenfurtner pripuskayetsya sho i sistema diyi j sistema sprijnyattya odnakovo piddayutsya takim ilyuziyam Inshi doslidzhennya tim ne mensh bilshe pidtrimuyut ideyu sho na taki vidpracovani diyi taki yak hapannya ne vplivayut ilyuziyii zaznachayut sho disociaciyi diyi sprijnyattya ye korisnim prikladom dlya opisannya funkcionalnogo rozpodilu praci mizh dorsalnim i ventralnim zorovimi shlyahami v kori golovnogo mozku Pervinna zorova kora V1 Mikrofotografiya pokazuye zorovu koru vidilena rozhevim M yaka mozkova obolona i pavutinna obolona vklyuchno z krovonosnimi sudinami vidni v verhnij chastini zobrazhennya Podkirkova bila rechovina vidilena sinim vidna v nizhnij chastini zobrazhennya Farbuvannya HE LFB Pervinna zorova kora najkrashe vivchena zorova zona v mozku U vsih doslidzhenih ssavciv vona znahoditsya u zadnomu polyusi potilichnoyi chastki Ce najprostisha najbilsh rannya kirkova zorova zona specializovana dlya obrobki informaciyi pro statichni j ruhomi ob yekti j dlya rozpiznavannya samih ob yektiv Funkcionalno viznachena zona pervinnoyi zorovoyi kori priblizno vidpovidaye anatomichno viznachenij smugastij striarnij kori Nazva smugasta kora pohodit vid liniyi Gennari smugi yaka vidna neozbroyenim okom sho yavlyaye soboyu miyelinizovani aksoni z bichnogo kolinchatogo yadra yaki zakinchuyutsya v shari IV siroyi rechovini Pervinna zorova kora skladayetsya iz shesti funkcionalno riznih shariv pronumerovanih vid 1 do 6 Serednye chislo nejroniv yaki mistyatsya v pervinnij zorovij kori dorosloyi lyudini u kozhnij pivkuli ocinyuyetsya v rozmiri blizko 140 miljoniv Funkciya V1 maye duzhe chitko viznacheni karti prostorovoyi informaciyi Napriklad u lyudini verhnij kraj shpornoyi borozni silno reaguye na informaciyu z nizhnoyi polovini polya zoru nizhche centru a nizhnij kraj shpornoyi borozni na informaciyu z verhnoyi polovini polya zoru Tak vidbuvayetsya transformaciya vizualnogo obrazu vid sitkivki do V1 Vidpovidnist mizh cim ob yektom u V1 i v sub yektivnomu poli zoru duzhe tochne navit slipi plyami vidobrazhayutsya v V1 Z tochki zoru evolyuciyi cya peredacha zobrazhennya bazova i ye u bilshosti tvarin yaki mayut V1 U lyudini i tvarin z centralnoyu yamkoyu v sitkivci bilsha chastina V1 vidobrazhaye neveliku centralnu dilyanku polya zoru Ce yavishe znane yak kortikalne zbilshennya angl cortical magnification Mozhlivo z metoyu tochnogo prostorovogo vidobrazhennya nejroni v V1 mayut najmenshij rozmir receptivnogo polya z usih dilyanok zorovoyi kori Vlastivosti V1 nejroniv ta yihnye reaguvannya znachno vidriznyatisya z plinom chasu Na pochatku chasu 40 ms i dali okremi nejroni V1 dobre pidlashtovani do nevelikogo naboru podraznikiv Tobto nejronni reakciyi mozhut rozriznyati neveliki zmini vizualnoyi oriyentaciyi prostorovoyi chastoti i koloru Krim togo okremi V1 nejroni lyudini j tvarin z binokulyarnim zorom mayut monokulyarne dominuvannya tobto nalashtuvannya na odne z dvoh ochej U V1 i pervinnoyi sensornoyi kori v cilomu nejroni z takim harakternim nalashtuvannyam mayut tendenciyu grupuvatisya razom v kortikalni kolonki Devid Hyubel i Torsten Vizel zaproponuvali klasichnu model organizaciyi kortikalnoyi kolonki u viglyadi kubiku lodu dlya poyasnennya dvoh vlastivostej takogo nalashtuvannya en j en Odnak cya model ne mozhe vmistiti koloru prostorovoyi chastoti i bagatoh inshih funkcij do yakih nalashtovani nejroni Tochna model organizaciyi vsih cih kortikalnih kolonok v V1 zalishayetsya aktualnoyu temoyu suchasnih doslidzhen Matematichne modelyuvannya ciyeyi funkciyi bulo zrobleno na osnovi modeli peretvorennya Garbora angl Gabor transforms Vizualna informaciya retranslyuyetsya na V1 ne zakodovano u terminah prostorovih abo optichnih zobrazhen a shvidshe u viglyadi konturiv Yak priklad dlya zobrazhen sho skomponovani z chornoyi j biloyi polovin rozdilova mezha mizh chornim ta bilim yavlyaye soboyu silnij lokalnij kontrast i koduyetsya v toj samij chas poki dekilka nejroniv koduyut informaciyu pro yaskravist yak chornogo tak i bilogo koloru Informaciya dodatkovo peredayutsya na nastupni zorovi dilyanki Funkcionalni modeli prostih klitin v V1 bulo vstanovleno Lindebergom Lindeberg ta inshimi vchenimi Rozbizhnosti v rozmirah V1 takozh vplivayut na individualne sprijnyattya j ilyuziyiV2Zorova zona V2 abo vtorinna zorova kora yaka she nazivayetsya prestriarnoyu abo predsmugastoyu koroyu druga za znachennyam dilyankoyu v zorovij kori i pershoyu dilyankoyu v poli vizualnih asociacij Vona maye potuzhni pryami zv yazki z V1 pryami j cherez podushku zorovogo bugra i spryamovuye volokna do V3 V4 i V5 Zona takozh maye micnij zvorotnij zv yazok z V1 Z tochki zoru anatomiyi V2 podilyayetsya na chotiri kvadranti dorsalne i ventralne predstavnictvo v livij i pravij pivkuli Razom ci chotiri regioni zabezpechuyut povnu kartu vizualnogo svitu V2 maye bagato spilnih z V1 vlastivostej klitini nalashtovani na prosti vlastivosti taki yak oriyentaciya prostorova chastota i kolir Vidpovidi na bagatoh nejroniv V2 takozh modulyuyutsya skladnishimi fenomenami takimi yak ilyuzorni konturi binokulyarna nevidpovidnist v zalezhnosti vid togo stimul ye chastinoyu malyunka chi chastinoyu tla nedavni doslidzhennya pokazali sho dlya klitin zoni V2 vpliv uvagi uvagova modulyaciya nevelikij Vin bilshij nizh v zoni V1 ale menshij nizh u zoni V4 Pri comu klitini nalashtovani na pomirno skladni paterni j mozhut buti kerovani mnozhinnimi ustanovkami v riznih subregionah odnogo receptivnogo polya Doslidniki stverdzhuyut sho ves ventralnij zorovo gipokampalnij potik vazhlivij dlya zorovoyi pam yati cya teoriya na vidminu vid dominuyuchoyi stverdzhuye sho zmini ob yektno rozpiznavalnoyi pam yati ORP mozhut stati rezultatom vnutrishnih procesiv u zoni V2 yaka maye tisni vzayemozv yazki v mezhah ventralnogo potoku zorovoyi kori V mozku mavpi cya dilyanka maye silni pryami z yednannya z pervinnoyu zorovoyu koroyu V1 i posilaye impulsi na inshi vtorinni dilyanki zorovoyi kori V3 V4 i V5 U nedavnomu doslidzhenni shar 6 klitin kori V2 yak viyavilosya graye duzhe vazhlivu rol u zberiganni rozpiznanogo ob yektu pam yati a takozh peretvorennya ob yektu korotkostrokovoyi spogadiv v ob yekt dovgostrokovoyi pam yati Tretya zorova kora vklyuchno z V3Termin tretij vizualnij kompleks stosuyetsya oblasti kori roztashovanoyi bezposeredno pered V2 i yakij vklyuchaye v oblasti vizualnoyi zoni V3 v mozku lyudini Uskladnena nomenklatura obumovlena tim sho deyaki rozbizhnosti vidnosno tochnih rozmiriv zoni V3 vse she isnuyut deyaki doslidniki pripuskayuchi sho dilyanka kori roztashovana v perednij chastini V2 mozhe vklyuchati v sebe dva abo tri funkcionalnih pidrozdili Napriklad Devid Van Essen David Van Essen ta inshi 1986 zaproponuvali isnuvannya dorzalnoyi V3 u verhnij chastini mozkovogo pivkuli yaka vidriznyayetsya vid ventralnoyi V3 roztashovanoyi v nizhnij chastini mozku Dorzalna j ventralna V3 mayut chitki zv yazki z inshimi chastinami mozku z yavlyayutsya v riznih zrizah zabarvlenih riznimi barvnikami za riznimi metodikami j mistyat nejroni yaki reaguyut na rizni kombinaciyi vizualnih stimuliv napriklad kolorovo selektivni nejroni bilsh poshireni u ventralnij V3 V mozku lyudini buli vidileni takozh dodatkovi pidrozdili v tomu chisli V3A i V3B Ci pidrozdili znahodyatsya poruch z ventralnoyu V3 ale ne prilyagayut do V2 Dorzalna V3 yaka zazvichaj rozglyadayetsya yak chastina dorzalnogo potoku otrimuye vhodi vid V2 i vid pervinnoyi zorovoyi kori j sama proyektuye informaciyu do zadnoyi tim yanoyi kori Ce mozhe buti anatomichno roztashovani v poli Brodmana 19 Braddick vikoristovuyuchi fMRT pripustiv sho zona V3 V3A mozhe grati rol u zagalnomu sprijnyatti ruhu inshi doslidzhennya voliyut rozglyadati dorzalnu V3 yak chastinu bilsh velikoyi dorzomedialnoyi zoni DM yakij mistit predstavnictvo vsogo polya zoru Nejroni v oblasti DM reaguyut na kogerentnij ruh velikih ob yektiv sho ohoplyuyut znachni chastini polya zoru Lui i spivavtori 2006 Ventralna V3 maye nabagato slabshi z yednannya z pervinnoyu zorovoyu zonoyu i tisnishi zv yazki z nizhnoyu skronevoyu koroyu U toj chas yak u bilsh rannih doslidzhennyah stverdzhuvalosya sho u V3 mistitsya informaciya tilki z verhnoyi chastini polya zoru vishe tochki fiksaciyi piznishi roboti pokazali sho cya oblast shirsha i yak v inshih zorovih zonah u nij mozhe mistitisya povne vizualne podannyaV4Zorova zona V4 odna iz zorovih zon v ekstrastriarnij zorovij kori U makak vona roztashovana speredu vid V2 i zzadu vid zadnotim yanoyi dilyanki Zona vklyuchaye yak minimum chotiri dilyanki liva j prava V4d liva j prava V4v a deyaki doslidniki zaznachayut sho V4 mistit takozh rostralni i kaudalni pidrozdili Nevidomo dostemenno chi isnuye gomologichna do V4 dilyanka v mozku lyudini i ce pitannya na danij chas predmet pilnoyi uvagi Bilshist doslidzhen vkazuyut na te sho vibirkova uvaga mozhe zminiti pokazniki impulsaciyi v V4 priblizno na 20 Serednotim yana zorova zona V5 Serednotim yana zorova zona MT abo V5 ce dilyanka ekstrastriarnoyi zorovoyi kori U dekilkoh vidiv shirokonosih mavp i mavp Starogo Svitu MT zona mistit visoku kilkist napryamok selektivnih nejroniv MT primativ vidigraye osnovnu rol u sprijnyatti ruhu integraciyi lokalnih ruhovih signaliv u globalne sprijnyattya j keruvanni ruhom ochej Zv yazki MT pid yednana do shirokogo spektra kortikalnih i pidkirkovih oblastej golovnogo mozku Impulsi do ciyeyi zoni nadhodyat iz vizualnih oblastej kori golovnogo mozku V1 V2 i V3 dorsomedialnyi zoni kinocelyulyarnih zon i nizhnoyi podushki zorovogo bugra Patern proyekciyi na MT robit zmini v sprijnyatti centralnogo i periferichnogo polya zoru Standartnim ye uyavlennya pro te sho V1 ye najbilsh vazhlivim vhodom u MT Odnak kilka doslidzhen pokazali sho nejroni v MT zdatni reaguvati na vizualnu informaciyu chasto v napryam selektivnomu rezhimi navit pislya znishennya abo inaktivaciyi V1 krim togo doslidzhennya Semira Zeki Semir Zeki j spivavtoriv pokazali sho pevni tipi vizualnoyi informaciyi mozhut dosyagati MT she do togo yak potraplyat do V1 MT vidpravlyaye svoyi osnovni impulsi do dilyanok roztashovanih v kori golovnogo mozku yaki bezposeredno otochuyut jogo v tomu chisli v rajonah FST MST i V4t Inshi vihodi z MT pryamuyut do zon ruhu ochej v lobovij ta tim yanij chastkah Funkciya Pershi doslidzhennya elektrofiziologichnih vlastivostej nejroniv v zoni MT pokazali sho velika chastina yiyi klitin nalashtovani na shvidkist i napryam ruhu zorovih stimuliv Doslidzhennya z poshkodzhennyam takozh pidtverdili rol MT v sprijnyatti ruhiv i ruhah ochej Nejropsihologichni doslidzhennya paciyenta yakij ne v zmozi pobachiti ruh yakij divitsya na svit yak na seriyu statichnih kadriv priveli do dumki sho zona V5 u primativ gomologichna MT u lyudini Odnak oskilki nejroni v V1 takozh nalashtovani na napryam i shvidkist ruhu ci ranni rezultati zalishayut vidkritim pitannya pro te sho same MT mozhe takogo zrobiti sho ne zmozhe zrobiti V1 Vcheni prorobili velikij obsyag roboti v doslidzhenni ciyeyi dilyanki azh dopoki stalo zrozumilo sho same tut vidbuvayetsya integraciya lokalnih vizualnih signaliv ruhu v globalni ruhi skladnih ob yektiv Napriklad poshkodzhennya V5 vede do poyavi deficitu v sprijnyatti ruhu i obrobki skladnih podraznikiv V5 mistit bagato nejroniv yaki vibirkovo obroblyayut ruh skladnih vizualnih ob yektiv kinci linij kutiv Mikropolyarizaciya nejrona roztashovanogo v V5 vplivaye na sprijnyattya ruhu Ye she bagato superechok z privodu tochnoyi formi obrobki informaciyi v zoni MT i deyaki doslidzhennya pokazuyut sho sprijnyattya ruhu po suti vzhe isnuye na nizhchih rivnyah zorovoyi sistemi takih yak V1 Funkcionalna organizaciya Bulo dovedeno sho nejroni v MT organizovani v pravilni stovpchiki DeAngelis stverdzhuvav sho v MT nejroni takozh organizovani na osnovi yih binokulyarnoyi disparatnosti nevidpovidnosti V6Dorsomedialna zona DM takozh znana yak zona V6 vbachayetsya sho reaguye na vizualni stimuli pov yazani z vlasnim ruhom i shirokokutnimi v poli zoru ob yektami V6 yak strukturnij pidrozdil zorovoyi kori primativ upershe opisav Dzhon Ollman i Dzhon Kaas John Allman and Jon Kaas u 1975 roci V6 znahoditsya u dorzalnij chastini ekstrastriarnoyi kori poruch z pozdovzhnoyu shilinoyu velikogo mozku lat fissura longitudinalis medialis i yak pravilo takozh vklyuchaye v sebe chastini medialnoyi kori taki yak tim yano potilichna borozna Protyagom bagatoh rokiv vvazhalosya sho DM isnuye tilki u shirokonosih mavp mavp Novogo Svitu Odnak piznishi doslidzhennya pokazali sho DM isnuye i v mavp Starogo Svitu i mozhlivo u lyudej V6 takozh inodi nazivayut tim yano potilichnoyu zonoyu hocha vidpovidnist ne tochna Vlastivosti Nejroni v zoni DM V6 nichnoyi mavpi i igrunki zvichajnoyi mayut unikalni vlastivosti reaguvannya taki yak nadzvichajno visoka vibirkovist do oriyentaciyi vizualnih konturiv i perevagu dovgih bezperervnih linij sho ohoplyuyut znachni chastini polya zoru Prote v porivnyanni z zonoyu MT znachno mensha chastka klitin DM pokazuye vibirkovu vidpovid na napryamok ruhu vizualnih obraziv She odniyeyu pomitnoyu rizniceyu z MT ye te sho klitini v DM nalashtovani na nizki prostorovi chastoti zobrazhennya j pogano reaguyut na ruhi fakturnih ob yektiv takih yak pole vipadkovih tochok Ci reakciyi pripuskayut sho DM i MT mozhut pracyuvati paralelno persha analizuyuchi vlasnij ruh po vidnoshennyu do navkolishnogo seredovisha a druga analizuyuchi ruhi okremih ob yektiv shodo tla Neshodavno zona yaka reaguye na shirokokutni zorovi polya bula viznachena u lyudini i vvazhayetsya sho vona gomologichna zoni V6 makaki Shlyahi Zv yazki ta vlastivosti reaguvannya klitin v DM V6 dozvolyayut pripustiti sho cya oblast ye klyuchovoyu v skladi dorzalnogo potoku nazvanogo deyakimi doslidnikami dorsomedialnim shlyahom Cej shlyah jmovirno vazhlivij dlya kontrolyu skeletomotornoyi aktivnosti v tomu chisli posturalnih reakcij i ruhiv spryamovanih na dosyagannya ob yektiv Cya zona maye vidnosno pryami zv yazki z regionami lobovoyi chastki sho kontrolyuyut ruhi ruki v tomu chisli i z premotornoyu koroyu chastinoyu polya Brodmana 6 Div takozhPolya Brodmana Korbinian BrodmanPrimitkiMather George School of Life Sciences University of Sussex English University of Sussex Arhiv originalu za 3 lyutogo 2017 Procitovano 6 bereznya 2017 Buffalo E A Fries P Landman R Liang H and Desimone R 2010 A backward progression of attentional effects in the ventral stream Proceedings for the National Academy of Sciences 107 1 361 365 Ungerleider LG Mishkin M 1982 Two Cortical Visual Systems U Ingle DJ Goodale MA Mansfield RJ red Analysis of Visual Behavior Boston MIT Press s 549 586 Goodale MA Milner AD 1992 Separate pathways for perception and action Trends in Neuroscience 15 1 20 25 doi 10 1016 0166 2236 92 90344 8 PMID 1374953 Aglioti S DeSouza JF Goodale MA 1995 Size contrast illusions deceive the eye but not the hand Curr Biol 5 6 679 85 doi 10 1016 S0960 9822 95 00133 3 PMID 7552179 Franz VH Scharnowski F Gegenfurtner 2005 Illusion effects on grasping are temporally constant not dynamic J Exp Psychol Hum Percept Perform 31 6 1359 78 doi 10 1037 0096 1523 31 6 1359 PMID 16366795 Ganel T Goodale MA 2003 Visual control of action but not perception requires analytical processing of object shape Nature 426 6967 664 7 doi 10 1038 nature02156 PMID 14668865 Ganel T Tanzer M Goodale MA 2008 A double dissociation between action and perception in the context of visual illusions opposite effects of real and illusory size Psych Sci 19 3 221 5 doi 10 1111 j 1467 9280 2008 02071 x PMID 18315792 Goodale MA 2011 Transforming vision into action Vision Res 51 14 1567 87 doi 10 1016 j visres 2010 07 027 PMID 20691202 Glickstein M Rizzolatti G Francesco Gennari and the structure of the cerebral cortex Trends in Neurosciences Volume 7 Issue 12 464 467 1 December 1984 Leuba G Kraftsik R 1994 Changes in volume surface estimate three dimensional shape and total number of neurons of the human primary visual cortex from midgestation until old age Anatomy and Embryology 190 4 351 366 doi 10 1007 BF00187293 PMID 7840422 Barghout Lauren 1999 On the Differences Between Peripheral and Foveal Pattern Masking Berkeley California U S A Masters Thesis U C Berkeley Barghout Lauren 2003 Scholar s Press ISBN 978 3 639 70962 9 Arhiv originalu za 18 listopada 2016 Procitovano 17 bereznya 2017 Lindeberg T A computational theory of visual receptive fields Biological Cybernetics 107 6 589 635 doi 10 1007 s00422 013 0569 z Lindeberg T Journal of Mathematical Imaging and Vision 55 1 50 88 doi 10 1007 s10851 015 0613 9 Arhiv originalu za 18 bereznya 2017 Procitovano 17 bereznya 2017 DeAngelis G C Ohzawa I Freeman R D 1995 Receptive field dynamics in the central visual pathways Trends Neurosci 18 10 451 457 doi 10 1016 0166 2236 95 94496 r PMID 8545912 G C DeAngelis and A Anzai A modern view of the classical receptive field linear and non linear spatio temporal processing by V1 neurons In Chalupa L M Werner J S eds The Visual Neurosciences vol 1 pp 704 719 MIT Press Cambridge 2004 Lindeberg T Invariance of visual operations at the level of receptive fields PLOS ONE 8 7 e66990 doi 10 1371 journal pone 0066990 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite journal title Shablon Cite journal cite journal a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Schwarzkopf D Samuel 2011 Nature Neuroscience 14 1 28 30 doi 10 1038 nn 2706 PMC 3012031 PMID 21131954 Arhiv originalu za 1 veresnya 2011 Procitovano 17 bereznya 2017 Gazzaniga Ivry amp Mangun Cognitive neuroscience 2002 von der Heydt R Peterhans E Baumgartner G 1984 Illusory contours and cortical neuron responses Science 224 1260 62 doi 10 1126 science 6539501 PMID 6539501 Anzai A Peng X Van Essen D C 2007 Neurons in monkey visual area V2 encode combinations of orientations Nature Neuroscience 10 10 1313 21 doi 10 1038 nn1975 PMID 17873872 von der Heydt R Zhou H Friedman H S 2000 Representation of stereoscopic edges in monkey visual cortex Vision Research 40 1955 67 doi 10 1016 s0042 6989 00 00044 4 Qiu F T von der Heydt R 2005 Figure and ground in the visual cortex V2 combines stereoscopic cues with Gestalt rules Neuron 47 155 66 doi 10 1016 j neuron 2005 05 028 Maruko I et alt 2008 Postnatal Development of Disparity Sensitivity in Visual Area 2 V2 of Macaque Monkeys Journal of Neurophysiology 100 5 2486 2495 doi 10 1152 jn 90397 2008 Bussey T J Saksida L M 2007 Memory perception and the ventral visual perirhinal hippocampal stream thinking outside of the boxes Hippocampus 17 9 898 908 doi 10 1002 hipo 20320 PMID 17636546 Stepniewska I Kaas J H 1996 Topographic patterns of V2 cortical connections in macaque monkeys The Journal of Comparative Neurology 371 1 129 152 doi 10 1002 SICI 1096 9861 19960715 371 1 lt 129 AID CNE8 gt 3 0 CO 2 5 PMID 8835723 Gattas R Sousa A P Mishkin M Ungerleider L G 1997 Cortical projections of area V2 in the macaque Cerebral Cortex 7 2 110 129 doi 10 1093 cercor 7 2 110 Hegde Jay Van Essen D C 2000 The Journal of Neuroscience 20 Arhiv originalu za 24 zhovtnya 2016 Procitovano 17 bereznya 2017 Hegde Jay Van Essen D C 2004 Temporal dynamics of shape analysis in Macaque visual area V2 Journal of Psychology 92 5 3030 3042 doi 10 1152 jn 00822 2003 Lopez Aranda et alt 2009 Role of Layer 6 of V2 Visual Cortex in Object Recognition Memory Science 325 5936 87 89 doi 10 1126 science 1170869 PMID 19574389 Braddick OJ O Brien JM ta in 2001 Brain areas sensitive to coherent visual motion Perception 30 1 61 72 doi 10 1068 p3048 PMID 11257978 Rosa MG Tweedale R 2000 Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey J Comp Neurol 422 4 621 51 doi 10 1002 1096 9861 20000710 422 4 lt 621 AID CNE10 gt 3 0 CO 2 E PMID 10861530 Goddard E Goddard Erin McDonald J S Solomon S G Clifford C W G 2011 Color responsiveness argues against a dorsal component of human V4 Journal of Vision 11 4 3 doi 10 1167 11 4 3 PMID 21467155 http www sciencemag org cgi content abstract 229 4715 782 Moran J Desimone R 1985 Selective Attention Gates Visual Processing in the Extrastriate Cortex Science 229 4715 782 4 doi 10 1126 science 4023713 PMID 4023713 Born R Bradley D 2005 Structure and function of visual area MT Annu Rev Neurosci 28 157 89 doi 10 1146 annurev neuro 26 041002 131052 PMID 16022593 Felleman D Van Essen D 1991 Distributed hierarchical processing in the primate cerebral cortex Cereb Cortex 1 1 1 47 doi 10 1093 cercor 1 1 1 a PMID 1822724 Ungerleider L Desimone R 1986 Cortical connections of visual area MT in the macaque J Comp Neurol 248 2 190 222 doi 10 1002 cne 902480204 PMID 3722458 Sincich L Park K Wohlgemuth M Horton J 2004 Bypassing V1 a direct geniculate input to area MT Nat Neurosci 7 10 1123 8 doi 10 1038 nn1318 PMID 15378066 Warner CE Goldshmit Y Bourne JA 2010 Retinal afferents synapse with relay cells targeting the middle temporal area in the pulvinar and lateral geniculate nuclei Front Neuroanat 4 8 doi 10 3389 neuro 05 008 2010 PMC 2826187 PMID 20179789 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite journal title Shablon Cite journal cite journal a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Palmer SM Rosa MG 2006 A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision Eur J Neurosci 24 8 2389 405 doi 10 1111 j 1460 9568 2006 05113 x PMID 17042793 Rodman HR Gross CG Albright TD 1989 Afferent basis of visual response properties in area MT of the macaque I Effects of striate cortex removal J Neurosci 9 6 2033 50 PMID 2723765 Dubner R Zeki S 1971 Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey Brain Res 35 2 528 32 doi 10 1016 0006 8993 71 90494 X PMID 5002708 Maunsell J Van Essen D 1983 Functional properties of neurons in middle temporal visual area of the macaque monkey I Selectivity for stimulus direction speed and orientation J Neurophysiol 49 5 1127 47 PMID 6864242 Dursteler M R Wurtz R H Newsome W T 1987 Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey Journal of Neurophysiology 57 5 1262 87 PMID 3585468 Hess R H Baker C L Zihl J 1989 The motion blind patient low level spatial and temporal filters Journal of Neuroscience 9 5 1628 40 PMID 2723744 Baker C L Jr Hess R F Zihl J 1991 Residual motion perception in a motion blind patient assessed with limited lifetime random dot stimuli Journal of Neuroscience 11 2 454 61 PMID 1992012 Movshon J A Adelson E H Gizzi M S amp Newsome W T 1985 The analysis of moving visual patterns In C Chagas R Gattass amp C Gross Eds Pattern recognition mechanisms pp 117 151 Rome Vatican Press Britten K H van Wezel R J 1998 Electrical microstimulation of cortical area MST biases heading perception in monkeys Nat Neurosci 1 1 59 63 doi 10 1038 259 PMID 10195110 Wilson H R Ferrera V P Yo C 1992 A psychophysically motivated model for two dimensional motion perception Vis Neurosci 9 1 79 97 doi 10 1017 s0952523800006386 Tinsley C J Webb B S Barraclough N E Vincent C J Parker A amp Derrington A M 2003 The nature of V1 neural responses to 2D moving patterns depends on receptive field structure in the marmoset monkey J Neurophysiol 90 2 930 7 doi 10 1152 jn 00708 2002 PMID 12711710 Pack C C Born R T Livingstone M S 2003 Two dimensional substructure of stereo and motion interactions in macaque visual cortex Neuron 37 3 525 35 doi 10 1016 s0896 6273 02 01187 x PMID 12575958 Albright T 1984 Direction and orientation selectivity of neurons in visual area MT of the macaque J Neurophysiol 52 6 1106 30 PMID 6520628 DeAngelis G Newsome W 1999 Organization of disparity selective neurons in macaque area MT J Neurosci 19 4 1398 415 PMID 9952417 Cardin V Smith AT 2010 Sensitivity of human visual and vestibular cortical regions to stereoscopic depth gradients associated with self motion Cerebral Cortex 20 8 1964 73 doi 10 1093 cercor bhp268 Pitzalis et alt 2006 Wide Field Retinotopy Defines Human Cortical Visual Area V6 The Journal of Neuroscience 26 30 7962 73 doi 10 1523 jneurosci 0178 06 2006 PMID 16870741 Allman JM Kaas JH 1975 The dorsomedial cortical visual area a third tier area in the occipital lobe of the owl monkey Aotus trivirgatus Brain Res 100 3 473 487 doi 10 1016 0006 8993 75 90153 5 Galletti C ta in 2005 The relationship between V6 and PO in macaque extrastriate cortex Eur J Neurosci 21 959 970 doi 10 1111 j 1460 9568 2005 03911 x Galletti C ta in 2003 Role of the medial parieto occipital cortex in the control of reaching and grasping movements Exp Brain Res 153 158 170 doi 10 1007 s00221 003 1589 z Baker JF ta in 1981 Visual response properties of neurons in four extrastriate visual areas of the owl monkey Aotus trivirgatus a quantitative comparison of medial dorsomedial dorsolateral and middle temporal areas J Neurophysiol 45 397 416 Lui LL ta in 2006 Functional response properties of neurons in the dorsomedial visual area of New World monkeys Callithrix jacchus Cereb Cortex 16 2 162 177 doi 10 1093 cercor bhi094 Pitzalis S Sereno M I Committeri G Fattori P Galati G Patria F amp Galletti C 2010 Human v6 The medial motion area Cereb Cortex 20 2 411 424 doi 10 1093 cercor bhp112 PosilannyaUniversitet shtata Yuta at Garvardskij Universitet Simulyator modelyuvannya vizualnih kart 9 sichnya 2014 u Wayback Machine Na topographica org