Молекуля́рна енерге́тика (англ. molecular power або англ. molecular power engineering) — складова частина електроенергетики, яка вивчає і використовує енергетичні властивості молекул, атомів, йонів, інших малих частинок рідинного та газоподібного середовищ, взаємодію цих частинок між собою, з іншими тілами, а також з електричними та магнітними полями з метою вироблення, передачі, накопичення, розподілу та використання електричної енергії.
Загальна характеристика
У фундаменті молекулярної енергетики лежать атомно-молекулярний та йонно-молекулярний принципи побудови речовини. Перший принцип характеризує дискретність або перервність будови речовини, другий принцип розкриває стан електролітичних розчинів та взаємодію йонів з молекулами розчинника. Ключовими поняттями молекулярної енергетики є атом, молекула, йон, хімічний зв'язок, міжатомний та міжмолекулярний потенціали, термодинамічні потенціали. Предметом дослідження молекулярної енергетики є агрегатні стани речовини, міжфазна поверхня, поверхневі явища, процеси перенесення, перетворення та відновлення енергії, молекулярні способи (технології) та технічні засоби (системи) виробництва, накопичення, розподілу та використання електричної енергії.
Двома складовими частинами молекулярної енергетики є молекулярна гідроенергетика та молекулярна вітроенергетика.
Молекулярна гідроенергетика (англ. molecular hydropower) — наука і галузь, складова частина молекулярної енергетики, яка вивчає та використовує відновлювані енергетичні властивості молекул, атомів, йонів, інших малих частинок рідинного середовища, взаємодію цих частинок між собою, з іншими тілами, а також з електричними та магнітними полями з метою вироблення, передачі, накопичення, розподілу та використання електричної енергії. У молекулярній гідроенергетиці певний об'єм рідини або розчину, розглядається як молекулярна термодинамічна система з притаманними їй фізико-хімічними параметрами та характеристиками: внутрішньою енергією, енергією на кордонах фаз, концентрацією розчиненої речовини, осмотичним тиском, хімічним потенціалом тощо. Ефективне перетворення та вивільнення енергії молекул, атомів, йонів та інших частинок рідини, скажімо, води або водних розчинів (електролітів), може бути здійснено за допомогою фізичних і хімічних поверхневих явищ, які виникають на межі фаз, зокрема, змочування, адгезії, когезії, капілярного ефекту, адсорбції, абсорбції тощо. Поряд з вище названими явищами для створення молекулярних технологій та систем гідроенергетики застосовні також фізичні явища електрокінетики, осмосу, електродіалізу, магнітогідродинаміки в рідинах та їх розчинах, а ще поєднання цих ефектів. Звідсіля витікає і поділ молекулярної гідроенергетики на гідроенергетику міжфазної поверхні, електрокінетичну гідроенергетику, гідроенергетику градієнта солоності, тощо.
Молекулярна вітроенергетика (англ. molecular wind power) — складова частина молекулярної енергетики, що вивчає та використовує відновлювані енергетичні властивості швидких молекул, атомів, йонів, інших малих частинок газового повітряного середовища, взаємодію цих частинок між собою, з іншими тілами, а також з електричними та магнітними полями з метою вироблення, накопичення, передачі та розподілу електричної енергії. Молекулярна вітроенергетика є також складовою частиною класичної вітроенергетики, в основі якої лежать закони газодинаміки (аеродинаміки), що описують рух повітря та його взаємодію з твердими тілами, а також закони аеростатики, що оцінюють рівновагу повітря та його дію на занурені в нього тіла. Для ефективного перетворення енергії молекул газової повітряної суміші в електричну енергію можна використати відомі фізичні явища: йонізації атомів і молекул активної речовини під дією швидких молекул повітря, зокрема, явище ступінчато-ударної йонізації; термоелектричний ефект Зеебека — виникнення термо-ЕРС у молекулярній структурі під тепловою дією швидких молекул повітря; сорбційний ефект — виникнення термо-ЕРС у сорбційній молекулярній структурі при поглинанні швидких молекул повітря; прямий п'єзоелектричний ефект — виникнення електричних зарядів на гранях певних кристалів при деформації та зворотний магнітострикційний ефект (магнетопружний ефект Вілларі) — зміна намагніченості певних матеріалів під впливом механічних напружень. Ці фізичні явища окремо або ж у поєднанні з іншими застосовні для створення високоефективних систем молекулярної вітроенергетики Молекулярна енергетика є альтернативою макроскопічної енергетики[].
Історичний огляд
Своїм корінням молекулярна енергетика сягає V ст. до н. е., коли Демокріт (460—370 рр. до н. е.) увів поняття атом. Ця ідея була сприйнята наукою нового часу та зіграла видатну роль у її розвитку. Припущення про молекулярну структуру речовини стало визнаною теорію, що поширилася на молекулярну фізику рідини та кінетичну теорію газів у результаті напруженої роботи великої когорти вчених XVIII—XX ст. і була спрямована значною мірою на вирішення прикладних її задач, зокрема, у рамках гідродинаміки та термодинаміки.
Англійський фізик-експериментатор Френсіс Хоксбі ще у 1709 році виконав перші дослідження капілярності. У 1718 році показав залежність висоти стовпа рідини у капілярі від площі його поперечного перетину. Швейцарський математик і фізик Даніель Бернуллі вдосконалив диференціальні рівняння, чисельні методи та теорію ймовірностей і застосував їх у вивченні гідродинаміки, кінетичної теорії газів, аеродинаміки та теорії пружності. У 1805 році англійський вчений Томас Юнг встановив зв'язок між перепадом капілярного тиску на кордоні системи «рідина — повітря» та поверхневим натягом. Того ж року висновки Томаса Юнга були математично формалізовані французьким математиком і астрономом П'єром Симоном Лапласом. Сьогодні одна з важливих формул фізики носить назву рівняння Юнга-Лапласа. 1830 року результати були узагальнені в роботах німецького математика й астронома Карла Фрідріха Гаусса. Німецьким інженером і будівельником Готтхільфом Генріхом Хагеном у 1839 році була встановлена кількісна залежність об'ємних витрат рідини через капіляр від перепаду тиску. У 1841 році ця залежність була підтверджена французьким фізиком і фізіологом Жаном Леонардом Пуазейлем. Сьогодні відповідний закон носить ім'я Хагена–Пуазейля. Німецький фізик Франц Ернст Нейман у своїй роботі, яка побачила світ 1894 року, систематизував досягнення своїх попередників. Дев'ятнадцяте століття позначилося широким застосуванням в аналізі фізичних та хімічних систем положень гідродинаміки, термодинаміки та статистичної механіки. Сучасне пояснення поведінка флюїдів знайшла в роботах французького інженера Клода-Луї Нав'є з теорії пружності та гідродинаміки, а пізніше — в рівняннях британського математика та фізика Джорджа Габріеля Стокса..
У міру того як становилася атомістично-молекулярна теорія побудови речовини дослідниками усвідомлювалася спільна природа рідин та газів. Англійський хімік та фізик Роберт Бойль у 1662 відкрив закон про обернено пропорційну залежність об'єму ідеального газу від тиску при постійній температурі й масі газу. Роберт Бойль вперше запровадив наукове поняття про хімічний елемент (1661 р.) і є одним із засновників якісного хімічного аналізу. З британською науковою школою у всіх сферах знань завжди змагалася французька наукова школа. Французький фізик Едм Маріотт в одній із своїх робіт описує обернено пропорційну залежність між об'ємом і тиском газу, фактично відкривши заново закон Роберта Бойля. У 1738 році Даніель Бернуллі висловив думку, що газ складається з великої кількості молекул, які хаотично рухаються. Зіткненнями цих молекул він пояснював природу тиску та деякі теплові процеси. Французький винахідник і вчений Жак Александр Сезар Шарль у 1787 році встановив прямо пропорційну залежність об'єму ідеального газу від температури при постійному тиску. Французький хімік та фізик Жозеф Луї Гей-Люссак сформулював термодинамічний закон теплового розширення газів, згідно якому зміна об'єму газу пропорційна зміні температури тіла/ Італійський фізик та хімік Амедео Авогадро увів 1811 року у вжиток термін «молекула» і незаперечно є одним із авторів теорії атомно-молекулярної будови речовини/
Французький фізик та інженер Еміль Клапейрон у 1834 році вивів рівняння стану ідеального газу, аналізуючи роботи своїх попередників Роберта Бойля, Едма Маріотта, Жозефа Луї Гей-Люссака, Жака Шарля а також Амедео Авогадро. Німецький фізик Юліус Роберт фон Маєр встановив зв'язок між теплоємностями для ізобаричних та ізохоричних процесів у газах. Шотландський фізик Джон Джеймс Вотерстоун показав залежність тиску газу в одиниці об'єму від кількості молекул та від середньої квадратичної швидкості молекул і фактично вивів закон ідеального газу. Проте, сучасну кінетичну теорію газів сформулював у 1856 році німецький хімік та фізик . Роком пізніше німецький фізик Рудольф Клаузіус увів у користування поняття ентропії й створив більш фундаментальну теорію, що враховувала поступальний, обертовий та коливальний рухи молекул. Ним же запропоновано поняття довжини вільного пробігу частинки.
Джеймс Клерк Максвелл визначив статистичний розподіл молекул газу за швидкостями. У 1866 році австрійський фізик Людвіг Больцман отримав рівняння рівноважного розподілу молекул ідеального газу за імпульсами та координатами, а 1871 року узагальнив цей розподіл для частинок у зовнішньому полі, постулював логарифмічну залежність між ентропією та числом станів термодинамічної системи і цим відкриттям зробив суттєвий вклад у становлення статистичної механіки.
Томсон лорд Кельвін спільно з Джеймсом Прескоттом Джоулем провели охолодження газів при розширенні без здійснення роботи, яке послужило перехідним ступенем від теорії ідеальних газів до теорії реальних газів. Вільяму Томсону належить також одне з перших формулювань другого закону термодинаміки. Важливими етапами в розвитку газової теорії стали дослідження міжмолекулярної взаємодії та створення голландським фізиком Яном Дидериком ван дер Ваальсом теорії фазових переходів між газоподібним та рідким станами речовини, побудова теорії броунівського руху Альбертом Ейнштейном та роботи з теорії броунівського руху і теорії флуктуацій Мар'яна Смолюховського..
Паралельно з атомістично-молекулярною теорією будови речовини науковий та індустріальний світ концентрувався на вивченні електричних та магнітних явищ. Невдовзі після того як італійський медик і фізик Луїджі Гальвані опублікував свої дослідження електричних явищ у живому організмі, 1800 року його земляк Алессандро Вольта побудував (Вольтів) стовп — фактично створив першу молекулярну електрохімічну електростанцію. У 1820 році французький фізик та математик Андре-Марі Ампер встановив залежність між електрикою та магнетизмом, що дало поштовх розвитку електродинаміки, а вже у 1827 році німецький фізик і математик Георг Ом відкрив закон, який описує струм в електричному колі. Епохальним стало відкриття Майклом Фарадеєм 1831 року явища електромагнітної індукції, що роз'яснює причину взаємодії між собою на відстані тіл з магнітними та електричними властивостями. Це відкриття зумовило винахід електричного генератора. У подальшому Джеймс Максвелл математично визначив напрямок та величину діючих при електромагнітній індукції сил, таким чином, сформулював класичну теорію електромагнетизму.
Ряд фундаментальних явищ було відкрито при дослідженні електрики у рідинах, газах, твердих тілах та на їх кордоні. Появу електричного заряду на дисперсних частинках та перенесення заряджених частинок під дією зовнішнього електричного поля (явище електрофорезу) 1808 року вперше спостерігав професор кафедри хімії Московського університету . Йому належить також відкриття явища електроосмосу. Пріоритет у відкритті потенціалу седиментації належить німецькому фізику Фрідріху Ернсту Дорну. Явище зворотного електроосмосу відкрив німецький фізик Георг Герман Квінке 1859 року.
Будову та поведінку частинок дисперсної фази колоїдної системи пояснює теорія подвійного електричного шару (ПЕШ). Згідно моделі німецького фізика Германа Гельмгольца, опублікованій 1879 року, подвійний електричний шар є плоским конденсатором, одна обкладка якого міститься в твердій фазі, а друга — в розчині. Важливими етапами у розвитку теорії ПЕШ стали роботи французького вченого , виконані у 1910 році, та англійського фізика , які вийшли друком 1913 року. За моделлю Гуї-Чепмена електричні протийони утворюють розмитий шар. Основи сучасної теорії ПЕШ, яка враховує адсорбцію, розроблені німецьким фізиком Отто Штерном і побачили світ 1924 року. Одну з моделей розрахунку потенціалу побудував на початку 1900-х польський фізик Маріан Смолюховський.
У 1860—1880 роках на кордоні фундаментальних наук зародилися фізична хімія та хімічна фізика, які узагальнили хімічну термодинаміку та хімічну кінетику. В рамках молекулярної фізики та хімії вималювалися нові розділи — фізика та хімія поверхні. У 1876 році американський математик, фізик та хімік Джозая Віллард Гіббз пояснив поняття поверхневої енергії, хімічного потенціалу та правила фаз (Гіббза)/ Голландський фізик та хімік Якоб Гендрік Вант-Гофф 1887 року встановив залежність осмотичного тиску від концентрації розчиненої речовини. Автором теорії електролітичної дисоціації та хімічної кінетики є шведський фізик та хімік Сванте Август Арреніус. Він же є піонером-дослідником парникового ефекту, що зумовлює зміни клімату. Важливий науковий внесок у використання методів статистичної механіки в колоїдній хімії та хімії поверхні був зроблений американським хіміком Ірвінгом Ленгмюром/
Ширина та ґрунтовність наукових досліджень попереднього періоду викликають захоплення і логічне здивування, бо вони багато в чому обігнали свій час. Дивним, зокрема, виглядає той факт, як багато корисних фізичних і хімічних відкриттів було зроблено тоді, коли саме існування атомів і молекул було під питанням. Бурхливий розвиток промисловості на початку XX ст. вимагав впровадження нових технологій. Фундаментальна наука відгукнулася революційними теоріями. Для того щоб пояснити результати експериментів по розсіюванню α–частинок речовиною, британський фізик, виходець із Нової Зеландії, Ернст Резерфорд створив планетарну модель атома. Протягом 1913—1924 рр. данський фізик-теоретик Нільс Бор друкує ряд фундаментальних статей, присвячених квантовій будові атома та молекул. Аби подолати неузгодженість між експериментальними молекулярними спектрами та теорією квантової механіки у 1924 р. австрійський фізик-теоретик Вольфганг Паулі запропонував квантове число з двома можливими значеннями і фактично передбачив спін електрона. Упродовж 1923—1926 рр. французький фізик Луї де Бройль постулював хвильову природу електрона і всієї матерії, висунув гіпотезу про корпускулярно-хвильовий дуалізм. Австрійський фізик-теоретик Ервін Шредінгер є автором хвильової нерелятивістської механіки, сформульованої у 1925—1926 рр. на снові хвильових рівнянь (Шредінгера). «Нова ера взаємного стимулювання механіки та математики» пов'язана також з іменем німецького фізика-теоретика Вернера Гейзенберга, який запропонував для опису квантової механіки матричну механіку, сформулював принцип невизначеності, застосував принципи квантової механіки до проблем феромагнетизму а також до релятивістської квантової теорії поля та квантової електродинаміки. Британський фізик Поль Дірак поєднав матричну механіку Гейзенберга з рівнянням Шредінгера й увів у хвильове рівняння відносність. Рівнянням Дірака підтверджується і гіпотетичний спін, і магнітні властивості електрона (магнітний момент). Рівнянням Дірака описуються важкі атоми, де слід враховувати спін-орбітальну взаємодію. Дірак припустив існування позитивно зарядженої частинки — протона. Передбачив існування античастинки — «дірки», близнюка електрона, можливість народження з фотона достатньо великої енергії, відкрив статистичний розподіл енергії в електронній системі (статистика Фермі-Дірака). Квантова теорія дала народження квантовій механіці та допомогла подолати протиріччя, які виникли при вивченні глибинних процесів у речовині. З одного боку, в молекулярній фізиці панує термодинамічний метод, при якому не враховується дискретна молекулярна та атомна структура речовини, і речовина розглядається як суцільне неперервне середовище. З іншого боку, згідно атомістичної та молекулярної теорії речовина є дискретним середовищем і може бути вивчена статистичними методами з використанням теорії ймовірності. Зміна методології визначила появу нових напрямків розвитку наук.
Данський фізик 1921 року дослідив між зарядами для молекулярних йонів, між диполями для полярних молекул, між квадруполями і мультиполями. Взаємодія Кеезона є різновидом слабкої міжмолекулярної взаємодії ван дер Ваальса. Голландсько-американський фізик і хімік Петер Джозеф Вільям Дебай. поширив поняття дипольного моменту на розподіл заряду в молекулі. Згідно розрахункам Петера Дебая полярна молекула (диполь) поляризує сусідню молекулу, утворюючи таким чином диполь і обумовлюючи притягання молекул. Фундаментальний вклад у теорію хімічного зв'язку та міжмолекулярних (дисперсійних) сил вніс німецький та американський фізик-теоретик Фріц Вольфганг Лондон. Вчений встановив взаємодію неполярних молекул, обумовлену флуктуаціями електронних хмаринок. У 1924 році англійський фізик та хімік-теоретик , вивчаючи взаємодію молекул рідини та газів запропонував поняття потенціалу міжатомних сил (потенціалу Ленарда-Джонса), який дозволяв пояснити параметри рівнянь ван дер Ваальса. У сфері його наукових доробок — парамагнетизм двоатомних молекул, зокрема, молекул оксигену, хвильові функції мультіелектронних атомів, хімічна валентність та метод молекулярних орбіталей.
Дослідження, які ведуться протягом останніх десятиліть на перехресті гідродинаміки, електрохімії, колоїдної хімії та електрокінетики, дали народження , в якій розглядаються механізми переміщення рідини у вузьких капілярах під впливом зовнішніх та/або внутрішніх сил. Сферою використання досягнень мікрогідродинаміки стали на початку 1980-х років струменеві принтери, пізніше — мініатюрні хімічні лабораторії на чипі. З розвитком нанотехнологій з'явилося поняття — розділ гідродинаміки, в якому розглядаються механізми переміщення рідини у капілярах діаметром 1—100 нм. У рамках мікрогідродинаміки та наногідродинаміки досліджується рух флюїдів капілярними системами вивчаються особливості побудови капілярів у природі.
Останнім часом значна увага приділяється дослідженням подвійного електричного шару в дисперсних рідинних системах. З'ясувалося, що при поміщенні діелектричної частинки в електричне поле на її кордоні появляються рівні і протилежні по знаку електричні заряди й наводиться дипольний момент — частинка поляризується. Модуляцією густини заряду в мікроканалі можна спрямовувати електроосмотичний потік. ПЕШ на поляризованій поверхні індукується та управляється тим же електричним полем. Аби підкреслити цей єдиний механізм, автори Мартін Базант, Тодд Сквайрес та ін. запропонували термін електроосмос індукованого заряду (ICEO). Окремим напрямком мікрогідродинаміки є . Вагомий внесок у розвиток колоїдних систем здійснили вчені Інституту колоїдної хімії і хімії води ім. А. В. Думанського Національної Академії наук України, зокрема, Станіслав Духін, Володимир Шилов, Микола Жарких, Ілля Разілов тощо. Дельгадо розглядає теоретичні основи інтерфейсної електрокінетики, Берт'є та Табелінг у своїх роботах вивчають питання Рамос та ін. акцентують увагу на фізичних основах діелектрофорезу, електрокінетики змінного струму, електрозмочування, електрогідродинаміки а також на практичному використанні електрокінетичних явищ у мікросистемах. Галіндо-Росалес фокусується на параметрах та характеристиках флюїдів, віддаючи перевагу чисельним методам оцінки та оптимізації мікрогідродинамічних систем.
Десятки публікацій присвячені дослідженню електрокінетичних способів та засобів виробництва електричної енергії.
Ведеться пошук нових молекулярних джерел відновлюваної енергії. Один із напрямків отримання електричної енергії, оприлюднений у 1954 році, припускає використання . Сьогодні дослідження та зворотного електродіалізу із застосуванням сукупності аніонних та катіонних обмінних мембран для виробництва електричної енергії із градієнта солоності ведуться у багатьох напрямках.
Із часів Майкла Фарадея тривають спроби створити магнітогідродинамічний генератор електричного струму на основі рідинних, які особливо прогресували після виділення магнітогідродинаміки в окремий науковий напрямок. Велика заслуга в цьому належить шведському фізику та астроному Ганнесу Альвену. Пізніше розвиток магнітогідродинаміки рухали дослідження електромагнітної індукції у газових середовищах. Застосування законів магнітогідродинаміки дозволяло оминути малоефективний етап механічних перетворень у класичних теплових електростанціях і позбавитися масивних механічних елементів при виробництві електричного струму. Отримані потужності МГД-генераторів не перевищували кількох десятків кіловат.
Кінець 1990-х років ознаменувався інтенсивним розвитком нанотехнологій, в рамках яких дослідники маніпулюють дуже малими частинками речовини, атомами та молекулами включно, для створення більш складних макроскопічних структур. Нова методологія виявилася до того універсальною, що швидко поширилася в різні сфери нашого життя і, можна сказати, дала поштовх народженню , які засновані на використанні відновлюваних енергетичних властивостей молекул, атомів, йонів та інших малих частинок речовини, квантів електромагнітного поля та плазми. У відповідності до походження (природи) відновлюваного джерела енергії, агрегатного стану робочого тіла, що застосовується для отримання електричного струму, а також враховуючи спорідненість з існуючими технологіями відновлюваної енергії і сфери застосування, можуть бути класифіковані на та . Загалом же вказані технології складають технологічну основу молекулярної енергетики. На противагу макроенергетиці, молекулярну енергетику можна назвати наноенергетикою.
Революційні науково-технологічні досягнення останніх років в галузях нанотехнологій, біотехнологій, комп'ютерного моделювання дозволяють нам «управляти матерією та енергією>». Про це свідчить поява ряду публікацій з концептуально новим баченням шляхів освоєння відновлюваної енергії. Едвард Вольф використовує нанофізику для аналізу ядерного синтезу, фотоелектричного ефекту в сонячних елементах та фотокаталітичного процесу виробництва гідрогену із води. Браян Кірбі розглядає мікрогідродинаміку та наногідродинаміку рідинних систем з огляду на їх використання в лабораторіях на чипі. Токайо Охта, професор Йокогамського національного університету досліджує енергетичні перетворювачі, паливні комірки, мембрани, та електролізери води.
Наростаючі дослідження свідчать про об'єктивну невідворотність використання в електроенергетиці внутрішніх резервів енергії молекул та атомів речовини. Велика енергія витікає з маленьких джерел, з атомів та молекул твердого тіла, рідини та газу. Витоки енергії ховаються на міжфазних поверхнях, в осмосі гетерогенних рідин, у динаміці швидких молекул повітря тощо.
Молекулярна енергетика — нова, швидко прогресуюча галузь. Вона є результатом довгої череди досліджень фізичних та хімічних властивостей речовини і електромагнітного поля а також встановлення зв'язків між ними. Описані у цій роботі технології дуже відрізняються одна від одної, можна говорити навіть про кардинальну несхожість технологій, з іншої сторони, їх єднає атомно-молекулярне походження енергії, а ще вони мають спільну історію самовідданої праці затятої когорти талановитих учених протягом просвічених століть. Хоча ідея є надбанням часу, а не окремого генія, речі у світі науки співвідносяться з іменами, а десь ними і вимірюються. Наука в деталях, з конкретними історичними постатями і датами свідчить про її неперервність і методологічну цілісність, а витоки науки є тими дивними анахронізмами, які живлять весь океан знань. Найбільші зміни у нашому житті не обов'язково асоціюються з Оксфордом, але там, де цих змін торкнувся благодатний подих науки, світ квітнув барвами. Ми вертаємося в історію і шукаємо в ній витоки ідей, аби усвідомити їх шлях і ґрунтовно зрозуміти фізику, яка лежить в основі технологій сьогодення. В історії ми черпаємо мудрість, шукаємо паралелі із сучасністю, бо «старі» ідеї мають властивість час від часу «омолоджуватися».
Молекулярні технології та системи відновлюваної енергії
(англ. molecular renewable power technology) — сукупність способів та технічних засобів, які забезпечують виробництво електричного струму з відновлюваних джерел енергії, використовуючи глибинні енергетичні властивості атомів, молекул, йонів та інших малих частинок речовини, квантів електромагнітного поля та плазми. В залежності від походження (природи) енергії, агрегатного стану робочого тіла, а також враховуючи спорідненість з наявний технологіями відновлюваної енергетики й застосовність, розрізняють та .
На відміну від макроскопічних технологій, які потребують подвійного а, інколи, й потрійного проміжного перетворення одного виду енергії в інший, молекулярні енергетичні технології є переважно прямими способами отримання електричного струму. Цікавість до них спричинена, в першу чергу, можливістю створення малогабаритних матричних пристроїв генерації електричної енергії а також співмірних з ними по розмірам та масі накопичувачів енергії, які дозволяють наряду з існуючими використовувати нові джерела відновлюваної енергії, притаманні гідросфері та атмосфері, зокрема, енергію молекул всередині рідини та на кордоні фаз, , кінетичну енергію швидких молекул повітря тощо. Кожна молекулярна енергетична технологія складається з послідовності певних операцій або процесів, які виконуються за допомогою сукупності технічних засобів, зведених в .
— сукупність молекулярних технологій та обладнання для отримання електричного струму з відновлюваних джерел енергії. В розрахунках параметрів та характеристик молекулярної системи енергетики, окрім звичайних макроскопічних параметрів речовини та поля, таких як швидкість, тиск, питома густина молекул, поєднаних у повітряний та/або водний потоки, враховуються глибинні властивості молекул, атомів, йонів, інших малих частинок речовини, характер взаємодії частинок між собою, взаємодія з електромагнітними полями та дія на інші тіла. Такий підхід дозволяє віднайти великі резерви внутрішньої енергії, які криються в речовині, електромагнітному полі та плазмі й на порядки перевищують рівні енергії, досяжні для макроскопічних (балкових) технологій.
Ефективне перетворення та вивільнення енергії молекул, атомів, йонів та інших частинок рідини, скажімо, води або водних розчинів (електролітів), може бути здійснено за допомогою фізичних та хімічних поверхневих явищ, які виникають на межі фаз, зокрема, змочування, адгезії, когезії, капілярного ефекту, адсорбції, абсорбції тощо. Поряд з вище названими явищами для створення молекулярних технологій та систем гідроенергетики застосовні також фізичні явища електрокінетики, осмосу, електродіалізу, магнітогідродинаміки в рідинах та їх розчинах, а ще поєднання цих ефектів. Звідсіля витікає і поділ молекулярних систем гідроенергетики на , , , , , тощо. Робота гідроадзезійних та гідроабсорбційних систем заснована на використанні енергетичних властивостей міжфазної поверхні, тож, ці категорії систем належать до сфери гідроенергетики міжфазної поверхні. Класифікація молекулярних технологій та систем гідроенергетики є умовною, бо на практиці вони нерідко інтегруються.
За фізичними принципами отримання електричного струму можна класифікувати на , , , тощо. Йонізаційна молекулярна система формує електричний струм використовуючи механізми йонізації активної структури швидкими молекулами повітря. Принцип роботи вітрильних молекулярних систем заснований на виникненні спрямованого руху твердотільної частинки з анізотропними властивостями поверхні в ізотропному середовищі швидких молекул повітря. Вітрова п'єзоелектрична система генерації електричного струму заснована на явищі прямого п'єзоелектричного ефекту — виникненні електричної поляризації під дією механічної деформації п'єзоелектричного перетворювача швидкими молекулами повітря. Принцип роботи магнітострикційних молекулярних технологій та систем вітроенергетики базується на використанні зворотного магнітострикційного ефекту Вілларі — зміни намагніченості активного матеріалу під впливом швидких молекул повітря.
Побудова та принцип роботи молекулярної системи енергетики
Узагальнена схема молекулярної системи
Узагальнена схема молекулярної системи виробництва електричного струму включає резервуар RS, робоче тіло WB (флюїд FL) та приймач-перетворювач енергії RC. Кожному стану матерії відповідає своє значення енергії ME. Початкова енергія молекул ME1 надходить на вхід приймача-перетворювача RC. Частина цієї енергії перетворюється в корисну роботу W [Дж], частина енергії розсіюється у вигляді тепла, частина незадіяної енергії молекул ME2 покидає приймач-перетворювач з робочим тілом WB і повертається у резервуар RS. Робота системи W [Дж] використовується для виробництва електричної енергії EEL [Дж]. Роботу вважають додатною, якщо вона здійснюється системою над зовнішніми тілами. В ідеальному випадку, W = EEL [Дж].
Ця схема є дещо спрощеною і не відображає всієї сутності процесів та структури молекулярної системи. Проте, наочність для пояснення і розуміння побудови та роботи молекулярної системи так же важлива, як і математична модель цієї системи.
Розширена функціонально-структурна схема молекулярної системи виробництва електричного струму віддзеркалює основні функціональні частини, їх взаємозв'язки та призначення, зміст та порядок енергетичних перетворень у технологічному процесі генерації а також способи реалізації заданих функцій. Основними складовими частинами молекулярної системи виробництва електричного струму є резервуар RS, робоче тіло WB (флюїд FL), приймач-перетворювач енергії RC та електричний адаптер EA.
Робоче тіло
Робочим тілом WB слугує певний об'єм флюїду FL (рідини чи газової суміші в залежності від типу молекулярної системи енергетики), молекули, атоми, йони та інші малі частинки якого володіють виразними енергетичними властивостями всередині і на кордоні фаз (енергією ME). У цьому відношенні макроскопічні оточуючі ареали — гідросфера (водне середовище) та атмосфера (повітряне газове середовище) є невичерпними природними резервуарами молекулярної відновлюваної енергії. Молекулярні та макроскопічні джерела енергії пов'язані між собою єдиними фізичними законами. Аби розгадати та опанувати потужність океанічних хвиль, слід вивчити окрему краплю води. Для того щоб збагнути силу урагану, необхідно знати поведінку наперстка повітря.
Робоче тіло WB (флюїд FL), будь то рідина, газ чи потік випромінювання, переносить енергію. Це може бути, наприклад, енергія молекул рідини ME, які взаємодіють між собою чи з молекулами поверхні твердого тіла і можуть транспортувати великі об'єми рідини. Потік рідини може транспортувати йони певної речовини, формувати подвійний електричний шар на кордоні твердого тіла з рідиною та утворювати електричні потенціали (наприклад, седиментаційний чи течії). Рідини можуть також різнитися між собою вмістом деяких частинок і володіти, наприклад, , утворювати осмотичні потоки рідини, які володіють високою кінетичною енергією. Йони певної речовини можуть транспортуватися потоком певного флюїду, перерозподілятися в магнітному полі та формувати електрорушійну силу у влаштованих поблизу електродах як це спостерігається у магнітогідродинамічних явищах.
Робочим тілом може слугувати також повітряна суміш тобто певний об'єм швидких молекул повітря, які перебувають у тепловому хаотичному русі. Вони зіштовхуються одна із одною, ударяються в навколишні тіла, постійно змінюють напрям руху, віддають енергію одна одній та зовнішньому оточенню і отримують енергію одна від одної та від зовнішнього оточення, таким чином активно взаємодіють між собою та з навколишніми тілами. В основі такої взаємодії лежать слабкі хімічні зв'язки, які названі на відміну від сильних хімічних зв'язків, що лежать в основі побудови молекул із атомів. Згідно теорії голландського фізика Яна Дидерика ван дер Ваальса сила міжмолекулярної взаємодії F(r) [Н] є рівнодійною або векторною сумою сил тяжіння та відштовхування й залежить від відстані r [м] наступним чином
де а — коефіцієнт.
На певній відстані [м] сили тяжіння молекул урівноважуються силами відштовхування. Сили тяжіння, які убувають обернено пропорційно шостому степеню відстані між молекулами при , звуться силами Ван дер Ваальса. Сили Ван дер Ваальса виникають при взаємодії незаряджених атомів та молекул і викликають когезію та адгезію конденсованої фази а також адсорбцію газів твердим тілом та рідиною.
Процеси, що мають місце в атомі, молекулі, йоні, в хімічній та йонній сполуках, між атомами та молекулами зумовлюють складні перетворення в газовому середовищі, рідині та твердому тілі. При фізичних перетвореннях атоми та молекули речовини не змінюються, трансформується лише їх енергетичний стан. В хімічних реакціях молекули речовини перетворюються на інші молекули, у результаті, виникає нова речовина, її поява супроводжується енергетичними змінами. В процесі подібних перетворень атоми, молекули та йони середовища можуть віддавати свою енергію, наприклад, для виконання відповідної роботи й отримувати іншу енергію зовні: враховуючи свою важливість, природні сили виробили звичай відновлюватися — властивість вельми корисна при виробництві електричної енергії. По суті, маленькі атоми, молекули та йони є поглиначами, накопичувачами, перетворювачами та ваговитими джерелами відновлюваної енергії. А витікає вона зовні під час трансформацій. Однаково правильно буде сказати у рамках наших досліджень, що джерелом молекулярної відновлюваної енергії є фізичні процеси та/або хімічні реакції, які протікають у речовині. Цінність джерела відновлюваної енергії полягає не в кількості у ньому наявних ресурсів, а в швидкості їх відновлення.
Енергетичні перетворення в атомно-молекулярних та йонно-молекулярних системах визначаються часо-просторовими та масо-енергетичними параметрами і характеристиками малих частинок. Час має один вимір, але існування, вимірюване часом, має їх два: одне за одним та воднораз. Мить є існування без жодної тривалості. Вічність є існування з усією тривалістю. У динаміці атомам, молекулам та йонам немає рівних, бо в їх обслуговуванні задіяні могутні сили Всесвіту. Співвідношення між одиницями маси та енергії, необхідні для розуміння нанорозмірів
1 кг = 5,61·1035 еВ = 8,99·1016 Дж = 2,50·1010 кВт·год = 6,02·1026 а. о. м.
1 еВ = 1,78·10–36 кг = 1,60·10–19 Дж = 4,45·10−26 кВт·год = 1,074·10−9 а. о. м.
1 кВт·год = 4,00·10−11 кг = 2,25·1025 еВ = 3,60·106 Дж = 2,41·1016 а. о. м.
Енергетичний еквівалент маси електрона mе = 9,109·10−31 кг = 0,511 МеВ.
Взаємодія молекул характеризується їх потенціальною енергією EP(r) [Дж]. Потенціальна енергія визначається роботою W [Дж], яку необхідно виконати силам F(r) [Н] для того щоб перемістити молекулу з даної точки до безконечності, де вважається, що потенціальна енергія дорівнює нулю, EP(r) = 0. Якщо відстань між двома молекулами змінюється на величину Δr [м], то робота, що виконується, дорівнює ΔW = F(r)·Δr [Дж] і є позитивною. Зростання потенціальної енергії молекул у відповідності із законом збереження енергії супроводжується зменшенням їх кінетичної енергії EК [Дж]. Співвідношення між значеннями потенціальної EP(r) та середньої кінетичної енергії EK молекул визначає агрегатний стан речовини, EK < EP(r) для твердого тіла;
EK ≈ EP(r) для рідини;
EK " EP(r) для газів.
Співвідношення сил взаємодії молекул однієї фази між собою та з молекулами суміжної фази визначає поведінку молекул та їх агрегацій на міжфазній поверхні і, в кінцевому результаті, обумовлює енергетичні перетворення у всьому об'ємі молекулярної системи. У вихідному стані робоче тіло характеризується сумарною енергією молекул ЕIN [Дж], що може уловлюватися приймачем–перетворювачем RC і за певних умов відновлюватися. Нагнітання (відновлення параметрів) робочого тіла здійснюється, наприклад, тиском водяного або повітряного потоків.
Міжфазна поверхня
У дослідженні атомно-молекулярних та йонно-молекулярних систем або просто молекулярних систем, як ми будемо називати подібні утворення в подальшому, велику роль відіграють поняття поверхні та об'єму. Аби пізнати речовину, не обов'язково занурятися в її глибину. Поверхня та об'єм — дві різні просторові характеристики одного і того ж тіла.
Під поверхнею звичайно розуміється межа або край об'ємного тіла, двовимірне топологічне утворення, геометрична фігура, кожна точка якої та її оточення можуть бути відображені у проєкції на площину без розриву. При розгляді властивостей поверхні та її частин у малих проміжках часу поняття неперервності та квантування не суперечать одне одному і пов'язані між собою у просторі та часі. Неперервна лінія складається із окремих дискретних точок. Неперервна поверхня теж складається із сукупності окремих точок. Спорідненість неперервності та квантування відбивається також на фізичних поверхневих явищах. Неперервний рух об'єкта складається із множини окремих стрибків. Точка може рухатися на поверхні лише у двох напрямках. Деталізацію цих доволі абстрактних понять залишимо математикам, там вони знаходили раніше і знаходять до цього часу величезну наснагу. Ми ж під терміном «поверхня» будемо розуміти оболонку певного тіла, місце його контакту з іншими тілами, сукупність точок, розташованих на краю фізичного тіла або як кордон фізичного тіла — у загальному випадку поверхня являє собою деяку деформовану площину.
Під об'ємом будемо розуміти тривимірну частину простору, яка обмежена замкнутою поверхнею. Це може бути порожнина (пустота) або ж наповнення певної форми речовиною: твердим тілом, рідиною, газом або ж плазмою. Об'єм можна представити у вигляді сукупності точок. Геометрично, об'єм можна спроєктувати на поверхню, так він вироджується у поверхню, поверхня — у лінію, лінія — в точку. Об'єм контактує з іншими тілами «поверхнею».
Якщо два тіла привести у контакт, то їх стани будуть змінюватись до тих пір, доки між ними встановиться рівновага. На кордоні тіла, на міжфазній поверхні, його властивості проявляються найбільш чітко. Тут атоми та молекули кожної фази оточені атомами та молекулами своєї та суміжної фаз і проявляють себе з двох сторін — зі сторони об'єму та зі сторони сусідньої речовини. Поверхня відкриває нові відомості про речовину. «Хочу стояти як можна ближче до краю, ризикуючи впасти. Із краю бачиться те, чого не видно із середини». (I want to stand as close to the edge as I can without going over. Out on the edge you see all the kinds of things you can't see from the center (Kurt Vonnegut. Player Piano).
Наше захоплення поверхнею не відкидає нашу відданість об'єму — знання поверхні дозволяє краще зрозуміти і контролювати об'єм. Поверхня — найбільш антагоністична і агресивна частина об'єму. Поверхня демонструє енергію, об'єм нею послуговується.
Деякі молекулярні джерела енергії, які ми будемо розглядати у цій роботі, мають певне відношення до поверхні. Поверхня нас цікавить, перш за все, як міжфазне утворення, кордон між твердим тілом, рідиною та газом. У контексті фізики та хімії поверхні розглядаються також , бо їх робота пов'язана з використанням поверхневих явищ. Увагу дослідників молекулярної гідроенергетики привертають властивості міжфазних поверхонь рідина — тверде тіло та рідина — повітря, у той час як дослідники молекулярної вітроенергетики більше переймаються всім, що має відношення до міжфазної поверхні тверде тіло — повітря.
Приймач-перетворювач
Приймач-перетворювач енергії RC є активною чутливою структурою, яка трансформує енергетичні властивості молекул, атомів, йонів, інших малих частинок робочого тіла в електричну енергію ЕE. Робоче тіло з початковою енергією молекул та атомів ME1 = EIN1 [Дж] всередині та на кордоні фаз може виконати певну роботу W [Дж] і перейти у стан з енергією ME2 = EIN2 [Дж], W = ∆E = EIN1 — EIN2,
Кінцева електрична енергія EEL [Дж] пропорційна зміні енергії ∆E робочого тіла, EEL = k·∆E = k·(EIN1 — EIN2) [Дж], де EIN1, EIN2 [Дж] — сумарна енергія частинок робочого тіла у початковому та кінцевому станах. Коефіцієнт пропорційності k характеризує ефективність енергетичних перетворень і зветься коефіцієнтом корисної дії приймача-перетворювача RC.
Електричний адаптер
Електричний адаптер ЕА є пристроєм, який доводить параметри електричного струму (силу струму I [А], напругу U [В] та частоту f [Гц]) до необхідних стандартів, прийнятних для споживача та/або для спрямування в об'єднану електричну мережу EN. Він може поєднувати в собі функції інвертора.
Молекулярна енергетична система функціонує наступним чином. Робоче тіло WB (флюїд FL) з початковою внутрішньою енергією молекул ME1 = EIN1 [Дж] виконує роботу W [Дж] і переходить у стан з енергією ME2 = EIN2. Приймач-перетворювач RC трансформує енергію флюїду ME в електричну енергію EE, скажімо, шляхом утворення вільних електричних зарядів, електричного потенціалу й вихідного електричного струму І (EC). Параметри електричної енергії доводяться в електричному адаптері EA до необхідних стандартів, і струм спрямовується споживачам та/або в електричну мережу EN.
Робота W [Дж], яка виконується молекулярною енергетичною системою як термодинамічним утворенням при переході його з одного енергетичного стану до іншого, сумарна енергія частинок робочого тіла у початковому EIN1 [Дж] та кінцевому EIN2 [Дж] станах, кінцева електрична енергія EEL [Дж], яка отримується трансформацією енергії флюїду у вільні електричні заряди, в електричний потенціал та електричний струм І (EC), визначаються, наприклад, через термодинамічні параметри та характеристики цієї системи.
У залежності від агрегатного стану речовини можуть бути використані прямі чи багатоетапні процеси енергетичних перетворень при виробництві електричної енергії. Прямі та багатоетапні способи незмінно конфліктують між собою в молекулярних технологіях. Вибираючи між одним енергетичним перетворенням та їх низкою, слід пам'ятати, що будь-яке перетворення призводить до втрати частини енергії. Прямі способи виробництва електричної енергії мають істотний пріоритет перед іншими у молекулярних технологіях енергетики, бо запорукою прямого виробництва електричної енергії є перебування у русі всього, від атомів, молекул та йонів до макроскопічних тіл. Як не існують без руху електрони, протони та інші мінливі складові частинки атомів та молекул, мусимо сказати, що немає також жодного утворення кінцевої маси та розмірів, котре могло б існувати у стані спокою.
Термодинамічні параметри молекулярних систем
Молекулярна енергетична система використовує в своїй роботі сукупність малих частинок речовини або ж випромінювань, які оточені у просторі деякою уявною або ж реальною поверхнею, перебувають у взаємодії з навколишніми тілами і можуть обмінюватися із ними енергією та частинками, тож, вона є термодинамічним утворенням і може розглядатися в рамках. термодинаміки. На відміну від теплового двигуна при вивченні молекулярної енергетичної системи теплота розглядається лише як одна із багатьох форм енергії, що спроможні виконати роботу по отриманню електричної енергії.
Поведінка молекулярної енергетичної системи характеризується певними термодинамічними кількісними параметрами стану, які розкривають потоки енергії та частинок, основними з яких є тиск р [Па], температура ТК [К], густина ρ [кг/м3], об'єм V [м3], питомий об'єм υ [м3/кг] та теплоємність. У молекулярній фізиці для пояснення густини речовини оперують також поняттями моля, молекулярної (молярної) маси, атомної одиниці маси та молярного об'єму. Моль — одиниця кількості речовини, яка включає 6,0222·1023 хімічних одиниць або число Авогадро NА, NА = 6,0222·1023 моль−1. Молярна маса M [кг/моль] — фізична величина, що визначається як маса речовини m [кг], поділена на кількість речовини nM [моль]. Атомна одиниця маси [кг] або Дальтон [Да] — це маса одного протона або нейтрона. Вона еквівалентна 1 г/моль і чисельно дорівнює одній дванадцятій маси нейтрального атома вуглецю 12С у стані спокою. Об'єм, який займає один моль речовини, називається молярним об'ємом VМ [м3/моль]. Число молів nM [моль] та число молекул N зв'язані між собою співвідношеннями, nM = m/М = V/VМ;
N = nM·NА = (V/VМ) ·NА = V·NL,
де NL [м−3] — стала Лошмідта, NL = 2,6868·1025 м−3.
Окрім вказаних інтенсивних термодинамічних параметрів, використовуються також спеціальні екстенсивні параметри, такі як внутрішня енергія UIN [Дж], ентальпія H [Дж], ентропія S [Дж∙К−1], вільна енергія Гельмгольца FH [Дж] та вільна енергія Ґіббза GS [Дж], які в сукупності складають функції стану, що характеризують макроскопічні фізичні властивості системи і взаємопов'язані з іншими термодинамічними параметрами певними рівняннями в рамках законів (початків) термодинаміки. Знаючи параметри стану системи в деякий вихідний момент часу, можна передбачити її поведінку в наступні періоди.
Коли внутрішню енергію системи визначити неможливо, обмежуються визначенням зміни внутрішньої енергії ΔUIN [Дж] вказаної системи при дотриманні першого закону термодинаміки, ЕEX = ΔUIN +W,
де ЕEX [Дж] — зовнішня енергія, яка підведена до системи, W [Дж] — робота, яка виконується системою.
З іншої сторони, внутрішня енергія закритої системи UIN [Дж] може змінюватись за рахунок передачі системі деякої кількості теплоти Q [Дж] або здійснення над системою певної роботи W [Дж]; при цьому теплота Q [Дж] може переходити в роботу W [Дж], і робота може переходити в теплоту, Q = ΔUIN +W.
або у нескінченно малих величинах dUIN [Дж], dUIN = δQ — δW.
Рівняння представляє собою диференціальний запис першого начала термодинаміки для закритої системи.
Нескінченно мала кількість роботи δW [Дж] може складатися із суми нескінченно малих кількостей роботи різних видів δWі [Дж],
δW = δW1 + δW2 + δW3 +…+ δWі.
Різновидами робіт можуть бути, наприклад, механічна робота δWMEX [Дж], перенесення електричного заряду δWEL [Дж], робота поверхневого натягу δWST [Дж], δWM [Дж] тощо,
δW = δWMEX + δWEL + δWST + δWM
Нескінченно малу кількість роботи кожного виду можна представити у вигляді добутку узагальненої сили на приріст відповідної узагальненої координати,
δW = p·dV + φ·dq + γ·dA + m·g·dh + H·dM, де φ [В] — різниця потенціалів, під дією якої відбувається переміщення заряду dq [Кл]; m [кг] — маса речовини, g [м·с−2] — прискорення вільного паління на даній місцевості, g = 9,81 м·с−2, h [м] — переміщення компонентів системи по висоті, γ [Н/м] — поверхневий натяг, під дією якого змінюється площа поверхні dA [м2]; H [A/м] — напруженість магнітного поля, під дією якої змінюється намагніченість dM [A/м].
Внутрішня енергія термодинамічної системи не залишається незмінною при перебігу термодинамічних процесів. Напрямок самочинного перебігу процесів визначається розсіюванням енергії. Кількісною мірою цього розсіювання є ентропія S [Дж∙К−1]. Поняття ентропії введено німецьким фізиком Рудольфом Клаузіусом, dS ≥ δQ/T.
Знак (=) є справедливим для зворотних процесів, знак (>) — для незворотних. Для ізольованих процесів dS ≥ 0. Для зворотного процесу справедливим є співвідношення δQ = T∙dS [Дж]. Враховуючи рівняння першого начала термодинаміки для випадку ексклюзивного виконання механічної роботи, отримуємо фундаментальне рівняння термодинаміки, dUIN = T∙dS − р∙dV. У разі виконання всіх видів робіт маємо, dUIN = T∙dS − р∙dV + φ·dq + γ·dA + m·g·dh + H·dM.
Фактично, кожну із узагальнених сил можна представити у вигляді часткової похідної від внутрішньої енергії UIN [Дж], Т = ∂UIN/∂S [K];
p = ∂UIN/∂V [Па];
V = ∂UIN/∂p [м3].
Для відкритих систем рівняння (1.32) включає ще одну складову Σμi·dNi,
dUIN = T∙dS − р∙dV + Σμi·dNi [Дж], де T [К] — температура, р [Па] — тиск, S [Дж/К] — ентропія, V [м3] — об'єм, μi [Дж/моль] — хімічний потенціал i-ї частинки, Ni — число частинок.
З урахуванням всіх видів робіт, dUIN = T∙dS − р∙dV +φ·dq + γ·dA + m·g·dh + H·dM + Σμi·dNi.
Для відкритих систем вводиться поняття ентальпії H [Дж] — термодинамічного потенціалу, котрий дорівнює сумі внутрішньої енергії системи UIN [Дж] та добутку тиску р [Па] на об'єм V [м3], H = UIN + р·V.
При постійному тиску зміна ентальпії dH [Дж] дорівнює зміні внутрішньої енергії системи T·dS [Дж] плюс робота, яка виконана при зміні тиску V·dp [Дж], dH –T∙dS ≤ 0.
Зміна внутрішньої енергії призводить до зміни ентропії та зовнішніх параметрів. Якщо система знаходиться при сталих температурі та тиску, то кількість теплоти, отриманої нею в певному процесі, дорівнює зміні її ентальпії H [Дж] тобто δQ = dH [Дж].
Тоді нерівність можна переписати так
dH = T·dS + V·dp.
За умови сталої температури ліва частина нерівності являє собою диференціал вільної енергії Гіббза GS [Дж], яка є функцією стану системи, dGS = dH − T∙dS
або
dGS = dH − T∙dS ≤ 0.
Спонтанні процеси при постійних температурі та тиску звичайно відбуваються зі скороченням вільної енергії Гіббза системи. Система у стані рівноваги володіє мінімальною вільною енергією Гіббза. Для зворотного ізотермічного процесу та сталого тиску потенціал Гіббза dGS [Дж] описується виразом: dGS = dH + р∙dV − T∙dS =
= δQ + δW + р∙dV − T∙dS [Дж].
Використовуючи перетворення Лежандра, знаходимо диференціал вільної енергії Гіббза dGS,
dGS = d(Н − T∙S) =
= T∙dS + V∙dp − T∙dS − S∙dT =
= V∙dp − S∙dT [Дж].
Як видно із рівняння, вільна енергія Гіббза — ізобарно-ізотермічний потенціал. Для відкритих систем рівняння включає ще одну складову Σμi·dNi,
dGS = V∙dp − S∙dT + Σμi·dNi [Дж].
Цей вираз називається фундаментальним рівнянням Гіббза для фізичних та хімічних систем.
Зміна енергії Гіббза] з температурою, тиском або кількістю молів відповідної речовини може бути представлена у вигляді часткових похідних: S = −∂GS/∂Т [Дж/К];
V = ∂GS/∂р [м3];
μi = ∂GS/∂Ni [Дж/моль].
Хімічний потенціал μi [Дж/моль] демонструє спроможність системи виконати певну роботу. Чисельно він дорівнює енергії, яку слід вкласти, щоб система увійшла в стан термодинамічної рівноваги після включення у неї нового компонента.
Для однокомпонентної системи вільна енергія Гіббза 1 молю чистої речовини є хімічним потенціалом цієї речовини. Враховуючи (1.50), отримуємо
dGS = μ·dN.
Після інтегрування виразу (1.50) отримуємо вільну енергію Гіббза GS [Дж] для одного моля речовини, GS = μ.
Тепер читачу, хочеться думати, стає зрозумілим, чому ми приділили так багато уваги термодинамічним потенціалам Гіббза. Вони є кількісними і якісними показниками фундаментального термодинамічного рівняння і дозволяють не тільки всебічно характеризувати енергетичний стан системи із врахуванням молекулярної структури робочого тіла, але й визначають напрямок перебігу процесів. У певних випадках поведінку системи можна розглядати у геометричному виразі, тоді зміна термодинамічних потенціалів задається відповідними координатними осями, а підрахунок ведеться з початку цієї системи координат. У разі інтеграції кількох явищ в одній системі координат, термодинамічна система є багатовимірною. Викладення фізичних основ часто спрощуються за допомогою математичного ускладнення, тож, спасіння фізика шукає на берегах математики. Використовуючи формули, математика дозволяє спростити та упорядкувати текст краще, ніж це робить синтаксис чи орфографія. Довершена формула може розглядатися як викінчений різновид лаконічного тексту і не потребує пояснень — якщо для пояснення слів потрібні інші слова, то перші були пустими. З іншого боку, перенасичення тексту формулами створює певні складнощі в сприйняті матеріалу. Через умовність математична формула не може бути повною правдою, а лише напівправдою.
Молекули та атоми утворюють власні енергетичні поля і взаємодіють із зовнішніми полями. Розвиток квантової фізики виявив відносність поділу між речовиною та полем. Тільки на макрорівні поля вважаються беззмінними середовищами, на мікрорівні має враховуватись їх квантова природа.
Взаємодія між тілами та частинками, що мають електричний заряд, відбувається через електромагнітне поле, пов'язане з протонами та електронами, що входять до складу атомів, молекул та йонів. Електромагнітні сили значно перевищують гравітаційні. Електромагнітною зветься енергія, накопичена електромагнітним полем; відповідно, електростатичною зветься енергія, накопичена електростатичним полем, і магнітною зветься енергія, накопичена магнітним полем.
Енергетичний стан деякої точки простору, розташованої на відстані r [м] від заряду q [Кл] визначається електричним потенціалом φ(r) [В],
φ(r) = q/(4∙π∙ε0∙εr∙r), де ε0 [Ф/м] — діелектрична проникність вакууму, ε0 = 8,8542·10−12 Ф/м, εr — відносна діелектрична проникність середовища.
Потенціал, сформований системою зарядів, визначається як скалярна сума в скалярному полі окремих потенціалів, або ж як векторна сума у векторному полі.
Потенціальна енергія UEP [Дж] заряду q0 [Кл], який розміщений в електростатичному полі другого заряду q [Кл] із електричним потенціалом φ(r) [В], дорівнює добутку заряду q0 на електричний потенціал φ(r), UEP = q0∙φ(r).
Потенціальна енергія UEP [Дж] системи двох точкових зарядів q1 та q2 [К] прямо пропорційна добутку зарядів і обернено пропорційна відстані між ними r [м], UEP = (q1∙q2)/(4∙π∙ε0∙εr∙r).
Потенціальна енергія системи нерухомих зарядів, що формують електростатичне поле, дорівнює енергії взаємодії цих зарядів.
Що стосується електростатичної взаємодії, то згідно закону Кулона сила взаємодії FC [Н] двох точкових зарядів q1 [Кл] та q2 [Кл] прямо пропорційна добутку величин цих зарядів і обернено пропорційна квадрату відстані r [м] між ними, FC = (q1∙q2)/(4∙π∙ε0∙εr∙r2).
У твердому тілі, рідині чи газі електричні та магнітні сили проявляються однаково. Те, що рідина і тверді частинки взаємодіють між собою, утворюючи на кордоні фаз подвійний електричний шар, можна пояснити спорідненістю Природи: рідина колись була газом, кристал — рідиною. Кожна речовина, будь то газ, «мокра» рідина чи тверде тіло, складається із «сухих» електричних частинок, зв'язаних між собою в атоми, молекули та квазікристали різного роду електричними, внутрішньоядерними та гравітаційними силами. Якраз ці електричні частинки та сили, які їх з'єднують, можуть бути використані для прямого виробництва електричної енергії. Кожен акт взаємодії молекул рідини між собою, молекул рідини та твердого тіла подібний іскрі, і хай нікого не введе в оману фазний стан речовини. Жодний атрибут рідини не завадить цій іскрі. Якщо правильно скористатися електричними частинками та електричними силами в атомі та молекулі, електричними силами між атомами та молекулами а також гравітаційними та магнітними силами, ці частинки чи сили, які їх супроводжують, пройдуть через всяку матерію, навіть не торкнувшись її, як і світло доходить усюди раніше будь-якого банального дотику.
Енергетичні перетворення в молекулярній енергетиці виконуються маніпуляцією окремими атомами, молекулами, йонами та іншими співставними з ними по розмірам і масі наноскопічними (розміром ≤ 100 нм) частинками речовини. Атоми та молекули є типовими наночастинками. Перетворення енергії проходять з надвисокими фемптосекундними швидкостями. Для того, щоб скористатись потаєними у мікросвіті грандіозними ресурсами чистої енергії, у рамках молекулярної енергетики застосовуються споріднені цьому мікросвітові молекулярні наноенергетичні технології (грец. τεχνολογια або τεχνολογο — майстерність, техніка) виробництва, накопичення, транспортування та розподілу енергії. Якраз з впровадженням молекулярних технологій багато хто з фахівців пов'язує перспективи розвитку електроенергетики. Атом та молекула — найбільш досконалі енергетичні системи. Проблема полягає у тому, аби не загубити їх унікальні властивості при утворенні потужної молекулярної енергетичної системи. Досконала енергетична система зберігає в собі виняткові атрибути атома та молекули. Поважне ставлення до енергетичних перетворень дозволяє запобігти можливим катастрофічним наслідкам.
Див. також
Примітки
- Сидоров, В.І. (2020). Молекулярна енергетика. Теорія та технічні рішення (Укр.). Черкаси: Вертикаль, видавець Кандич С.Г. с. 486. ISBN .
- Сидоров (2018). Від макроскопічних до молекулярних технологій відновлюваної енергії. Промислова електроенергетика та електротехніка — № 3. — С. 34—42. (укр.).
{{}}
:|access-date=
вимагає|url=
() - Сидоров, Василь (2020). Молекулярна енергетика. Теорія та технічні рішення (укр.). Черкаси: Вертикаль, видавець Кандич С. Г. с. 486 с. ISBN .
{{}}
: Перевірте значення|isbn=
: недійсний символ () - Hauksbee F. (1709). Physico-mechanical Experiments on Various Subjects (англ.). London: printed by R. Brugis. с. 139-169.
- II. An account of some experiments shown before the Royal Society; with an enquiry into the cause of the ascent and suspension of water in capillary tubes. Philosophical Transactions of the Royal Society of London. Т. 30, № 355. 31 грудня 1719. с. 739—747. doi:10.1098/rstl.1717.0026. ISSN 0261-0523. Процитовано 26 червня 2020.
- Bernoulli D. (1738). Hydrodynamica, sive de Viribus et Motibus Fluidorum commentarii. Opus Academicum (лат.). Strasbourg: Dulsecker.
- Young, Tomas (1 січня 1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London. – 95. – Р. 65-87. (англ.). Процитовано 1805.
- Marquis de Laplace, Pierre Simon (1805). Traité de Mécanique Céleste, volume 4 Supplément au dixième livre du Traité de Mécanique Céleste (французька) . Paris, France: Courcier. с. 1—79.
- Gauss, Carl Friedrich (1877). Principia generalia theoriae figurae fluidorum in statu aequilibrii. Werke. Berlin, Heidelberg: Springer Berlin Heidelberg. с. 287—292. ISBN .
- Hagen, G. (1839). Ueber die Bewegung des Wassers in engen cylindrischen Röhren. Annalen der Physik und Chemie. Т. 122, № 3. с. 423—442. doi:10.1002/andp.18391220304. ISSN 0003-3804. Процитовано 26 червня 2020.
- Poiseuille, J. L. M. (1841). Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres. Mémoire lu (3e partie, suite). Comptes rendus hebdomadaires des séances de l'Académie des Sciences. – Vol. 12. – Р. 112-115. (фр.).
{{}}
:|access-date=
вимагає|url=
() - Neumann F., Wangerin, A. ed. (1894). Vorlesungen über die Theorie der Capillarität (нім.). Leipzig: B. G. Teubner.
- Navier, C. L. M. H. (1833). Résumé des leçons données à l'École des ponts et chaussées sur l'application de la mécanique à l'Établissement des constructions et des machines, tome 2, Deuxième partie, leçons sur le mouvement et la résistance des fluides, la conduite et la distribution des eaux, Troisième partie, leçons sur l'établissement des machines (фр.). Paris: chez Carilian-Gœury.
- Navier C. L. M. H. (1833.). Résumé des leçons données à l'École des ponts et chaussées sur l'application de la mécanique à l'Établissement des constructions et des machines, tome 1, Première partie contenant des leçons sur la résistance des matériaux, et sur l'établissement des constructions en terre, en maçonnerie et en charpente (фр.). Paris: chez Carilian-Gœury.
- Stokes G. G. (1864). On the discontinuity of arbitrary constants which appear in divergent developments. Transactions of the Cambridge Philosophical Society. – Vol. 10. Part I. – Р. 105-124, 125-128. (англ.).
{{}}
:|access-date=
вимагає|url=
() - Stokes G. G. (1856). On the numerical calculation of a class of definite integrals and infinite series. Transactions of the Cambridge Philosophical Society. – Vol. 9. Part I. – Р. 166-188. (англ.).
{{}}
:|access-date=
вимагає|url=
() - Boyle R. (1661). The Sceptical Chymist (англ.). London.
- Boyle R. (1666). Origin of Forms and Qualities according to the Corpuscular Philosophy. (A continuation of his work on the spring of air demonstrated that a reduction in ambient pressure could lead to bubble formation in living tissue. This description of a viper in a vacuum was the first recorded description of decompression sickness.) (англ.).
- Boyle R. (1674). wo volumes of tracts on the Saltiness of the Sea, Suspicions about the Hidden Realities of the Air, Cold, Celestial Magnets (англ.).
- Boyle, R. (1660). New Experiments Physico-Mechanical: Touching the Spring of the Air and their Effects (англ.). Oxford, H-Hall.
- Boyle R. A (1669). A Continuation of New Experiments Physico-mechanical, Touching the Spring and Weight of the Air, and Their Effects (англ.). Oxford, H-Hall. с. 198.
- Mariotte E. (1679). Essais de Physique, ou mémoires pour servir à la science des choses naturelles "Second essai. De la nature de l'air" (фр.). Paris: E. Michallet.
- Humboldt A., Gay-Lussac J. L. (1804). Mémoires sur l'analyse de l'air atmosphérique (фр.). Paris.
- Gay-Lussac J. L. (1827—1828). Cours de physique (фр.). Paris. с. 562 p.
- Gay-Lussac J. L. (1802). Recherches sur la dilatation des gaz et des vapeurs. Annales de chimie. – 43. – Р. 137-175. (фр.).
{{}}
:|access-date=
вимагає|url=
() - Avogadro, A. (1811). Essai d'une manière de déterminer les masses relatives des molécules élémentaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons. Journal de Physique, de Chimie et d'Histoire naturelle. – 73. – Р. 58-76. (фр.).
{{}}
:|access-date=
вимагає|url=
() - Clapeyron E. (1834). Mémoire sur la puissance motrice de la chaleur. Journal de l'École Polytechnique. – XIV. – Р. 153-90. (фр.).
{{}}
:|access-date=
вимагає|url=
() - Mayer J. R. (1867). Die Mechanik der Wärme (нім.). с. 294 р.
- Mayer J. R. (1842). Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie. – 42 (2). – Р. 233-240. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Waterston J. J. (1843). Thoughts on the Mental Functions (англ.).
- Krönig A. (1856). Grundzüge einer Theorie der Gase. Annalen der Physik. – Vol. 99 (10): – Р. 315-322. (Нім.) .
{{}}
:|access-date=
вимагає|url=
() - Clausius R. (1850). Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Annalen der Physik. – Vol. 79. – Р. 368-397, 500-524. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Clausius R. (1857). Über die Art der Bewegung, die wir Wärme nennen. Annalen der Physik. – Vol. 100. – Р. 353-379. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Maxwell J. C. (1867). On the Dynamical Theory of Gases. Philosophical Transactions of the Royal Society of London. – Vol. 157. – 49 р. (англ.).
{{}}
:|access-date=
вимагає|url=
() - Boltzmann L. E. (1871). Analytischer Beweis des zweiten Haubtsatzes der mechanischen Wärmetheorie aus den Sätzen über das Gleichgewicht der lebendigen Kraft (нім.).
- Boltzmann L. E. (1871). Über das Wärmegleichgewicht zwischen mehratomigen Gasmolekülen (нім.).
- Thomson W. (1851). On the dynamical theory of heat; with numerical results deduced from Mr. Joule's equivalent of a thermal unit and M. Regnault's observations on steam. Math. and Phys. Papers. – Vol. 1. – Р. 175-183. (англ.).
{{}}
:|access-date=
вимагає|url=
() - Van der Waals J. D. (1873). Over de Continuiteit van den Gas- en Vloeistoftoestand (on the continuity of the gas and liquid state). PhD thesis (нім.). Leiden.
- Einstein A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten. Teilchen. Annalen der Physik. – Vol. 17 (8). – Р. 549-560. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Smoluchowski M. (1906). Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Annalen der Physik. – Vol. 21 (14). – Р. 756-780. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Galvani L. (1791). De viribus electricitatis in motu musculari commentarius. De Bononiensi Scientiarum et Artium Instituto atque Academia Commentarii. – № 7. – Р. 363-418. (італ.).
{{}}
:|access-date=
вимагає|url=
() - Volta A. (1777). Lettere del Signor Don Alessandro Volta Sull. Aria Inflammabile Nativa delle Paludi [Letters of Signor Don Alessandro Volta … on the flammable native air of the marshes] (італ.). Milan: Giuseppe Marelli.
- Ampère A. M. (1826). Description d'un appareil électro-dynamique (фр.). Paris: Bachelier.
- Ampère A. M. (1834). Essai sur la philosophie des sciences, ou Exposition analytique d'une classification naturelle de toutes les connaissances humaines (фр.). Paris: Bachelier.
- Ampère, André-Marie (1827). Théorie mathématiques des phénomènes électro-dynamiques, uniquement déduite de l'expérience (фр.). Paris: Firmin Didot.
- Ohm G. S. (1827). Die galvanische Kette. Mathematisch Bearbeitet (нім.).
- Ohm G. S. (1826). Bestimmung des Gesetzes, nach welchem Metalle die Contactelektricitätleiten (нім.).
- Faraday M. (1832). Experimental Researches in Electricity. First Series. Philosophical Transactions of the Royal Society. – Р. 125-162. (англ.).
{{}}
:|access-date=
вимагає|url=
() - Maxwell J. C. (1865). A Dynamical Theory of the Electromagnetic Field. Phil. Trans. R. Soc. Lond. – Vol. 155. – Р. 459-512. (англ.).
{{}}
:|access-date=
вимагає|url=
() - Reuss, F. F. (1808). Notice sur un nouvel effet de l'électricité galvanique. // Mémoires de la Societé Impériale des Naturalistes de Moscou. Mémoires de la Societé Impériale des Naturalistes de Moscou. – Vol. 2. – Р. 327-337. (фр.).
{{}}
:|access-date=
вимагає|url=
() - Quincke G. H. (1859). Ueber eine neue Art electrischer Ströme. Ann. Phys. Chem. – Vol. 107. – Р. 1-47. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Helmholtz H. (1879). Studien über electrische Grenzschichten. Annalen der Physik. – Vol. 243, Issue 7. – Р. 337-382. (Нім.) .
{{}}
:|access-date=
вимагає|url=
() - Gouy M. (1910). Sur la constitution de la charge électrique à la surface d'un électrolyte. J. de Physique Théorique et Appliquée. – Vol. 9. – Р. 457-468. (Фр.) .
{{}}
:|access-date=
вимагає|url=
() - Chapman D. J. (1913). A contribution to the theory of electrocapillarity. Philos. Mag. – Vol. 25. – Р. 475-481. (англ.).
{{}}
:|access-date=
вимагає|url=
() - Stern O. (1924). Zur Theorie der elektrolytischen Doppelschicht. Zeitschrift für Elektrochemie. – Vol. 30. – Р. 508-516. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Contribution à la théorie de l’endosmose électrique et de quelques phénomènes corrélatifs. Bulletin international de l’Académie des Sciences de Cracovie. – Vol. 8. – Р. 182-200. (Фр.) . 1903.
{{}}
:|access-date=
вимагає|url=
() - Gibbs, J. W. (1876). On the Equilibrium of Heterogeneous Substances. Transactions of the Connecticut Academy of Sciences (англ.).
{{}}
:|access-date=
вимагає|url=
() - Hoff J. H. van't. (1884). Etudes de dynamique chimique (фр.). Amsterdam: Frederik Muller Publisher. с. 242.
- Arrhenius S. (1896). On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (fifth series). – April. – Vol. 41. – Р. 237-275. (англ.).
{{}}
:|access-date=
вимагає|url=
() - Arrhenius S. (1884). Recherches sur la conductivité galvanique des électrolytes, doctoral dissertation (фр.). Stockholm: Royal publishing house, P.A. Norstedt & söner. с. 89.
- Langmuir I. (1906). The Constitution and Fundamental Properties of Solids and Liquids: II. Liquids. Journal of the American Chemical Society. – Vol. 39 (9). – Р. 1848-1906. (англ.).
{{}}
:|access-date=
вимагає|url=
() - Rutherford E. (1913). Radioactive Substances and their Radiations (англ.). Cambridge: Univ. Press. с. 734.
- Rutherford E. (1906). Radioactive Transformations (англ.). New York: C. Scribner& Sons. с. 319.
- Rutherford E. (1905). Radio-activity. 2nd ed (англ.). Cambridge University Press. с. 609.
- Bohr N. (1913). On the Constitution of Atoms and Molecules, Part I. Philosophical Magazine. – Vol. 26. – Р. 1-24. (англ.).
{{}}
:|access-date=
вимагає|url=
() - On the Constitution of Atoms and Molecules, Part III. Systems containing several nuclei. Philosophical Magazine. – 26 (155). – Р. 857-875. (англ.). 1913.
{{}}
:|access-date=
вимагає|url=
() - Bohr N., Kramers H. A., Slater J. C. (1924). The Quantum Theory of Radiation. Philosophical Magazine. – 47 (6). – Р. 785-802. (англ.).
{{}}
:|access-date=
вимагає|url=
() - Bohr N. (1913). On the Constitution of Atoms and Molecules, Part II. Systems Containing Only a Single Nucleus. Philosophical Magazine. – 26 (153). – Р. 476-502. (англ.).
{{}}
:|access-date=
вимагає|url=
() - Pauli W. (1925). Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren (On the Connexion between the Completion of Electron Groups in an Atom with the Complex Structure of Spectra). Zeitschrift für Physik. – 31. – Р. 765-783 (нім.).
{{}}
:|access-date=
вимагає|url=
() - de Broglie L. (1926). Ondes et Mouvements (фр.). Paris: Gauthier-Villars.
- de Broglie L. (1925). Recherches sur la théorie des quanta. Annales de Physique. –10 (3). – Р. 22-128 (фр.).
{{}}
:|access-date=
вимагає|url=
() - Schrödinger E. (1926). Quantisierung als Eigenwertproblem (Quantization as a Problem of Eigenvalues). Annalen der Physik. – 384. – Р. 361-377. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Schrödinger E. (1927). Abhandlungen zur Wellenmechanik (нім.). Leipzig.
- Schrödinger E. (1926). An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review. – 28 (6). – Р. 1049-1070 (англ.).
{{}}
:|access-date=
вимагає|url=
() - Born M., Heisenberg W., Jordan P. (1926). Zur Quantenmechanik II (On quantum mechanics II)557-615. Zeitschrift für Physik. – Vol. 35, № 8-9. – P. 557-615. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Heisenberg W. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik (The Actual Content of Quantum Theoretical Kinematics and Mechanics). Zeitschrift für Physik. – Vol. 43, № 3-4. – P. 172-198. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Heisenberg W. (1925). Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen (Quantum theoretical re-interpretation of kinematic and mechanical relations). Zeitschrift für Physik. – Vol. 33, № 1. – P. 879-893. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Heisenberg W., Pauli W. (1929). Zur Quantendynamik der Wellenfelder (On the quantum dynamics of wave fields). Zeitschrift für Physik. – Vol. 56, № 1-2. – P. 1-61. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Heisenberg W. (1928). Zur Theorie des Ferromagnetismus (On the theory of ferromagnetism). Zeitschrift für Physik. – Vol. 49, № 9-10. – P. 619-636. (нім.).
{{}}
:|access-date=
вимагає|url=
() - Dirac P. A. M. (1926). On the Theory of Quantum Mechanics. Proceedings of the Royal Society. – 112 (762). – P. 661-677 (Англ.) .
{{}}
:|access-date=
вимагає|url=
() - Dirac P. A. M. (1930). The Principles of Quantum Mechanics (Англ.) . Oxford: Clarendon Press.
- Dirac, P. A. M. (1931). Lectures on quantum mechanics (Англ.) .
- Dirac, P. A. M. (1928). The Quantum Theory of the Electron. Proceedings of the Royal Society of London. – 117 (778). – P. 610-624 (Англ.) .
{{}}
:|access-date=
вимагає|url=
()
Джерела
- Keesom, W.H. The second virial coefficient for rigid cpherical molecules whose mutual attraction is equivalent to that of a quadruplet placed at its center // Proc. R. Acad. Sci. — 1915.– Vol. 18. — Р. 636—646.
- Debye, P. Zur Theorie der spezifischen Waerme // Annalen der Pyisik. Leipzig. – 1912. — 39(4). — P. 789—839.
- Heitler, W. and London, F. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik // Zeitschrift für Physik. — 1927. — 44. — Р. 455472.
- Jones, J. E. On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 1924. — 106 (738). — Р. 441—462.
- Jones, J. E. On the Determination of Molecular Fields. II. From the Equation of State of a Gas // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 1924. — 106 (738). — Р. 463.
- Jones, J. E., Ingham, А. Е. On the Calculation of Certain Crystal Potential Constants, and on the Cubic Crystal of Least Potential Energy // Proceedings of the Royal Society. A. — 1925. — 107. — Р. 636—653.
- Garner, W. E., Lennard-Jones, J. E. Molecular Spectra and Molecular Structure. A general discussion // Transactions of the Faraday Society. — 1929. — Т. 25. — Р. 611—627.
- Lennard-Jones, J. E. The electronic structure of some diatomic molecules // Transactions of the Faraday Siciety. 1929. — Vol. 25. — P. 668—686.
- Lennard-Jones, J. E. Wave Functions of Many-Electron Atoms // Mathematical Proceedings of the Cambridge Philosophical Society. — 1931. — 27 (3). — Р. 469.
- Lennard-Jones, J. E. The electronic structure and the interaction of some simple radicals // Transactions of the Faraday Society. — 1934. — Vol. 30. — Р. 70-148
- Lennard-Jones, J. E. The Electronic Structure of Some Polyenes and Aromatic Molecules. I. The Nature of the Links by the Method of Molecular Orbitals // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 1937. — 158 (894). — Р. 280.
- Lennard-Jones, J. E. The Molecular Orbital Theory of Chemical Valency. I. The Determination of Molecular OrbitalsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 1949. — 198 (1052).
- Hall, G. G., Lennard-Jones, J. E. The Molecular Orbital Theory of Chemical Valency. III. Properties of Molecular Orbitals // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 1950. — 202 (1069). — Р. 155.
- Lucas, R. Ueber das Zeitgesetz des Kapillaren Aufstiegs von Flussigkeiten // Kolloid Z. — 1018. — Vol. 23(1). — P. 15-22.
- Washburn, E.W. The Dynamics of Capillary Flow // Physical Review. — 1921..- Vol. 17(3). — P. 273—283.
- Rideal, E. An Introduction to Surface Chemistry. — Cambridge University Press, 1926. 346 p.
- Rideal, E. Bakerian Lectures. On Reactions in Monolayers // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 1951. — Vol. 209(1099). — P. 321—446.
- Hamraoui, A. and Nylander, T. Analytical Approach for the Lucas–Washburn Equation // Journal of Colloid and Interface Science. — 2002. — Vol. 250. — Р. 415—421.
- Brunauer, S., Emmet, P.H., Teller, E. Adsorption of Gases in Multimolecular Layers // Journal of American Chemical Society. — 1938. — Vol. 60(2). — P. 309—319.
- Fan, X., Phan-Thien, N., Tanner, R. Numerical Study on Some Rheological Problems of Fibre Suspensions: Numerical Simulations of Fibre Suspensions. — Germany: VDM Verlag Dr Muller, 2008. — 188 р.
- Zheng, R., Tanner, R., Fan, X. Injection Molding: Integration of Theory and Modeling Methods. — Heidelberg Dordrecht London New York: Springer, 2011. — 187 p.
- Warrick, A. W. Soil Water Dynamics. — Oxford University Press, 2003. — 416 р.
- Devereux, D. F., de Bruin, P. L. Interaction of Plane Parallel Double Layers. — Massachusetts Institute of Technology: The MIT Press, 1963. — 361 р.
- Haydon, D. A. The Electrical Double Layer and Electrokinetic Phenomena. In: Recent Progress in Surface Science / Ed. by Danielly J. F., Panknurst K. G. A., Ridiford A. C. N. Y.: Academic Press, 1964. — Р. 94-157.
- Levine, S., Neale, G., Epstein, N. The prediction of electro-kinetic phenomena with in multiparticle systems. 2. Sedimentation potential // J. Coll. Int. Sci. — 1976. Vol. 57, № 3. — Р. 424—437.
- Lyklema, J. Fundamentals of Interface and Colloid Science, Solid–Liquid Interfaces. Vol. 2. New York: Academic Press, 1995. — 768 p.
- Ajdari, A. Electroosmosis on inhomogeneously charged surfaces // Phys. Rev. Lett. — 1995. — Vol. 75. — Р. 755—758.
- Ajdari, A. Pumping liquids using asymmetric electrode arrays // Phys. Rev. — 2000. — Vol. E 61. — R45-R48.
- Squires, T. M. and Bazant, M. Z. Induced-charge electro-osmosis // J. Fluid. Mech. — 2004. — Vol. 509. — Р. 217—252.]
- Squires, T. M. and Bazant, M. Z. Breaking symmetries in induced-charge electro-osmosis and electrophoresis // J. Fluid Mech. — 2006. — Vol. 560. — Р. 65-101.
- Huang, D. M. et al. Molecular views of electrokinetic phenomena In «Surface Electrical Phenomena in Membranes and Microchannels», A. Szymczyk (Ed), Research Signpost, 2008.
- Ohshima, H. Theory of electrostatics and electrokinetics of soft particles // Sci. Technol. Adv. Mater. — 2009. — Vol. 10 (6). — Р. 1-13.
- Bazant, M. Z. et al. Towards an understanding of induced-charge electrokinetics at large applied voltages // Advances in Colloid and Interface Science. — 2009. — Vol. 152. — Р. 48-88.
- Lacoste, D. et al. Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane // European Physical Journal. — 2009. — Vol. E 28. — Р. 243—264.
- Kilic, M. S. and Bazant, M. Z. Induced-charge electrophoresis near a wall // Electrophoresis. — 2011. — Vol. 32. — Р. 614—628.
- Bazant, M. Z. and Squires, T. M. Induced-charge electrokinetic phenomena // Current Opinion in Colloid and Interface Science. — 2010. — Vol. 15. — Р. 203—213.
- Духин, С. С., Шилов, В. Н. Диэлектрические явления и двойной слой в дисперсных системах и полиэлектролитах. — Киев: Наук. думка, 1972. — 246 с.
- Dukhin, S. S. and Shilov, V. N. Dielectric phenomena and the double layer in dispersed systems and polyelectrolytes. — New York: John Wiley and Sons, 1974.
- Dukhin, S. S. & Derjaguin, B. V. Electrokinetic Phenomena. — New York: John Wiley and Sons, 1974.
- Духин, С. С. Электропроводность и электрокинетические свойства дисперсных систем. — Киев: Наук, думка, 1975. — 246 с.
- Духин С. С., Дерягин Б. В. Электрофорез. — М.: Наука, 1976. — 326 с.
- Dukhin, S. S. & Shilov, V. N. Kinetic aspects of electrochemistry of disperse systems. Part 2. Induced dipole-moment and the nonequilibrium double-layer of a colloid particle // Adv. Colloid Interface Sci. — 1980. — Vol. 13. — Р. 153—195.
- Жарких, Н. И., Шилов, В. Н. Теория обратного осмоса на мембране из сферических частиц. Приближение Дебая // Химия и технология воды. — 1981. — Т. 4, № 1. — С. 3-9.
- Delgado, A. V. et al. Measurement and interpretation of electrokinetic phenomena (IUPAC Technical Report) // Pure Appl. Chem. — 2005. — Vol. 77, № 10. — Р. 1753—1805.
- Delgado, A. V. Interfacial Electrokinetics and Electrophoresis. — New York, NY: Marcel Dekker, Inc., 2002. — 991 p.
- Berthier, J. Micro-Drops and Digital Microfluidics — Norvich, NY: William Andrew Inc., 2008. — 441 p.
- Tabeling, P. Introduction to Microfluidics — USA Oxford University Press, 2010. — 310 p.
- Ramos, A. (Ed.). Electrokinetics and Electrohydrodynamics in Microsystems — Wien, New York: Springer, 2011. — 300 p.
- Galindo-Rosales, F. J. (Ed.). Complex Fluid-Flows in Microfluidics / Springer International publisher AG, 2018. — 111 p.
- Burgreen, D. and Nakache, F. R. Efficiency of Pumping and Power Generation in Ultrafine Electrokinetic Systems J. Appl. Mech. — 1965. — 32 (3). — P. 675—679.
- Van der Heyden, F. H. et al. Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels Nano Letters. — 2006. — Vol. 6, № 10. — P. 2232—2237.
- Van der Heyden, F. H. et al. Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels Nano Letters. — 2007. — Vol. 7, № 4. — P. 1022—1025.
- Linde N. et al. Streaming current generation in two-phase flow conditions Geophys. Res. Lett. — 2007. — 34 (3). — L03306.
- Sherwood, J. D. et al. Theoretical aspects of electrical power generation from two-phase flow streaming potentials Microfluidics and Nanofluidics. — 2013. — 15. — Р. 347—359.
- Duffin, A. M., Saykelly, R. I. Electrokinetic Power Generation from Liquid Water Microjets J. Phys. Chem. — 2008. — 112 (43). — Р. 17018-17022.
- Mansouri, A., Bhattacharjee, S., Kostiuk, L. W. High-power electrokinetic energy conversion in a glass microchannel array Lab on a Chip. — 2012. — 12. — Р. 4033-4036.
- Lin, C. H., Ferguson, G. S., and Chaudhury, M. K. Electrokinetics of Polar Liquids in Contact with Nonpolar Surfaces Langmuir. — 2013. — Vol. 29, № 25. — P. 7793-7801.
- Haldrup, S. et al. High Electrokinetic Energy Conversion Efficiency in Charged Nanoporous Nitrocellulose/Sulfonated Polystyrene Membranes — 2015. — Vol. 15, № 2. — P. 1158—1165.
- Pattle, R. E. Production of electric power by mixing fresh and salt water in the hydroelectric pile // Nature. — 1954. — Vol. 174. — Р. 660—666.
- Norman, R. S. Water salination: a source of energy // Science. — 1974. — Vol. 186. — Р. 350—352.
- Loeb, S. Osmotic power plants // Science. — 1975. — Vol. 189. — Р. 654—655.
- Loeb, S. Method and apparatus for generating power utilizing pressure-retarded osmosis, United States patent US 3 906 250, 1975.
- McGinnis, R. L., McCutcheon, J. R., Elimelech, M. A novel ammonia–carbon dioxide osmotic heat engine for power generation // Journal of Membrane Science. — 2007. — Vol. 305. — Р. 13-19.
- Nijmeijer, K.; Metz, S. Salinity Gradient Energy. In Sustainability Science and Engineering; Isabel, C. E., Andrea, I. S., Eds.; Elsevier, 2010. — Vol. 2. — Р. 95-139.
- Yip, N. Y., Elimelech, M. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis // Environ. Sci. Technol. — 2014. — Vol. 48. — Р. 11002-11012.
- Cipollina, A., Micale, G. Sustainable Energy from Salinity Gradients. — Cambridge: Woodhead Publishing, 2016. — 350 p.
- Touati, K., Tadeo, F., Kim, J. H. Silva, O. A. Pressure Retarded Osmosis: Renewable Energy Generation and Recovery. Academic Press, 2017. — 188 p.
- Tufa, R. A. et al. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage // Applied Energy. — 2018. — Vol. 225 (C). — Р. 290—331.
- Alfven, H. Existance of electromagnatic-hydrodynamic waves // Nature. — 1942. — Vol. 150, Iss. 3805. — P. 405—406.
- Alfven, H. On the cosmogony of the solar system III // Stockholms Observatoriums Annaler. — Vol. 14. — Р. 1-9.
- Lundquist, S. Experimental investigations of magneto-hydrodynamic waves // Physical Review. — 1949. — Vol. 76. — Р. 1805—1809.
- Sutton, G. W. and Sherman, A. Engineering Magnetohydrodynamics. — New York: MacGraw-Hill, 1965. — 548 p.
- Hughes, W. F. and Young, F. J. The Electromagnet dynamics of fluids. — New York: John Wiley and Sons, 1966.
- Elliott, D. G. Direct current liquid-metal magnetohydrodynamic power generation // AIAA Journal. — 1966. — Vol. 4, № 4. — Р. 627—634.
- Rosa, R. J. Magnetohydrodynamic energy conversion. — Washington: Hemisphere Pub. Corp., 1987.
- Yoshizawa, A. Hydrodynamic and Magnetohydrodynamic Turbulent Flows. Modelling and Statistical Theory. — Publisher, Springer Netherlands, 1998.
- Takeda, M. et al. Fundamental Studies on Helical-Type Seawater MHD Generation System // IEEE Transactions on Applied Superconductivity. — 2005. — Vol. 15, № 2. — Р. 2170—2173.
- Takeda, M., Hirosaki, H., Kiyoshi, T., Nishio, S. Fundamental Study of Helical-Type Seawater MHD Power Generation with Partitioned Electrodes // Journal of the JIME. — 2014. — Vol. 49, № 3. — Р. 113—117.
- Morgan, E. R. and Shafer M. W. Marine Energy Harvesting Using Magnetohydrodynamic Power Generation. — ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 2: Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bioinspired Smart Materials and Systems; Energy Harvesting Newport, Rhode Island, USA, September 8-10, 2014.
- Directing Matter and Energy: Five Challenges for Science and the Imagination: a Report from the Basic Energy Sciences Advisory Committee, U.S. Department of Energy. Office of Basic Energy Sciences, 2007. — Energy development. — 134 p.
- Wolf, E. L. Nanophysics of Solar and Renewable Energy. Wiley-VCH, 2012. –270 p.
- Kirby, B.J. Micro- and Nanoscales Fluid Mechanics: Transport in Microfluidic Devices. Cambridge Univirsity Press. 2010. — 536 p.
- Ohta, T. Energy Technology: Sources, Systems, and Frontier Conversion. Oxford: Pergamon Press, 1994. — 235 p.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Molekulya rna energe tika angl molecular power abo angl molecular power engineering skladova chastina elektroenergetiki yaka vivchaye i vikoristovuye energetichni vlastivosti molekul atomiv joniv inshih malih chastinok ridinnogo ta gazopodibnogo seredovish vzayemodiyu cih chastinok mizh soboyu z inshimi tilami a takozh z elektrichnimi ta magnitnimi polyami z metoyu viroblennya peredachi nakopichennya rozpodilu ta vikoristannya elektrichnoyi energiyi Elektrokinetichna molekulyarna sistema energetiki z nagnitannyam elektroosmotichnogo potoku tiskom plinnogo elektrolitu Zagalna harakteristikaU fundamenti molekulyarnoyi energetiki lezhat atomno molekulyarnij ta jonno molekulyarnij principi pobudovi rechovini Pershij princip harakterizuye diskretnist abo perervnist budovi rechovini drugij princip rozkrivaye stan elektrolitichnih rozchiniv ta vzayemodiyu joniv z molekulami rozchinnika Klyuchovimi ponyattyami molekulyarnoyi energetiki ye atom molekula jon himichnij zv yazok mizhatomnij ta mizhmolekulyarnij potenciali termodinamichni potenciali Predmetom doslidzhennya molekulyarnoyi energetiki ye agregatni stani rechovini mizhfazna poverhnya poverhnevi yavisha procesi perenesennya peretvorennya ta vidnovlennya energiyi molekulyarni sposobi tehnologiyi ta tehnichni zasobi sistemi virobnictva nakopichennya rozpodilu ta vikoristannya elektrichnoyi energiyi Dvoma skladovimi chastinami molekulyarnoyi energetiki ye molekulyarna gidroenergetika ta molekulyarna vitroenergetika Molekulyarna gidroenergetika angl molecular hydropower nauka i galuz skladova chastina molekulyarnoyi energetiki yaka vivchaye ta vikoristovuye vidnovlyuvani energetichni vlastivosti molekul atomiv joniv inshih malih chastinok ridinnogo seredovisha vzayemodiyu cih chastinok mizh soboyu z inshimi tilami a takozh z elektrichnimi ta magnitnimi polyami z metoyu viroblennya peredachi nakopichennya rozpodilu ta vikoristannya elektrichnoyi energiyi U molekulyarnij gidroenergetici pevnij ob yem ridini abo rozchinu rozglyadayetsya yak molekulyarna termodinamichna sistema z pritamannimi yij fiziko himichnimi parametrami ta harakteristikami vnutrishnoyu energiyeyu energiyeyu na kordonah faz koncentraciyeyu rozchinenoyi rechovini osmotichnim tiskom himichnim potencialom tosho Efektivne peretvorennya ta vivilnennya energiyi molekul atomiv joniv ta inshih chastinok ridini skazhimo vodi abo vodnih rozchiniv elektrolitiv mozhe buti zdijsneno za dopomogoyu fizichnih i himichnih poverhnevih yavish yaki vinikayut na mezhi faz zokrema zmochuvannya adgeziyi kogeziyi kapilyarnogo efektu adsorbciyi absorbciyi tosho Poryad z vishe nazvanimi yavishami dlya stvorennya molekulyarnih tehnologij ta sistem gidroenergetiki zastosovni takozh fizichni yavisha elektrokinetiki osmosu elektrodializu magnitogidrodinamiki v ridinah ta yih rozchinah a she poyednannya cih efektiv Zvidsilya vitikaye i podil molekulyarnoyi gidroenergetiki na gidroenergetiku mizhfaznoyi poverhni elektrokinetichnu gidroenergetiku gidroenergetiku gradiyenta solonosti tosho Molekulyarna vitroenergetika angl molecular wind power skladova chastina molekulyarnoyi energetiki sho vivchaye ta vikoristovuye vidnovlyuvani energetichni vlastivosti shvidkih molekul atomiv joniv inshih malih chastinok gazovogo povitryanogo seredovisha vzayemodiyu cih chastinok mizh soboyu z inshimi tilami a takozh z elektrichnimi ta magnitnimi polyami z metoyu viroblennya nakopichennya peredachi ta rozpodilu elektrichnoyi energiyi Molekulyarna vitroenergetika ye takozh skladovoyu chastinoyu klasichnoyi vitroenergetiki v osnovi yakoyi lezhat zakoni gazodinamiki aerodinamiki sho opisuyut ruh povitrya ta jogo vzayemodiyu z tverdimi tilami a takozh zakoni aerostatiki sho ocinyuyut rivnovagu povitrya ta jogo diyu na zanureni v nogo tila Dlya efektivnogo peretvorennya energiyi molekul gazovoyi povitryanoyi sumishi v elektrichnu energiyu mozhna vikoristati vidomi fizichni yavisha jonizaciyi atomiv i molekul aktivnoyi rechovini pid diyeyu shvidkih molekul povitrya zokrema yavishe stupinchato udarnoyi jonizaciyi termoelektrichnij efekt Zeebeka viniknennya termo ERS u molekulyarnij strukturi pid teplovoyu diyeyu shvidkih molekul povitrya sorbcijnij efekt viniknennya termo ERS u sorbcijnij molekulyarnij strukturi pri poglinanni shvidkih molekul povitrya pryamij p yezoelektrichnij efekt viniknennya elektrichnih zaryadiv na granyah pevnih kristaliv pri deformaciyi ta zvorotnij magnitostrikcijnij efekt magnetopruzhnij efekt Villari zmina namagnichenosti pevnih materialiv pid vplivom mehanichnih napruzhen Ci fizichni yavisha okremo abo zh u poyednanni z inshimi zastosovni dlya stvorennya visokoefektivnih sistem molekulyarnoyi vitroenergetiki Molekulyarna energetika ye alternativoyu makroskopichnoyi energetiki dzherelo Istorichnij oglyadSvoyim korinnyam molekulyarna energetika syagaye V st do n e koli Demokrit 460 370 rr do n e uviv ponyattya atom Cya ideya bula sprijnyata naukoyu novogo chasu ta zigrala vidatnu rol u yiyi rozvitku Pripushennya pro molekulyarnu strukturu rechovini stalo viznanoyu teoriyu sho poshirilasya na molekulyarnu fiziku ridini ta kinetichnu teoriyu gaziv u rezultati napruzhenoyi roboti velikoyi kogorti vchenih XVIII XX st i bula spryamovana znachnoyu miroyu na virishennya prikladnih yiyi zadach zokrema u ramkah gidrodinamiki ta termodinamiki Anglijskij fizik eksperimentator Frensis Hoksbi she u 1709 roci vikonav pershi doslidzhennya kapilyarnosti U 1718 roci pokazav zalezhnist visoti stovpa ridini u kapilyari vid ploshi jogo poperechnogo peretinu Shvejcarskij matematik i fizik Daniel Bernulli vdoskonaliv diferencialni rivnyannya chiselni metodi ta teoriyu jmovirnostej i zastosuvav yih u vivchenni gidrodinamiki kinetichnoyi teoriyi gaziv aerodinamiki ta teoriyi pruzhnosti U 1805 roci anglijskij vchenij Tomas Yung vstanoviv zv yazok mizh perepadom kapilyarnogo tisku na kordoni sistemi ridina povitrya ta poverhnevim natyagom Togo zh roku visnovki Tomasa Yunga buli matematichno formalizovani francuzkim matematikom i astronomom P yerom Simonom Laplasom Sogodni odna z vazhlivih formul fiziki nosit nazvu rivnyannya Yunga Laplasa 1830 roku rezultati buli uzagalneni v robotah nimeckogo matematika j astronoma Karla Fridriha Gaussa Nimeckim inzhenerom i budivelnikom Gotthilfom Genrihom Hagenom u 1839 roci bula vstanovlena kilkisna zalezhnist ob yemnih vitrat ridini cherez kapilyar vid perepadu tisku U 1841 roci cya zalezhnist bula pidtverdzhena francuzkim fizikom i fiziologom Zhanom Leonardom Puazejlem Sogodni vidpovidnij zakon nosit im ya Hagena Puazejlya Nimeckij fizik Franc Ernst Nejman u svoyij roboti yaka pobachila svit 1894 roku sistematizuvav dosyagnennya svoyih poperednikiv Dev yatnadcyate stolittya poznachilosya shirokim zastosuvannyam v analizi fizichnih ta himichnih sistem polozhen gidrodinamiki termodinamiki ta statistichnoyi mehaniki Suchasne poyasnennya povedinka flyuyidiv znajshla v robotah francuzkogo inzhenera Kloda Luyi Nav ye z teoriyi pruzhnosti ta gidrodinamiki a piznishe v rivnyannyah britanskogo matematika ta fizika Dzhordzha Gabrielya Stoksa U miru togo yak stanovilasya atomistichno molekulyarna teoriya pobudovi rechovini doslidnikami usvidomlyuvalasya spilna priroda ridin ta gaziv Anglijskij himik ta fizik Robert Bojl u 1662 vidkriv zakon pro oberneno proporcijnu zalezhnist ob yemu idealnogo gazu vid tisku pri postijnij temperaturi j masi gazu Robert Bojl vpershe zaprovadiv naukove ponyattya pro himichnij element 1661 r i ye odnim iz zasnovnikiv yakisnogo himichnogo analizu Z britanskoyu naukovoyu shkoloyu u vsih sferah znan zavzhdi zmagalasya francuzka naukova shkola Francuzkij fizik Edm Mariott v odnij iz svoyih robit opisuye oberneno proporcijnu zalezhnist mizh ob yemom i tiskom gazu faktichno vidkrivshi zanovo zakon Roberta Bojlya U 1738 roci Daniel Bernulli visloviv dumku sho gaz skladayetsya z velikoyi kilkosti molekul yaki haotichno ruhayutsya Zitknennyami cih molekul vin poyasnyuvav prirodu tisku ta deyaki teplovi procesi Francuzkij vinahidnik i vchenij Zhak Aleksandr Sezar Sharl u 1787 roci vstanoviv pryamo proporcijnu zalezhnist ob yemu idealnogo gazu vid temperaturi pri postijnomu tisku Francuzkij himik ta fizik Zhozef Luyi Gej Lyussak sformulyuvav termodinamichnij zakon teplovogo rozshirennya gaziv zgidno yakomu zmina ob yemu gazu proporcijna zmini temperaturi tila Italijskij fizik ta himik Amedeo Avogadro uviv 1811 roku u vzhitok termin molekula i nezaperechno ye odnim iz avtoriv teoriyi atomno molekulyarnoyi budovi rechovini Francuzkij fizik ta inzhener Emil Klapejron u 1834 roci viviv rivnyannya stanu idealnogo gazu analizuyuchi roboti svoyih poperednikiv Roberta Bojlya Edma Mariotta Zhozefa Luyi Gej Lyussaka Zhaka Sharlya a takozh Amedeo Avogadro Nimeckij fizik Yulius Robert fon Mayer vstanoviv zv yazok mizh teployemnostyami dlya izobarichnih ta izohorichnih procesiv u gazah Shotlandskij fizik Dzhon Dzhejms Voterstoun pokazav zalezhnist tisku gazu v odinici ob yemu vid kilkosti molekul ta vid serednoyi kvadratichnoyi shvidkosti molekul i faktichno viviv zakon idealnogo gazu Prote suchasnu kinetichnu teoriyu gaziv sformulyuvav u 1856 roci nimeckij himik ta fizik Rokom piznishe nimeckij fizik Rudolf Klauzius uviv u koristuvannya ponyattya entropiyi j stvoriv bilsh fundamentalnu teoriyu sho vrahovuvala postupalnij obertovij ta kolivalnij ruhi molekul Nim zhe zaproponovano ponyattya dovzhini vilnogo probigu chastinki Dzhejms Klerk Maksvell viznachiv statistichnij rozpodil molekul gazu za shvidkostyami U 1866 roci avstrijskij fizik Lyudvig Bolcman otrimav rivnyannya rivnovazhnogo rozpodilu molekul idealnogo gazu za impulsami ta koordinatami a 1871 roku uzagalniv cej rozpodil dlya chastinok u zovnishnomu poli postulyuvav logarifmichnu zalezhnist mizh entropiyeyu ta chislom staniv termodinamichnoyi sistemi i cim vidkrittyam zrobiv suttyevij vklad u stanovlennya statistichnoyi mehaniki Tomson lord Kelvin spilno z Dzhejmsom Preskottom Dzhoulem proveli oholodzhennya gaziv pri rozshirenni bez zdijsnennya roboti yake posluzhilo perehidnim stupenem vid teoriyi idealnih gaziv do teoriyi realnih gaziv Vilyamu Tomsonu nalezhit takozh odne z pershih formulyuvan drugogo zakonu termodinamiki Vazhlivimi etapami v rozvitku gazovoyi teoriyi stali doslidzhennya mizhmolekulyarnoyi vzayemodiyi ta stvorennya gollandskim fizikom Yanom Diderikom van der Vaalsom teoriyi fazovih perehodiv mizh gazopodibnim ta ridkim stanami rechovini pobudova teoriyi brounivskogo ruhu Albertom Ejnshtejnom ta roboti z teoriyi brounivskogo ruhu i teoriyi fluktuacij Mar yana Smolyuhovskogo Paralelno z atomistichno molekulyarnoyu teoriyeyu budovi rechovini naukovij ta industrialnij svit koncentruvavsya na vivchenni elektrichnih ta magnitnih yavish Nevdovzi pislya togo yak italijskij medik i fizik Luyidzhi Galvani opublikuvav svoyi doslidzhennya elektrichnih yavish u zhivomu organizmi 1800 roku jogo zemlyak Alessandro Volta pobuduvav Voltiv stovp faktichno stvoriv pershu molekulyarnu elektrohimichnu elektrostanciyu U 1820 roci francuzkij fizik ta matematik Andre Mari Amper vstanoviv zalezhnist mizh elektrikoyu ta magnetizmom sho dalo poshtovh rozvitku elektrodinamiki a vzhe u 1827 roci nimeckij fizik i matematik Georg Om vidkriv zakon yakij opisuye strum v elektrichnomu koli Epohalnim stalo vidkrittya Majklom Faradeyem 1831 roku yavisha elektromagnitnoyi indukciyi sho roz yasnyuye prichinu vzayemodiyi mizh soboyu na vidstani til z magnitnimi ta elektrichnimi vlastivostyami Ce vidkrittya zumovilo vinahid elektrichnogo generatora U podalshomu Dzhejms Maksvell matematichno viznachiv napryamok ta velichinu diyuchih pri elektromagnitnij indukciyi sil takim chinom sformulyuvav klasichnu teoriyu elektromagnetizmu Ryad fundamentalnih yavish bulo vidkrito pri doslidzhenni elektriki u ridinah gazah tverdih tilah ta na yih kordoni Poyavu elektrichnogo zaryadu na dispersnih chastinkah ta perenesennya zaryadzhenih chastinok pid diyeyu zovnishnogo elektrichnogo polya yavishe elektroforezu 1808 roku vpershe sposterigav profesor kafedri himiyi Moskovskogo universitetu Jomu nalezhit takozh vidkrittya yavisha elektroosmosu Prioritet u vidkritti potencialu sedimentaciyi nalezhit nimeckomu fiziku Fridrihu Ernstu Dornu Yavishe zvorotnogo elektroosmosu vidkriv nimeckij fizik Georg German Kvinke 1859 roku Budovu ta povedinku chastinok dispersnoyi fazi koloyidnoyi sistemi poyasnyuye teoriya podvijnogo elektrichnogo sharu PESh Zgidno modeli nimeckogo fizika Germana Gelmgolca opublikovanij 1879 roku podvijnij elektrichnij shar ye ploskim kondensatorom odna obkladka yakogo mistitsya v tverdij fazi a druga v rozchini Vazhlivimi etapami u rozvitku teoriyi PESh stali roboti francuzkogo vchenogo vikonani u 1910 roci ta anglijskogo fizika yaki vijshli drukom 1913 roku Za modellyu Guyi Chepmena elektrichni protijoni utvoryuyut rozmitij shar Osnovi suchasnoyi teoriyi PESh yaka vrahovuye adsorbciyu rozrobleni nimeckim fizikom Otto Shternom i pobachili svit 1924 roku Odnu z modelej rozrahunku potencialu pobuduvav na pochatku 1900 h polskij fizik Marian Smolyuhovskij U 1860 1880 rokah na kordoni fundamentalnih nauk zarodilisya fizichna himiya ta himichna fizika yaki uzagalnili himichnu termodinamiku ta himichnu kinetiku V ramkah molekulyarnoyi fiziki ta himiyi vimalyuvalisya novi rozdili fizika ta himiya poverhni U 1876 roci amerikanskij matematik fizik ta himik Dzhozaya Villard Gibbz poyasniv ponyattya poverhnevoyi energiyi himichnogo potencialu ta pravila faz Gibbza Gollandskij fizik ta himik Yakob Gendrik Vant Goff 1887 roku vstanoviv zalezhnist osmotichnogo tisku vid koncentraciyi rozchinenoyi rechovini Avtorom teoriyi elektrolitichnoyi disociaciyi ta himichnoyi kinetiki ye shvedskij fizik ta himik Svante Avgust Arrenius Vin zhe ye pionerom doslidnikom parnikovogo efektu sho zumovlyuye zmini klimatu Vazhlivij naukovij vnesok u vikoristannya metodiv statistichnoyi mehaniki v koloyidnij himiyi ta himiyi poverhni buv zroblenij amerikanskim himikom Irvingom Lengmyurom Shirina ta gruntovnist naukovih doslidzhen poperednogo periodu viklikayut zahoplennya i logichne zdivuvannya bo voni bagato v chomu obignali svij chas Divnim zokrema viglyadaye toj fakt yak bagato korisnih fizichnih i himichnih vidkrittiv bulo zrobleno todi koli same isnuvannya atomiv i molekul bulo pid pitannyam Burhlivij rozvitok promislovosti na pochatku XX st vimagav vprovadzhennya novih tehnologij Fundamentalna nauka vidguknulasya revolyucijnimi teoriyami Dlya togo shob poyasniti rezultati eksperimentiv po rozsiyuvannyu a chastinok rechovinoyu britanskij fizik vihodec iz Novoyi Zelandiyi Ernst Rezerford stvoriv planetarnu model atoma Protyagom 1913 1924 rr danskij fizik teoretik Nils Bor drukuye ryad fundamentalnih statej prisvyachenih kvantovij budovi atoma ta molekul Abi podolati neuzgodzhenist mizh eksperimentalnimi molekulyarnimi spektrami ta teoriyeyu kvantovoyi mehaniki u 1924 r avstrijskij fizik teoretik Volfgang Pauli zaproponuvav kvantove chislo z dvoma mozhlivimi znachennyami i faktichno peredbachiv spin elektrona Uprodovzh 1923 1926 rr francuzkij fizik Luyi de Brojl postulyuvav hvilovu prirodu elektrona i vsiyeyi materiyi visunuv gipotezu pro korpuskulyarno hvilovij dualizm Avstrijskij fizik teoretik Ervin Shredinger ye avtorom hvilovoyi nerelyativistskoyi mehaniki sformulovanoyi u 1925 1926 rr na snovi hvilovih rivnyan Shredingera Nova era vzayemnogo stimulyuvannya mehaniki ta matematiki pov yazana takozh z imenem nimeckogo fizika teoretika Vernera Gejzenberga yakij zaproponuvav dlya opisu kvantovoyi mehaniki matrichnu mehaniku sformulyuvav princip neviznachenosti zastosuvav principi kvantovoyi mehaniki do problem feromagnetizmu a takozh do relyativistskoyi kvantovoyi teoriyi polya ta kvantovoyi elektrodinamiki Britanskij fizik Pol Dirak poyednav matrichnu mehaniku Gejzenberga z rivnyannyam Shredingera j uviv u hvilove rivnyannya vidnosnist Rivnyannyam Diraka pidtverdzhuyetsya i gipotetichnij spin i magnitni vlastivosti elektrona magnitnij moment Rivnyannyam Diraka opisuyutsya vazhki atomi de slid vrahovuvati spin orbitalnu vzayemodiyu Dirak pripustiv isnuvannya pozitivno zaryadzhenoyi chastinki protona Peredbachiv isnuvannya antichastinki dirki bliznyuka elektrona mozhlivist narodzhennya z fotona dostatno velikoyi energiyi vidkriv statistichnij rozpodil energiyi v elektronnij sistemi statistika Fermi Diraka Kvantova teoriya dala narodzhennya kvantovij mehanici ta dopomogla podolati protirichchya yaki vinikli pri vivchenni glibinnih procesiv u rechovini Z odnogo boku v molekulyarnij fizici panuye termodinamichnij metod pri yakomu ne vrahovuyetsya diskretna molekulyarna ta atomna struktura rechovini i rechovina rozglyadayetsya yak sucilne neperervne seredovishe Z inshogo boku zgidno atomistichnoyi ta molekulyarnoyi teoriyi rechovina ye diskretnim seredovishem i mozhe buti vivchena statistichnimi metodami z vikoristannyam teoriyi jmovirnosti Zmina metodologiyi viznachila poyavu novih napryamkiv rozvitku nauk Danskij fizik 1921 roku doslidiv mizh zaryadami dlya molekulyarnih joniv mizh dipolyami dlya polyarnih molekul mizh kvadrupolyami i multipolyami Vzayemodiya Keezona ye riznovidom slabkoyi mizhmolekulyarnoyi vzayemodiyi van der Vaalsa Gollandsko amerikanskij fizik i himik Peter Dzhozef Vilyam Debaj poshiriv ponyattya dipolnogo momentu na rozpodil zaryadu v molekuli Zgidno rozrahunkam Petera Debaya polyarna molekula dipol polyarizuye susidnyu molekulu utvoryuyuchi takim chinom dipol i obumovlyuyuchi prityagannya molekul Fundamentalnij vklad u teoriyu himichnogo zv yazku ta mizhmolekulyarnih dispersijnih sil vnis nimeckij ta amerikanskij fizik teoretik Fric Volfgang London Vchenij vstanoviv vzayemodiyu nepolyarnih molekul obumovlenu fluktuaciyami elektronnih hmarinok U 1924 roci anglijskij fizik ta himik teoretik vivchayuchi vzayemodiyu molekul ridini ta gaziv zaproponuvav ponyattya potencialu mizhatomnih sil potencialu Lenarda Dzhonsa yakij dozvolyav poyasniti parametri rivnyan van der Vaalsa U sferi jogo naukovih dorobok paramagnetizm dvoatomnih molekul zokrema molekul oksigenu hvilovi funkciyi multielektronnih atomiv himichna valentnist ta metod molekulyarnih orbitalej Doslidzhennya yaki vedutsya protyagom ostannih desyatilit na perehresti gidrodinamiki elektrohimiyi koloyidnoyi himiyi ta elektrokinetiki dali narodzhennya v yakij rozglyadayutsya mehanizmi peremishennya ridini u vuzkih kapilyarah pid vplivom zovnishnih ta abo vnutrishnih sil Sferoyu vikoristannya dosyagnen mikrogidrodinamiki stali na pochatku 1980 h rokiv strumenevi printeri piznishe miniatyurni himichni laboratoriyi na chipi Z rozvitkom nanotehnologij z yavilosya ponyattya rozdil gidrodinamiki v yakomu rozglyadayutsya mehanizmi peremishennya ridini u kapilyarah diametrom 1 100 nm U ramkah mikrogidrodinamiki ta nanogidrodinamiki doslidzhuyetsya ruh flyuyidiv kapilyarnimi sistemami vivchayutsya osoblivosti pobudovi kapilyariv u prirodi Ostannim chasom znachna uvaga pridilyayetsya doslidzhennyam podvijnogo elektrichnogo sharu v dispersnih ridinnih sistemah Z yasuvalosya sho pri pomishenni dielektrichnoyi chastinki v elektrichne pole na yiyi kordoni poyavlyayutsya rivni i protilezhni po znaku elektrichni zaryadi j navoditsya dipolnij moment chastinka polyarizuyetsya Modulyaciyeyu gustini zaryadu v mikrokanali mozhna spryamovuvati elektroosmotichnij potik PESh na polyarizovanij poverhni indukuyetsya ta upravlyayetsya tim zhe elektrichnim polem Abi pidkresliti cej yedinij mehanizm avtori Martin Bazant Todd Skvajres ta in zaproponuvali termin elektroosmos indukovanogo zaryadu ICEO Okremim napryamkom mikrogidrodinamiki ye Vagomij vnesok u rozvitok koloyidnih sistem zdijsnili vcheni Institutu koloyidnoyi himiyi i himiyi vodi im A V Dumanskogo Nacionalnoyi Akademiyi nauk Ukrayini zokrema Stanislav Duhin Volodimir Shilov Mikola Zharkih Illya Razilov tosho Delgado rozglyadaye teoretichni osnovi interfejsnoyi elektrokinetiki Bert ye ta Tabeling u svoyih robotah vivchayut pitannya Ramos ta in akcentuyut uvagu na fizichnih osnovah dielektroforezu elektrokinetiki zminnogo strumu elektrozmochuvannya elektrogidrodinamiki a takozh na praktichnomu vikoristanni elektrokinetichnih yavish u mikrosistemah Galindo Rosales fokusuyetsya na parametrah ta harakteristikah flyuyidiv viddayuchi perevagu chiselnim metodam ocinki ta optimizaciyi mikrogidrodinamichnih sistem Desyatki publikacij prisvyacheni doslidzhennyu elektrokinetichnih sposobiv ta zasobiv virobnictva elektrichnoyi energiyi Vedetsya poshuk novih molekulyarnih dzherel vidnovlyuvanoyi energiyi Odin iz napryamkiv otrimannya elektrichnoyi energiyi oprilyudnenij u 1954 roci pripuskaye vikoristannya Sogodni doslidzhennya ta zvorotnogo elektrodializu iz zastosuvannyam sukupnosti anionnih ta kationnih obminnih membran dlya virobnictva elektrichnoyi energiyi iz gradiyenta solonosti vedutsya u bagatoh napryamkah Iz chasiv Majkla Faradeya trivayut sprobi stvoriti magnitogidrodinamichnij generator elektrichnogo strumu na osnovi ridinnih yaki osoblivo progresuvali pislya vidilennya magnitogidrodinamiki v okremij naukovij napryamok Velika zasluga v comu nalezhit shvedskomu fiziku ta astronomu Gannesu Alvenu Piznishe rozvitok magnitogidrodinamiki ruhali doslidzhennya elektromagnitnoyi indukciyi u gazovih seredovishah Zastosuvannya zakoniv magnitogidrodinamiki dozvolyalo ominuti maloefektivnij etap mehanichnih peretvoren u klasichnih teplovih elektrostanciyah i pozbavitisya masivnih mehanichnih elementiv pri virobnictvi elektrichnogo strumu Otrimani potuzhnosti MGD generatoriv ne perevishuvali kilkoh desyatkiv kilovat Kinec 1990 h rokiv oznamenuvavsya intensivnim rozvitkom nanotehnologij v ramkah yakih doslidniki manipulyuyut duzhe malimi chastinkami rechovini atomami ta molekulami vklyuchno dlya stvorennya bilsh skladnih makroskopichnih struktur Nova metodologiya viyavilasya do togo universalnoyu sho shvidko poshirilasya v rizni sferi nashogo zhittya i mozhna skazati dala poshtovh narodzhennyu yaki zasnovani na vikoristanni vidnovlyuvanih energetichnih vlastivostej molekul atomiv joniv ta inshih malih chastinok rechovini kvantiv elektromagnitnogo polya ta plazmi U vidpovidnosti do pohodzhennya prirodi vidnovlyuvanogo dzherela energiyi agregatnogo stanu robochogo tila sho zastosovuyetsya dlya otrimannya elektrichnogo strumu a takozh vrahovuyuchi sporidnenist z isnuyuchimi tehnologiyami vidnovlyuvanoyi energiyi i sferi zastosuvannya mozhut buti klasifikovani na ta Zagalom zhe vkazani tehnologiyi skladayut tehnologichnu osnovu molekulyarnoyi energetiki Na protivagu makroenergetici molekulyarnu energetiku mozhna nazvati nanoenergetikoyu Revolyucijni naukovo tehnologichni dosyagnennya ostannih rokiv v galuzyah nanotehnologij biotehnologij komp yuternogo modelyuvannya dozvolyayut nam upravlyati materiyeyu ta energiyeyu gt Pro ce svidchit poyava ryadu publikacij z konceptualno novim bachennyam shlyahiv osvoyennya vidnovlyuvanoyi energiyi Edvard Volf vikoristovuye nanofiziku dlya analizu yadernogo sintezu fotoelektrichnogo efektu v sonyachnih elementah ta fotokatalitichnogo procesu virobnictva gidrogenu iz vodi Brayan Kirbi rozglyadaye mikrogidrodinamiku ta nanogidrodinamiku ridinnih sistem z oglyadu na yih vikoristannya v laboratoriyah na chipi Tokajo Ohta profesor Jokogamskogo nacionalnogo universitetu doslidzhuye energetichni peretvoryuvachi palivni komirki membrani ta elektrolizeri vodi Narostayuchi doslidzhennya svidchat pro ob yektivnu nevidvorotnist vikoristannya v elektroenergetici vnutrishnih rezerviv energiyi molekul ta atomiv rechovini Velika energiya vitikaye z malenkih dzherel z atomiv ta molekul tverdogo tila ridini ta gazu Vitoki energiyi hovayutsya na mizhfaznih poverhnyah v osmosi geterogennih ridin u dinamici shvidkih molekul povitrya tosho Molekulyarna energetika nova shvidko progresuyucha galuz Vona ye rezultatom dovgoyi cheredi doslidzhen fizichnih ta himichnih vlastivostej rechovini i elektromagnitnogo polya a takozh vstanovlennya zv yazkiv mizh nimi Opisani u cij roboti tehnologiyi duzhe vidriznyayutsya odna vid odnoyi mozhna govoriti navit pro kardinalnu neshozhist tehnologij z inshoyi storoni yih yednaye atomno molekulyarne pohodzhennya energiyi a she voni mayut spilnu istoriyu samoviddanoyi praci zatyatoyi kogorti talanovitih uchenih protyagom prosvichenih stolit Hocha ideya ye nadbannyam chasu a ne okremogo geniya rechi u sviti nauki spivvidnosyatsya z imenami a des nimi i vimiryuyutsya Nauka v detalyah z konkretnimi istorichnimi postatyami i datami svidchit pro yiyi neperervnist i metodologichnu cilisnist a vitoki nauki ye timi divnimi anahronizmami yaki zhivlyat ves okean znan Najbilshi zmini u nashomu zhitti ne obov yazkovo asociyuyutsya z Oksfordom ale tam de cih zmin torknuvsya blagodatnij podih nauki svit kvitnuv barvami Mi vertayemosya v istoriyu i shukayemo v nij vitoki idej abi usvidomiti yih shlyah i gruntovno zrozumiti fiziku yaka lezhit v osnovi tehnologij sogodennya V istoriyi mi cherpayemo mudrist shukayemo paraleli iz suchasnistyu bo stari ideyi mayut vlastivist chas vid chasu omolodzhuvatisya Molekulyarni tehnologiyi ta sistemi vidnovlyuvanoyi energiyi angl molecular renewable power technology sukupnist sposobiv ta tehnichnih zasobiv yaki zabezpechuyut virobnictvo elektrichnogo strumu z vidnovlyuvanih dzherel energiyi vikoristovuyuchi glibinni energetichni vlastivosti atomiv molekul joniv ta inshih malih chastinok rechovini kvantiv elektromagnitnogo polya ta plazmi V zalezhnosti vid pohodzhennya prirodi energiyi agregatnogo stanu robochogo tila a takozh vrahovuyuchi sporidnenist z nayavnij tehnologiyami vidnovlyuvanoyi energetiki j zastosovnist rozriznyayut ta Na vidminu vid makroskopichnih tehnologij yaki potrebuyut podvijnogo a inkoli j potrijnogo promizhnogo peretvorennya odnogo vidu energiyi v inshij molekulyarni energetichni tehnologiyi ye perevazhno pryamimi sposobami otrimannya elektrichnogo strumu Cikavist do nih sprichinena v pershu chergu mozhlivistyu stvorennya malogabaritnih matrichnih pristroyiv generaciyi elektrichnoyi energiyi a takozh spivmirnih z nimi po rozmiram ta masi nakopichuvachiv energiyi yaki dozvolyayut naryadu z isnuyuchimi vikoristovuvati novi dzherela vidnovlyuvanoyi energiyi pritamanni gidrosferi ta atmosferi zokrema energiyu molekul vseredini ridini ta na kordoni faz kinetichnu energiyu shvidkih molekul povitrya tosho Kozhna molekulyarna energetichna tehnologiya skladayetsya z poslidovnosti pevnih operacij abo procesiv yaki vikonuyutsya za dopomogoyu sukupnosti tehnichnih zasobiv zvedenih v sukupnist molekulyarnih tehnologij ta obladnannya dlya otrimannya elektrichnogo strumu z vidnovlyuvanih dzherel energiyi V rozrahunkah parametriv ta harakteristik molekulyarnoyi sistemi energetiki okrim zvichajnih makroskopichnih parametriv rechovini ta polya takih yak shvidkist tisk pitoma gustina molekul poyednanih u povitryanij ta abo vodnij potoki vrahovuyutsya glibinni vlastivosti molekul atomiv joniv inshih malih chastinok rechovini harakter vzayemodiyi chastinok mizh soboyu vzayemodiya z elektromagnitnimi polyami ta diya na inshi tila Takij pidhid dozvolyaye vidnajti veliki rezervi vnutrishnoyi energiyi yaki kriyutsya v rechovini elektromagnitnomu poli ta plazmi j na poryadki perevishuyut rivni energiyi dosyazhni dlya makroskopichnih balkovih tehnologij Efektivne peretvorennya ta vivilnennya energiyi molekul atomiv joniv ta inshih chastinok ridini skazhimo vodi abo vodnih rozchiniv elektrolitiv mozhe buti zdijsneno za dopomogoyu fizichnih ta himichnih poverhnevih yavish yaki vinikayut na mezhi faz zokrema zmochuvannya adgeziyi kogeziyi kapilyarnogo efektu adsorbciyi absorbciyi tosho Poryad z vishe nazvanimi yavishami dlya stvorennya molekulyarnih tehnologij ta sistem gidroenergetiki zastosovni takozh fizichni yavisha elektrokinetiki osmosu elektrodializu magnitogidrodinamiki v ridinah ta yih rozchinah a she poyednannya cih efektiv Zvidsilya vitikaye i podil molekulyarnih sistem gidroenergetiki na tosho Robota gidroadzezijnih ta gidroabsorbcijnih sistem zasnovana na vikoristanni energetichnih vlastivostej mizhfaznoyi poverhni tozh ci kategoriyi sistem nalezhat do sferi gidroenergetiki mizhfaznoyi poverhni Klasifikaciya molekulyarnih tehnologij ta sistem gidroenergetiki ye umovnoyu bo na praktici voni neridko integruyutsya Za fizichnimi principami otrimannya elektrichnogo strumu mozhna klasifikuvati na tosho Jonizacijna molekulyarna sistema formuye elektrichnij strum vikoristovuyuchi mehanizmi jonizaciyi aktivnoyi strukturi shvidkimi molekulami povitrya Princip roboti vitrilnih molekulyarnih sistem zasnovanij na viniknenni spryamovanogo ruhu tverdotilnoyi chastinki z anizotropnimi vlastivostyami poverhni v izotropnomu seredovishi shvidkih molekul povitrya Vitrova p yezoelektrichna sistema generaciyi elektrichnogo strumu zasnovana na yavishi pryamogo p yezoelektrichnogo efektu viniknenni elektrichnoyi polyarizaciyi pid diyeyu mehanichnoyi deformaciyi p yezoelektrichnogo peretvoryuvacha shvidkimi molekulami povitrya Princip roboti magnitostrikcijnih molekulyarnih tehnologij ta sistem vitroenergetiki bazuyetsya na vikoristanni zvorotnogo magnitostrikcijnogo efektu Villari zmini namagnichenosti aktivnogo materialu pid vplivom shvidkih molekul povitrya Pobudova ta princip roboti molekulyarnoyi sistemi energetikiUzagalnena shema molekulyarnoyi sistemi Uzagalnena strukturna shema molekulyarnoyi sistemi energetiki Uzagalnena shema molekulyarnoyi sistemi virobnictva elektrichnogo strumu vklyuchaye rezervuar RS roboche tilo WB flyuyid FL ta prijmach peretvoryuvach energiyi RC Kozhnomu stanu materiyi vidpovidaye svoye znachennya energiyi ME Pochatkova energiya molekul ME1 nadhodit na vhid prijmacha peretvoryuvacha RC Chastina ciyeyi energiyi peretvoryuyetsya v korisnu robotu W Dzh chastina energiyi rozsiyuyetsya u viglyadi tepla chastina nezadiyanoyi energiyi molekul ME2 pokidaye prijmach peretvoryuvach z robochim tilom WB i povertayetsya u rezervuar RS Robota sistemi W Dzh vikoristovuyetsya dlya virobnictva elektrichnoyi energiyi EEL Dzh Robotu vvazhayut dodatnoyu yaksho vona zdijsnyuyetsya sistemoyu nad zovnishnimi tilami V idealnomu vipadku W EEL Dzh Cya shema ye desho sproshenoyu i ne vidobrazhaye vsiyeyi sutnosti procesiv ta strukturi molekulyarnoyi sistemi Prote naochnist dlya poyasnennya i rozuminnya pobudovi ta roboti molekulyarnoyi sistemi tak zhe vazhliva yak i matematichna model ciyeyi sistemi Rozshirena funkcionalno strukturna shema molekulyarnoyi sistemi virobnictva elektrichnogo strumu Rozshirena funkcionalno strukturna shema molekulyarnoyi sistemi virobnictva elektrichnogo strumu viddzerkalyuye osnovni funkcionalni chastini yih vzayemozv yazki ta priznachennya zmist ta poryadok energetichnih peretvoren u tehnologichnomu procesi generaciyi a takozh sposobi realizaciyi zadanih funkcij Osnovnimi skladovimi chastinami molekulyarnoyi sistemi virobnictva elektrichnogo strumu ye rezervuar RS roboche tilo WB flyuyid FL prijmach peretvoryuvach energiyi RC ta elektrichnij adapter EA Roboche tilo Robochim tilom WB sluguye pevnij ob yem flyuyidu FL ridini chi gazovoyi sumishi v zalezhnosti vid tipu molekulyarnoyi sistemi energetiki molekuli atomi joni ta inshi mali chastinki yakogo volodiyut viraznimi energetichnimi vlastivostyami vseredini i na kordoni faz energiyeyu ME U comu vidnoshenni makroskopichni otochuyuchi areali gidrosfera vodne seredovishe ta atmosfera povitryane gazove seredovishe ye nevicherpnimi prirodnimi rezervuarami molekulyarnoyi vidnovlyuvanoyi energiyi Molekulyarni ta makroskopichni dzherela energiyi pov yazani mizh soboyu yedinimi fizichnimi zakonami Abi rozgadati ta opanuvati potuzhnist okeanichnih hvil slid vivchiti okremu kraplyu vodi Dlya togo shob zbagnuti silu uraganu neobhidno znati povedinku naperstka povitrya Roboche tilo WB flyuyid FL bud to ridina gaz chi potik viprominyuvannya perenosit energiyu Ce mozhe buti napriklad energiya molekul ridini ME yaki vzayemodiyut mizh soboyu chi z molekulami poverhni tverdogo tila i mozhut transportuvati veliki ob yemi ridini Potik ridini mozhe transportuvati joni pevnoyi rechovini formuvati podvijnij elektrichnij shar na kordoni tverdogo tila z ridinoyu ta utvoryuvati elektrichni potenciali napriklad sedimentacijnij chi techiyi Ridini mozhut takozh riznitisya mizh soboyu vmistom deyakih chastinok i voloditi napriklad utvoryuvati osmotichni potoki ridini yaki volodiyut visokoyu kinetichnoyu energiyeyu Joni pevnoyi rechovini mozhut transportuvatisya potokom pevnogo flyuyidu pererozpodilyatisya v magnitnomu poli ta formuvati elektrorushijnu silu u vlashtovanih poblizu elektrodah yak ce sposterigayetsya u magnitogidrodinamichnih yavishah Robochim tilom mozhe sluguvati takozh povitryana sumish tobto pevnij ob yem shvidkih molekul povitrya yaki perebuvayut u teplovomu haotichnomu rusi Voni zishtovhuyutsya odna iz odnoyu udaryayutsya v navkolishni tila postijno zminyuyut napryam ruhu viddayut energiyu odna odnij ta zovnishnomu otochennyu i otrimuyut energiyu odna vid odnoyi ta vid zovnishnogo otochennya takim chinom aktivno vzayemodiyut mizh soboyu ta z navkolishnimi tilami V osnovi takoyi vzayemodiyi lezhat slabki himichni zv yazki yaki nazvani na vidminu vid silnih himichnih zv yazkiv sho lezhat v osnovi pobudovi molekul iz atomiv Zgidno teoriyi gollandskogo fizika Yana Diderika van der Vaalsa sila mizhmolekulyarnoyi vzayemodiyi F r N ye rivnodijnoyu abo vektornoyu sumoyu sil tyazhinnya ta vidshtovhuvannya j zalezhit vid vidstani r m nastupnim chinom F r ar6 displaystyle F r frac a r 6 de a koeficiyent Na pevnij vidstani r r0 displaystyle r r 0 m sili tyazhinnya molekul urivnovazhuyutsya silami vidshtovhuvannya Sili tyazhinnya yaki ubuvayut oberneno proporcijno shostomu stepenyu vidstani mizh molekulami pri r gt r0 displaystyle r gt r 0 zvutsya silami Van der Vaalsa Sili Van der Vaalsa vinikayut pri vzayemodiyi nezaryadzhenih atomiv ta molekul i viklikayut kogeziyu ta adgeziyu kondensovanoyi fazi a takozh adsorbciyu gaziv tverdim tilom ta ridinoyu Procesi sho mayut misce v atomi molekuli joni v himichnij ta jonnij spolukah mizh atomami ta molekulami zumovlyuyut skladni peretvorennya v gazovomu seredovishi ridini ta tverdomu tili Pri fizichnih peretvorennyah atomi ta molekuli rechovini ne zminyuyutsya transformuyetsya lishe yih energetichnij stan V himichnih reakciyah molekuli rechovini peretvoryuyutsya na inshi molekuli u rezultati vinikaye nova rechovina yiyi poyava suprovodzhuyetsya energetichnimi zminami V procesi podibnih peretvoren atomi molekuli ta joni seredovisha mozhut viddavati svoyu energiyu napriklad dlya vikonannya vidpovidnoyi roboti j otrimuvati inshu energiyu zovni vrahovuyuchi svoyu vazhlivist prirodni sili virobili zvichaj vidnovlyuvatisya vlastivist velmi korisna pri virobnictvi elektrichnoyi energiyi Po suti malenki atomi molekuli ta joni ye poglinachami nakopichuvachami peretvoryuvachami ta vagovitimi dzherelami vidnovlyuvanoyi energiyi A vitikaye vona zovni pid chas transformacij Odnakovo pravilno bude skazati u ramkah nashih doslidzhen sho dzherelom molekulyarnoyi vidnovlyuvanoyi energiyi ye fizichni procesi ta abo himichni reakciyi yaki protikayut u rechovini Cinnist dzherela vidnovlyuvanoyi energiyi polyagaye ne v kilkosti u nomu nayavnih resursiv a v shvidkosti yih vidnovlennya Energetichni peretvorennya v atomno molekulyarnih ta jonno molekulyarnih sistemah viznachayutsya chaso prostorovimi ta maso energetichnimi parametrami i harakteristikami malih chastinok Chas maye odin vimir ale isnuvannya vimiryuvane chasom maye yih dva odne za odnim ta vodnoraz Mit ye isnuvannya bez zhodnoyi trivalosti Vichnist ye isnuvannya z usiyeyu trivalistyu U dinamici atomam molekulam ta jonam nemaye rivnih bo v yih obslugovuvanni zadiyani mogutni sili Vsesvitu Spivvidnoshennya mizh odinicyami masi ta energiyi neobhidni dlya rozuminnya nanorozmiriv 1 kg 5 61 1035 eV 8 99 1016 Dzh 2 50 1010 kVt god 6 02 1026 a o m 1 eV 1 78 10 36 kg 1 60 10 19 Dzh 4 45 10 26 kVt god 1 074 10 9 a o m 1 kVt god 4 00 10 11 kg 2 25 1025 eV 3 60 106 Dzh 2 41 1016 a o m Energetichnij ekvivalent masi elektrona me 9 109 10 31 kg 0 511 MeV Vzayemodiya molekul harakterizuyetsya yih potencialnoyu energiyeyu EP r Dzh Potencialna energiya viznachayetsya robotoyu W Dzh yaku neobhidno vikonati silam F r N dlya togo shob peremistiti molekulu z danoyi tochki do bezkonechnosti de vvazhayetsya sho potencialna energiya dorivnyuye nulyu EP r 0 Yaksho vidstan mizh dvoma molekulami zminyuyetsya na velichinu Dr m to robota sho vikonuyetsya dorivnyuye DW F r Dr Dzh i ye pozitivnoyu Zrostannya potencialnoyi energiyi molekul u vidpovidnosti iz zakonom zberezhennya energiyi suprovodzhuyetsya zmenshennyam yih kinetichnoyi energiyi EK Dzh Spivvidnoshennya mizh znachennyami potencialnoyi EP r ta serednoyi kinetichnoyi energiyi EK molekul viznachaye agregatnij stan rechovini EK lt EP r dlya tverdogo tila EK EP r dlya ridini EK EP r dlya gaziv Spivvidnoshennya sil vzayemodiyi molekul odniyeyi fazi mizh soboyu ta z molekulami sumizhnoyi fazi viznachaye povedinku molekul ta yih agregacij na mizhfaznij poverhni i v kincevomu rezultati obumovlyuye energetichni peretvorennya u vsomu ob yemi molekulyarnoyi sistemi U vihidnomu stani roboche tilo harakterizuyetsya sumarnoyu energiyeyu molekul EIN Dzh sho mozhe ulovlyuvatisya prijmachem peretvoryuvachem RC i za pevnih umov vidnovlyuvatisya Nagnitannya vidnovlennya parametriv robochogo tila zdijsnyuyetsya napriklad tiskom vodyanogo abo povitryanogo potokiv Mizhfazna poverhnya U doslidzhenni atomno molekulyarnih ta jonno molekulyarnih sistem abo prosto molekulyarnih sistem yak mi budemo nazivati podibni utvorennya v podalshomu veliku rol vidigrayut ponyattya poverhni ta ob yemu Abi piznati rechovinu ne obov yazkovo zanuryatisya v yiyi glibinu Poverhnya ta ob yem dvi rizni prostorovi harakteristiki odnogo i togo zh tila Pid poverhneyu zvichajno rozumiyetsya mezha abo kraj ob yemnogo tila dvovimirne topologichne utvorennya geometrichna figura kozhna tochka yakoyi ta yiyi otochennya mozhut buti vidobrazheni u proyekciyi na ploshinu bez rozrivu Pri rozglyadi vlastivostej poverhni ta yiyi chastin u malih promizhkah chasu ponyattya neperervnosti ta kvantuvannya ne superechat odne odnomu i pov yazani mizh soboyu u prostori ta chasi Neperervna liniya skladayetsya iz okremih diskretnih tochok Neperervna poverhnya tezh skladayetsya iz sukupnosti okremih tochok Sporidnenist neperervnosti ta kvantuvannya vidbivayetsya takozh na fizichnih poverhnevih yavishah Neperervnij ruh ob yekta skladayetsya iz mnozhini okremih stribkiv Tochka mozhe ruhatisya na poverhni lishe u dvoh napryamkah Detalizaciyu cih dovoli abstraktnih ponyat zalishimo matematikam tam voni znahodili ranishe i znahodyat do cogo chasu velicheznu nasnagu Mi zh pid terminom poverhnya budemo rozumiti obolonku pevnogo tila misce jogo kontaktu z inshimi tilami sukupnist tochok roztashovanih na krayu fizichnogo tila abo yak kordon fizichnogo tila u zagalnomu vipadku poverhnya yavlyaye soboyu deyaku deformovanu ploshinu Pid ob yemom budemo rozumiti trivimirnu chastinu prostoru yaka obmezhena zamknutoyu poverhneyu Ce mozhe buti porozhnina pustota abo zh napovnennya pevnoyi formi rechovinoyu tverdim tilom ridinoyu gazom abo zh plazmoyu Ob yem mozhna predstaviti u viglyadi sukupnosti tochok Geometrichno ob yem mozhna sproyektuvati na poverhnyu tak vin virodzhuyetsya u poverhnyu poverhnya u liniyu liniya v tochku Ob yem kontaktuye z inshimi tilami poverhneyu Yaksho dva tila privesti u kontakt to yih stani budut zminyuvatis do tih pir doki mizh nimi vstanovitsya rivnovaga Na kordoni tila na mizhfaznij poverhni jogo vlastivosti proyavlyayutsya najbilsh chitko Tut atomi ta molekuli kozhnoyi fazi otocheni atomami ta molekulami svoyeyi ta sumizhnoyi faz i proyavlyayut sebe z dvoh storin zi storoni ob yemu ta zi storoni susidnoyi rechovini Poverhnya vidkrivaye novi vidomosti pro rechovinu Hochu stoyati yak mozhna blizhche do krayu rizikuyuchi vpasti Iz krayu bachitsya te chogo ne vidno iz seredini I want to stand as close to the edge as I can without going over Out on the edge you see all the kinds of things you can t see from the center Kurt Vonnegut Player Piano Nashe zahoplennya poverhneyu ne vidkidaye nashu viddanist ob yemu znannya poverhni dozvolyaye krashe zrozumiti i kontrolyuvati ob yem Poverhnya najbilsh antagonistichna i agresivna chastina ob yemu Poverhnya demonstruye energiyu ob yem neyu poslugovuyetsya Deyaki molekulyarni dzherela energiyi yaki mi budemo rozglyadati u cij roboti mayut pevne vidnoshennya do poverhni Poverhnya nas cikavit persh za vse yak mizhfazne utvorennya kordon mizh tverdim tilom ridinoyu ta gazom U konteksti fiziki ta himiyi poverhni rozglyadayutsya takozh bo yih robota pov yazana z vikoristannyam poverhnevih yavish Uvagu doslidnikiv molekulyarnoyi gidroenergetiki privertayut vlastivosti mizhfaznih poverhon ridina tverde tilo ta ridina povitrya u toj chas yak doslidniki molekulyarnoyi vitroenergetiki bilshe perejmayutsya vsim sho maye vidnoshennya do mizhfaznoyi poverhni tverde tilo povitrya Prijmach peretvoryuvach Prijmach peretvoryuvach energiyi RC ye aktivnoyu chutlivoyu strukturoyu yaka transformuye energetichni vlastivosti molekul atomiv joniv inshih malih chastinok robochogo tila v elektrichnu energiyu EE Roboche tilo z pochatkovoyu energiyeyu molekul ta atomiv ME1 EIN1 Dzh vseredini ta na kordoni faz mozhe vikonati pevnu robotu W Dzh i perejti u stan z energiyeyu ME2 EIN2 Dzh W E EIN1 EIN2 Kinceva elektrichna energiya EEL Dzh proporcijna zmini energiyi E robochogo tila EEL k E k EIN1 EIN2 Dzh de EIN1 EIN2 Dzh sumarna energiya chastinok robochogo tila u pochatkovomu ta kincevomu stanah Koeficiyent proporcijnosti k harakterizuye efektivnist energetichnih peretvoren i zvetsya koeficiyentom korisnoyi diyi prijmacha peretvoryuvacha RC Elektrichnij adapter Elektrichnij adapter EA ye pristroyem yakij dovodit parametri elektrichnogo strumu silu strumu I A naprugu U V ta chastotu f Gc do neobhidnih standartiv prijnyatnih dlya spozhivacha ta abo dlya spryamuvannya v ob yednanu elektrichnu merezhu EN Vin mozhe poyednuvati v sobi funkciyi invertora Molekulyarna energetichna sistema funkcionuye nastupnim chinom Roboche tilo WB flyuyid FL z pochatkovoyu vnutrishnoyu energiyeyu molekul ME1 EIN1 Dzh vikonuye robotu W Dzh i perehodit u stan z energiyeyu ME2 EIN2 Prijmach peretvoryuvach RC transformuye energiyu flyuyidu ME v elektrichnu energiyu EE skazhimo shlyahom utvorennya vilnih elektrichnih zaryadiv elektrichnogo potencialu j vihidnogo elektrichnogo strumu I EC Parametri elektrichnoyi energiyi dovodyatsya v elektrichnomu adapteri EA do neobhidnih standartiv i strum spryamovuyetsya spozhivacham ta abo v elektrichnu merezhu EN Robota W Dzh yaka vikonuyetsya molekulyarnoyu energetichnoyu sistemoyu yak termodinamichnim utvorennyam pri perehodi jogo z odnogo energetichnogo stanu do inshogo sumarna energiya chastinok robochogo tila u pochatkovomu EIN1 Dzh ta kincevomu EIN2 Dzh stanah kinceva elektrichna energiya EEL Dzh yaka otrimuyetsya transformaciyeyu energiyi flyuyidu u vilni elektrichni zaryadi v elektrichnij potencial ta elektrichnij strum I EC viznachayutsya napriklad cherez termodinamichni parametri ta harakteristiki ciyeyi sistemi U zalezhnosti vid agregatnogo stanu rechovini mozhut buti vikoristani pryami chi bagatoetapni procesi energetichnih peretvoren pri virobnictvi elektrichnoyi energiyi Pryami ta bagatoetapni sposobi nezminno konfliktuyut mizh soboyu v molekulyarnih tehnologiyah Vibirayuchi mizh odnim energetichnim peretvorennyam ta yih nizkoyu slid pam yatati sho bud yake peretvorennya prizvodit do vtrati chastini energiyi Pryami sposobi virobnictva elektrichnoyi energiyi mayut istotnij prioritet pered inshimi u molekulyarnih tehnologiyah energetiki bo zaporukoyu pryamogo virobnictva elektrichnoyi energiyi ye perebuvannya u rusi vsogo vid atomiv molekul ta joniv do makroskopichnih til Yak ne isnuyut bez ruhu elektroni protoni ta inshi minlivi skladovi chastinki atomiv ta molekul musimo skazati sho nemaye takozh zhodnogo utvorennya kincevoyi masi ta rozmiriv kotre moglo b isnuvati u stani spokoyu Termodinamichni parametri molekulyarnih sistemMolekulyarna energetichna sistema vikoristovuye v svoyij roboti sukupnist malih chastinok rechovini abo zh viprominyuvan yaki otocheni u prostori deyakoyu uyavnoyu abo zh realnoyu poverhneyu perebuvayut u vzayemodiyi z navkolishnimi tilami i mozhut obminyuvatisya iz nimi energiyeyu ta chastinkami tozh vona ye termodinamichnim utvorennyam i mozhe rozglyadatisya v ramkah termodinamiki Na vidminu vid teplovogo dviguna pri vivchenni molekulyarnoyi energetichnoyi sistemi teplota rozglyadayetsya lishe yak odna iz bagatoh form energiyi sho spromozhni vikonati robotu po otrimannyu elektrichnoyi energiyi Povedinka molekulyarnoyi energetichnoyi sistemi harakterizuyetsya pevnimi termodinamichnimi kilkisnimi parametrami stanu yaki rozkrivayut potoki energiyi ta chastinok osnovnimi z yakih ye tisk r Pa temperatura TK K gustina r kg m3 ob yem V m3 pitomij ob yem y m3 kg ta teployemnist U molekulyarnij fizici dlya poyasnennya gustini rechovini operuyut takozh ponyattyami molya molekulyarnoyi molyarnoyi masi atomnoyi odinici masi ta molyarnogo ob yemu Mol odinicya kilkosti rechovini yaka vklyuchaye 6 0222 1023 himichnih odinic abo chislo Avogadro NA NA 6 0222 1023 mol 1 Molyarna masa M kg mol fizichna velichina sho viznachayetsya yak masa rechovini m kg podilena na kilkist rechovini nM mol Atomna odinicya masi kg abo Dalton Da ce masa odnogo protona abo nejtrona Vona ekvivalentna 1 g mol i chiselno dorivnyuye odnij dvanadcyatij masi nejtralnogo atoma vuglecyu 12S u stani spokoyu Ob yem yakij zajmaye odin mol rechovini nazivayetsya molyarnim ob yemom VM m3 mol Chislo moliv nM mol ta chislo molekul N zv yazani mizh soboyu spivvidnoshennyami nM m M V VM N nM NA V VM NA V NL de NL m 3 stala Loshmidta NL 2 6868 1025 m 3 Okrim vkazanih intensivnih termodinamichnih parametriv vikoristovuyutsya takozh specialni ekstensivni parametri taki yak vnutrishnya energiya UIN Dzh entalpiya H Dzh entropiya S Dzh K 1 vilna energiya Gelmgolca FH Dzh ta vilna energiya Gibbza GS Dzh yaki v sukupnosti skladayut funkciyi stanu sho harakterizuyut makroskopichni fizichni vlastivosti sistemi i vzayemopov yazani z inshimi termodinamichnimi parametrami pevnimi rivnyannyami v ramkah zakoniv pochatkiv termodinamiki Znayuchi parametri stanu sistemi v deyakij vihidnij moment chasu mozhna peredbachiti yiyi povedinku v nastupni periodi Koli vnutrishnyu energiyu sistemi viznachiti nemozhlivo obmezhuyutsya viznachennyam zmini vnutrishnoyi energiyi DUIN Dzh vkazanoyi sistemi pri dotrimanni pershogo zakonu termodinamiki EEX DUIN W de EEX Dzh zovnishnya energiya yaka pidvedena do sistemi W Dzh robota yaka vikonuyetsya sistemoyu Z inshoyi storoni vnutrishnya energiya zakritoyi sistemi UIN Dzh mozhe zminyuvatis za rahunok peredachi sistemi deyakoyi kilkosti teploti Q Dzh abo zdijsnennya nad sistemoyu pevnoyi roboti W Dzh pri comu teplota Q Dzh mozhe perehoditi v robotu W Dzh i robota mozhe perehoditi v teplotu Q DUIN W abo u neskinchenno malih velichinah dUIN Dzh dUIN dQ dW Rivnyannya predstavlyaye soboyu diferencialnij zapis pershogo nachala termodinamiki dlya zakritoyi sistemi Neskinchenno mala kilkist roboti dW Dzh mozhe skladatisya iz sumi neskinchenno malih kilkostej roboti riznih vidiv dWi Dzh dW dW1 dW2 dW3 dWi Riznovidami robit mozhut buti napriklad mehanichna robota dWMEX Dzh perenesennya elektrichnogo zaryadu dWEL Dzh robota poverhnevogo natyagu dWST Dzh dWM Dzh tosho dW dWMEX dWEL dWST dWM Neskinchenno malu kilkist roboti kozhnogo vidu mozhna predstaviti u viglyadi dobutku uzagalnenoyi sili na pririst vidpovidnoyi uzagalnenoyi koordinati dW p dV f dq g dA m g dh H dM de f V riznicya potencialiv pid diyeyu yakoyi vidbuvayetsya peremishennya zaryadu dq Kl m kg masa rechovini g m s 2 priskorennya vilnogo palinnya na danij miscevosti g 9 81 m s 2 h m peremishennya komponentiv sistemi po visoti g N m poverhnevij natyag pid diyeyu yakogo zminyuyetsya plosha poverhni dA m2 H A m napruzhenist magnitnogo polya pid diyeyu yakoyi zminyuyetsya namagnichenist dM A m Vnutrishnya energiya termodinamichnoyi sistemi ne zalishayetsya nezminnoyu pri perebigu termodinamichnih procesiv Napryamok samochinnogo perebigu procesiv viznachayetsya rozsiyuvannyam energiyi Kilkisnoyu miroyu cogo rozsiyuvannya ye entropiya S Dzh K 1 Ponyattya entropiyi vvedeno nimeckim fizikom Rudolfom Klauziusom dS dQ T Znak ye spravedlivim dlya zvorotnih procesiv znak gt dlya nezvorotnih Dlya izolovanih procesiv dS 0 Dlya zvorotnogo procesu spravedlivim ye spivvidnoshennya dQ T dS Dzh Vrahovuyuchi rivnyannya pershogo nachala termodinamiki dlya vipadku eksklyuzivnogo vikonannya mehanichnoyi roboti otrimuyemo fundamentalne rivnyannya termodinamiki dUIN T dS r dV U razi vikonannya vsih vidiv robit mayemo dUIN T dS r dV f dq g dA m g dh H dM Faktichno kozhnu iz uzagalnenih sil mozhna predstaviti u viglyadi chastkovoyi pohidnoyi vid vnutrishnoyi energiyi UIN Dzh T UIN S K p UIN V Pa V UIN p m3 Dlya vidkritih sistem rivnyannya 1 32 vklyuchaye she odnu skladovu Smi dNi dUIN T dS r dV Smi dNi Dzh de T K temperatura r Pa tisk S Dzh K entropiya V m3 ob yem mi Dzh mol himichnij potencial i yi chastinki Ni chislo chastinok Z urahuvannyam vsih vidiv robit dUIN T dS r dV f dq g dA m g dh H dM Smi dNi Dlya vidkritih sistem vvoditsya ponyattya entalpiyi H Dzh termodinamichnogo potencialu kotrij dorivnyuye sumi vnutrishnoyi energiyi sistemi UIN Dzh ta dobutku tisku r Pa na ob yem V m3 H UIN r V Pri postijnomu tisku zmina entalpiyi dH Dzh dorivnyuye zmini vnutrishnoyi energiyi sistemi T dS Dzh plyus robota yaka vikonana pri zmini tisku V dp Dzh dH T dS 0 Zmina vnutrishnoyi energiyi prizvodit do zmini entropiyi ta zovnishnih parametriv Yaksho sistema znahoditsya pri stalih temperaturi ta tisku to kilkist teploti otrimanoyi neyu v pevnomu procesi dorivnyuye zmini yiyi entalpiyi H Dzh tobto dQ dH Dzh Todi nerivnist mozhna perepisati tak dH T dS V dp Za umovi staloyi temperaturi liva chastina nerivnosti yavlyaye soboyu diferencial vilnoyi energiyi Gibbza GS Dzh yaka ye funkciyeyu stanu sistemi dGS dH T dS abo dGS dH T dS 0 Spontanni procesi pri postijnih temperaturi ta tisku zvichajno vidbuvayutsya zi skorochennyam vilnoyi energiyi Gibbza sistemi Sistema u stani rivnovagi volodiye minimalnoyu vilnoyu energiyeyu Gibbza Dlya zvorotnogo izotermichnogo procesu ta stalogo tisku potencial Gibbza dGS Dzh opisuyetsya virazom dGS dH r dV T dS dQ dW r dV T dS Dzh Vikoristovuyuchi peretvorennya Lezhandra znahodimo diferencial vilnoyi energiyi Gibbza dGS dGS d N T S T dS V dp T dS S dT V dp S dT Dzh Yak vidno iz rivnyannya vilna energiya Gibbza izobarno izotermichnij potencial Dlya vidkritih sistem rivnyannya vklyuchaye she odnu skladovu Smi dNi dGS V dp S dT Smi dNi Dzh Cej viraz nazivayetsya fundamentalnim rivnyannyam Gibbza dlya fizichnih ta himichnih sistem Zmina energiyi Gibbza z temperaturoyu tiskom abo kilkistyu moliv vidpovidnoyi rechovini mozhe buti predstavlena u viglyadi chastkovih pohidnih S GS T Dzh K V GS r m3 mi GS Ni Dzh mol Himichnij potencial mi Dzh mol demonstruye spromozhnist sistemi vikonati pevnu robotu Chiselno vin dorivnyuye energiyi yaku slid vklasti shob sistema uvijshla v stan termodinamichnoyi rivnovagi pislya vklyuchennya u neyi novogo komponenta Dlya odnokomponentnoyi sistemi vilna energiya Gibbza 1 molyu chistoyi rechovini ye himichnim potencialom ciyeyi rechovini Vrahovuyuchi 1 50 otrimuyemo dGS m dN Pislya integruvannya virazu 1 50 otrimuyemo vilnu energiyu Gibbza GS Dzh dlya odnogo molya rechovini GS m Teper chitachu hochetsya dumati staye zrozumilim chomu mi pridilili tak bagato uvagi termodinamichnim potencialam Gibbza Voni ye kilkisnimi i yakisnimi pokaznikami fundamentalnogo termodinamichnogo rivnyannya i dozvolyayut ne tilki vsebichno harakterizuvati energetichnij stan sistemi iz vrahuvannyam molekulyarnoyi strukturi robochogo tila ale j viznachayut napryamok perebigu procesiv U pevnih vipadkah povedinku sistemi mozhna rozglyadati u geometrichnomu virazi todi zmina termodinamichnih potencialiv zadayetsya vidpovidnimi koordinatnimi osyami a pidrahunok vedetsya z pochatku ciyeyi sistemi koordinat U razi integraciyi kilkoh yavish v odnij sistemi koordinat termodinamichna sistema ye bagatovimirnoyu Vikladennya fizichnih osnov chasto sproshuyutsya za dopomogoyu matematichnogo uskladnennya tozh spasinnya fizika shukaye na beregah matematiki Vikoristovuyuchi formuli matematika dozvolyaye sprostiti ta uporyadkuvati tekst krashe nizh ce robit sintaksis chi orfografiya Dovershena formula mozhe rozglyadatisya yak vikinchenij riznovid lakonichnogo tekstu i ne potrebuye poyasnen yaksho dlya poyasnennya sliv potribni inshi slova to pershi buli pustimi Z inshogo boku perenasichennya tekstu formulami stvoryuye pevni skladnoshi v sprijnyati materialu Cherez umovnist matematichna formula ne mozhe buti povnoyu pravdoyu a lishe napivpravdoyu Molekuli ta atomi utvoryuyut vlasni energetichni polya i vzayemodiyut iz zovnishnimi polyami Rozvitok kvantovoyi fiziki viyaviv vidnosnist podilu mizh rechovinoyu ta polem Tilki na makrorivni polya vvazhayutsya bezzminnimi seredovishami na mikrorivni maye vrahovuvatis yih kvantova priroda Vzayemodiya mizh tilami ta chastinkami sho mayut elektrichnij zaryad vidbuvayetsya cherez elektromagnitne pole pov yazane z protonami ta elektronami sho vhodyat do skladu atomiv molekul ta joniv Elektromagnitni sili znachno perevishuyut gravitacijni Elektromagnitnoyu zvetsya energiya nakopichena elektromagnitnim polem vidpovidno elektrostatichnoyu zvetsya energiya nakopichena elektrostatichnim polem i magnitnoyu zvetsya energiya nakopichena magnitnim polem Energetichnij stan deyakoyi tochki prostoru roztashovanoyi na vidstani r m vid zaryadu q Kl viznachayetsya elektrichnim potencialom f r V f r q 4 p e0 er r de e0 F m dielektrichna proniknist vakuumu e0 8 8542 10 12 F m er vidnosna dielektrichna proniknist seredovisha Potencial sformovanij sistemoyu zaryadiv viznachayetsya yak skalyarna suma v skalyarnomu poli okremih potencialiv abo zh yak vektorna suma u vektornomu poli Potencialna energiya UEP Dzh zaryadu q0 Kl yakij rozmishenij v elektrostatichnomu poli drugogo zaryadu q Kl iz elektrichnim potencialom f r V dorivnyuye dobutku zaryadu q0 na elektrichnij potencial f r UEP q0 f r Potencialna energiya UEP Dzh sistemi dvoh tochkovih zaryadiv q1 ta q2 K pryamo proporcijna dobutku zaryadiv i oberneno proporcijna vidstani mizh nimi r m UEP q1 q2 4 p e0 er r Potencialna energiya sistemi neruhomih zaryadiv sho formuyut elektrostatichne pole dorivnyuye energiyi vzayemodiyi cih zaryadiv Sho stosuyetsya elektrostatichnoyi vzayemodiyi to zgidno zakonu Kulona sila vzayemodiyi FC N dvoh tochkovih zaryadiv q1 Kl ta q2 Kl pryamo proporcijna dobutku velichin cih zaryadiv i oberneno proporcijna kvadratu vidstani r m mizh nimi FC q1 q2 4 p e0 er r2 U tverdomu tili ridini chi gazi elektrichni ta magnitni sili proyavlyayutsya odnakovo Te sho ridina i tverdi chastinki vzayemodiyut mizh soboyu utvoryuyuchi na kordoni faz podvijnij elektrichnij shar mozhna poyasniti sporidnenistyu Prirodi ridina kolis bula gazom kristal ridinoyu Kozhna rechovina bud to gaz mokra ridina chi tverde tilo skladayetsya iz suhih elektrichnih chastinok zv yazanih mizh soboyu v atomi molekuli ta kvazikristali riznogo rodu elektrichnimi vnutrishnoyadernimi ta gravitacijnimi silami Yakraz ci elektrichni chastinki ta sili yaki yih z yednuyut mozhut buti vikoristani dlya pryamogo virobnictva elektrichnoyi energiyi Kozhen akt vzayemodiyi molekul ridini mizh soboyu molekul ridini ta tverdogo tila podibnij iskri i haj nikogo ne vvede v omanu faznij stan rechovini Zhodnij atribut ridini ne zavadit cij iskri Yaksho pravilno skoristatisya elektrichnimi chastinkami ta elektrichnimi silami v atomi ta molekuli elektrichnimi silami mizh atomami ta molekulami a takozh gravitacijnimi ta magnitnimi silami ci chastinki chi sili yaki yih suprovodzhuyut projdut cherez vsyaku materiyu navit ne torknuvshis yiyi yak i svitlo dohodit usyudi ranishe bud yakogo banalnogo dotiku Energetichni peretvorennya v molekulyarnij energetici vikonuyutsya manipulyaciyeyu okremimi atomami molekulami jonami ta inshimi spivstavnimi z nimi po rozmiram i masi nanoskopichnimi rozmirom 100 nm chastinkami rechovini Atomi ta molekuli ye tipovimi nanochastinkami Peretvorennya energiyi prohodyat z nadvisokimi femptosekundnimi shvidkostyami Dlya togo shob skoristatis potayenimi u mikrosviti grandioznimi resursami chistoyi energiyi u ramkah molekulyarnoyi energetiki zastosovuyutsya sporidneni comu mikrosvitovi molekulyarni nanoenergetichni tehnologiyi grec texnologia abo texnologo majsternist tehnika virobnictva nakopichennya transportuvannya ta rozpodilu energiyi Yakraz z vprovadzhennyam molekulyarnih tehnologij bagato hto z fahivciv pov yazuye perspektivi rozvitku elektroenergetiki Atom ta molekula najbilsh doskonali energetichni sistemi Problema polyagaye u tomu abi ne zagubiti yih unikalni vlastivosti pri utvorenni potuzhnoyi molekulyarnoyi energetichnoyi sistemi Doskonala energetichna sistema zberigaye v sobi vinyatkovi atributi atoma ta molekuli Povazhne stavlennya do energetichnih peretvoren dozvolyaye zapobigti mozhlivim katastrofichnim naslidkam Div takozhMolekulyarna gidroenergetika Molekulyarna vitroenergetikaPrimitkiSidorov V I 2020 Molekulyarna energetika Teoriya ta tehnichni rishennya Ukr Cherkasi Vertikal vidavec Kandich S G s 486 ISBN ISBN 978 617 7475 79 7 Sidorov 2018 Vid makroskopichnih do molekulyarnih tehnologij vidnovlyuvanoyi energiyi Promislova elektroenergetika ta elektrotehnika 3 S 34 42 ukr a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Sidorov Vasil 2020 Molekulyarna energetika Teoriya ta tehnichni rishennya ukr Cherkasi Vertikal vidavec Kandich S G s 486 s ISBN 978 617 7475 79 7 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite book title Shablon Cite book cite book a Perevirte znachennya isbn nedijsnij simvol dovidka Hauksbee F 1709 Physico mechanical Experiments on Various Subjects angl London printed by R Brugis s 139 169 II An account of some experiments shown before the Royal Society with an enquiry into the cause of the ascent and suspension of water in capillary tubes Philosophical Transactions of the Royal Society of London T 30 355 31 grudnya 1719 s 739 747 doi 10 1098 rstl 1717 0026 ISSN 0261 0523 Procitovano 26 chervnya 2020 Bernoulli D 1738 Hydrodynamica sive de Viribus et Motibus Fluidorum commentarii Opus Academicum lat Strasbourg Dulsecker Young Tomas 1 sichnya 1805 An essay on the cohesion of fluids Philosophical Transactions of the Royal Society of London 95 R 65 87 angl Procitovano 1805 Marquis de Laplace Pierre Simon 1805 Traite de Mecanique Celeste volume 4 Supplement au dixieme livre du Traite de Mecanique Celeste francuzka Paris France Courcier s 1 79 Gauss Carl Friedrich 1877 Principia generalia theoriae figurae fluidorum in statu aequilibrii Werke Berlin Heidelberg Springer Berlin Heidelberg s 287 292 ISBN 978 3 642 49320 1 Hagen G 1839 Ueber die Bewegung des Wassers in engen cylindrischen Rohren Annalen der Physik und Chemie T 122 3 s 423 442 doi 10 1002 andp 18391220304 ISSN 0003 3804 Procitovano 26 chervnya 2020 Poiseuille J L M 1841 Recherches experimentales sur le mouvement des liquides dans les tubes de tres petits diametres Memoire lu 3e partie suite Comptes rendus hebdomadaires des seances de l Academie des Sciences Vol 12 R 112 115 fr a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Neumann F Wangerin A ed 1894 Vorlesungen uber die Theorie der Capillaritat nim Leipzig B G Teubner Navier C L M H 1833 Resume des lecons donnees a l Ecole des ponts et chaussees sur l application de la mecanique a l Etablissement des constructions et des machines tome 2 Deuxieme partie lecons sur le mouvement et la resistance des fluides la conduite et la distribution des eaux Troisieme partie lecons sur l etablissement des machines fr Paris chez Carilian Gœury Navier C L M H 1833 Resume des lecons donnees a l Ecole des ponts et chaussees sur l application de la mecanique a l Etablissement des constructions et des machines tome 1 Premiere partie contenant des lecons sur la resistance des materiaux et sur l etablissement des constructions en terre en maconnerie et en charpente fr Paris chez Carilian Gœury Stokes G G 1864 On the discontinuity of arbitrary constants which appear in divergent developments Transactions of the Cambridge Philosophical Society Vol 10 Part I R 105 124 125 128 angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Stokes G G 1856 On the numerical calculation of a class of definite integrals and infinite series Transactions of the Cambridge Philosophical Society Vol 9 Part I R 166 188 angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Boyle R 1661 The Sceptical Chymist angl London Boyle R 1666 Origin of Forms and Qualities according to the Corpuscular Philosophy A continuation of his work on the spring of air demonstrated that a reduction in ambient pressure could lead to bubble formation in living tissue This description of a viper in a vacuum was the first recorded description of decompression sickness angl Boyle R 1674 wo volumes of tracts on the Saltiness of the Sea Suspicions about the Hidden Realities of the Air Cold Celestial Magnets angl Boyle R 1660 New Experiments Physico Mechanical Touching the Spring of the Air and their Effects angl Oxford H Hall Boyle R A 1669 A Continuation of New Experiments Physico mechanical Touching the Spring and Weight of the Air and Their Effects angl Oxford H Hall s 198 Mariotte E 1679 Essais de Physique ou memoires pour servir a la science des choses naturelles Second essai De la nature de l air fr Paris E Michallet Humboldt A Gay Lussac J L 1804 Memoires sur l analyse de l air atmospherique fr Paris Gay Lussac J L 1827 1828 Cours de physique fr Paris s 562 p Gay Lussac J L 1802 Recherches sur la dilatation des gaz et des vapeurs Annales de chimie 43 R 137 175 fr a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Avogadro A 1811 Essai d une maniere de determiner les masses relatives des molecules elementaires des corps et les proportions selon lesquelles elles entrent dans ces combinaisons Journal de Physique de Chimie et d Histoire naturelle 73 R 58 76 fr a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Clapeyron E 1834 Memoire sur la puissance motrice de la chaleur Journal de l Ecole Polytechnique XIV R 153 90 fr a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Mayer J R 1867 Die Mechanik der Warme nim s 294 r Mayer J R 1842 Bemerkungen uber die Krafte der unbelebten Natur Annalen der Chemie und Pharmacie 42 2 R 233 240 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Waterston J J 1843 Thoughts on the Mental Functions angl Kronig A 1856 Grundzuge einer Theorie der Gase Annalen der Physik Vol 99 10 R 315 322 Nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Clausius R 1850 Ueber die bewegende Kraft der Warme und die Gesetze welche sich daraus fur die Warmelehre selbst ableiten lassen Annalen der Physik Vol 79 R 368 397 500 524 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Clausius R 1857 Uber die Art der Bewegung die wir Warme nennen Annalen der Physik Vol 100 R 353 379 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Maxwell J C 1867 On the Dynamical Theory of Gases Philosophical Transactions of the Royal Society of London Vol 157 49 r angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Boltzmann L E 1871 Analytischer Beweis des zweiten Haubtsatzes der mechanischen Warmetheorie aus den Satzen uber das Gleichgewicht der lebendigen Kraft nim Boltzmann L E 1871 Uber das Warmegleichgewicht zwischen mehratomigen Gasmolekulen nim Thomson W 1851 On the dynamical theory of heat with numerical results deduced from Mr Joule s equivalent of a thermal unit and M Regnault s observations on steam Math and Phys Papers Vol 1 R 175 183 angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Van der Waals J D 1873 Over de Continuiteit van den Gas en Vloeistoftoestand on the continuity of the gas and liquid state PhD thesis nim Leiden Einstein A 1905 Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen Annalen der Physik Vol 17 8 R 549 560 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Smoluchowski M 1906 Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen Annalen der Physik Vol 21 14 R 756 780 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Galvani L 1791 De viribus electricitatis in motu musculari commentarius De Bononiensi Scientiarum et Artium Instituto atque Academia Commentarii 7 R 363 418 ital a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Volta A 1777 Lettere del Signor Don Alessandro Volta Sull Aria Inflammabile Nativa delle Paludi Letters of Signor Don Alessandro Volta on the flammable native air of the marshes ital Milan Giuseppe Marelli Ampere A M 1826 Description d un appareil electro dynamique fr Paris Bachelier Ampere A M 1834 Essai sur la philosophie des sciences ou Exposition analytique d une classification naturelle de toutes les connaissances humaines fr Paris Bachelier Ampere Andre Marie 1827 Theorie mathematiques des phenomenes electro dynamiques uniquement deduite de l experience fr Paris Firmin Didot Ohm G S 1827 Die galvanische Kette Mathematisch Bearbeitet nim Ohm G S 1826 Bestimmung des Gesetzes nach welchem Metalle die Contactelektricitatleiten nim Faraday M 1832 Experimental Researches in Electricity First Series Philosophical Transactions of the Royal Society R 125 162 angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Maxwell J C 1865 A Dynamical Theory of the Electromagnetic Field Phil Trans R Soc Lond Vol 155 R 459 512 angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Reuss F F 1808 Notice sur un nouvel effet de l electricite galvanique Memoires de la Societe Imperiale des Naturalistes de Moscou Memoires de la Societe Imperiale des Naturalistes de Moscou Vol 2 R 327 337 fr a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Quincke G H 1859 Ueber eine neue Art electrischer Strome Ann Phys Chem Vol 107 R 1 47 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Helmholtz H 1879 Studien uber electrische Grenzschichten Annalen der Physik Vol 243 Issue 7 R 337 382 Nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Gouy M 1910 Sur la constitution de la charge electrique a la surface d un electrolyte J de Physique Theorique et Appliquee Vol 9 R 457 468 Fr a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Chapman D J 1913 A contribution to the theory of electrocapillarity Philos Mag Vol 25 R 475 481 angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Stern O 1924 Zur Theorie der elektrolytischen Doppelschicht Zeitschrift fur Elektrochemie Vol 30 R 508 516 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Contribution a la theorie de l endosmose electrique et de quelques phenomenes correlatifs Bulletin international de l Academie des Sciences de Cracovie Vol 8 R 182 200 Fr 1903 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Gibbs J W 1876 On the Equilibrium of Heterogeneous Substances Transactions of the Connecticut Academy of Sciences angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Hoff J H van t 1884 Etudes de dynamique chimique fr Amsterdam Frederik Muller Publisher s 242 Arrhenius S 1896 On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground London Edinburgh and Dublin Philosophical Magazine and Journal of Science fifth series April Vol 41 R 237 275 angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Arrhenius S 1884 Recherches sur la conductivite galvanique des electrolytes doctoral dissertation fr Stockholm Royal publishing house P A Norstedt amp soner s 89 Langmuir I 1906 The Constitution and Fundamental Properties of Solids and Liquids II Liquids Journal of the American Chemical Society Vol 39 9 R 1848 1906 angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Rutherford E 1913 Radioactive Substances and their Radiations angl Cambridge Univ Press s 734 Rutherford E 1906 Radioactive Transformations angl New York C Scribner amp Sons s 319 Rutherford E 1905 Radio activity 2nd ed angl Cambridge University Press s 609 Bohr N 1913 On the Constitution of Atoms and Molecules Part I Philosophical Magazine Vol 26 R 1 24 angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka On the Constitution of Atoms and Molecules Part III Systems containing several nuclei Philosophical Magazine 26 155 R 857 875 angl 1913 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Bohr N Kramers H A Slater J C 1924 The Quantum Theory of Radiation Philosophical Magazine 47 6 R 785 802 angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Bohr N 1913 On the Constitution of Atoms and Molecules Part II Systems Containing Only a Single Nucleus Philosophical Magazine 26 153 R 476 502 angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Pauli W 1925 Uber den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren On the Connexion between the Completion of Electron Groups in an Atom with the Complex Structure of Spectra Zeitschrift fur Physik 31 R 765 783 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka de Broglie L 1926 Ondes et Mouvements fr Paris Gauthier Villars de Broglie L 1925 Recherches sur la theorie des quanta Annales de Physique 10 3 R 22 128 fr a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Schrodinger E 1926 Quantisierung als Eigenwertproblem Quantization as a Problem of Eigenvalues Annalen der Physik 384 R 361 377 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Schrodinger E 1927 Abhandlungen zur Wellenmechanik nim Leipzig Schrodinger E 1926 An Undulatory Theory of the Mechanics of Atoms and Molecules Physical Review 28 6 R 1049 1070 angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Born M Heisenberg W Jordan P 1926 Zur Quantenmechanik II On quantum mechanics II 557 615 Zeitschrift fur Physik Vol 35 8 9 P 557 615 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Heisenberg W 1927 Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik The Actual Content of Quantum Theoretical Kinematics and Mechanics Zeitschrift fur Physik Vol 43 3 4 P 172 198 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Heisenberg W 1925 Uber quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen Quantum theoretical re interpretation of kinematic and mechanical relations Zeitschrift fur Physik Vol 33 1 P 879 893 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Heisenberg W Pauli W 1929 Zur Quantendynamik der Wellenfelder On the quantum dynamics of wave fields Zeitschrift fur Physik Vol 56 1 2 P 1 61 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Heisenberg W 1928 Zur Theorie des Ferromagnetismus On the theory of ferromagnetism Zeitschrift fur Physik Vol 49 9 10 P 619 636 nim a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Dirac P A M 1926 On the Theory of Quantum Mechanics Proceedings of the Royal Society 112 762 P 661 677 Angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka Dirac P A M 1930 The Principles of Quantum Mechanics Angl Oxford Clarendon Press Dirac P A M 1931 Lectures on quantum mechanics Angl Dirac P A M 1928 The Quantum Theory of the Electron Proceedings of the Royal Society of London 117 778 P 610 624 Angl a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a access date vimagaye url dovidka DzherelaKeesom W H The second virial coefficient for rigid cpherical molecules whose mutual attraction is equivalent to that of a quadruplet placed at its center Proc R Acad Sci 1915 Vol 18 R 636 646 Debye P Zur Theorie der spezifischen Waerme Annalen der Pyisik Leipzig 1912 39 4 P 789 839 Heitler W and London F Wechselwirkung neutraler Atome und homoopolare Bindung nach der Quantenmechanik Zeitschrift fur Physik 1927 44 R 455472 Jones J E On the Determination of Molecular Fields I From the Variation of the Viscosity of a Gas with Temperature Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences 1924 106 738 R 441 462 Jones J E On the Determination of Molecular Fields II From the Equation of State of a Gas Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences 1924 106 738 R 463 Jones J E Ingham A E On the Calculation of Certain Crystal Potential Constants and on the Cubic Crystal of Least Potential Energy Proceedings of the Royal Society A 1925 107 R 636 653 Garner W E Lennard Jones J E Molecular Spectra and Molecular Structure A general discussion Transactions of the Faraday Society 1929 T 25 R 611 627 Lennard Jones J E The electronic structure of some diatomic molecules Transactions of the Faraday Siciety 1929 Vol 25 P 668 686 Lennard Jones J E Wave Functions of Many Electron Atoms Mathematical Proceedings of the Cambridge Philosophical Society 1931 27 3 R 469 Lennard Jones J E The electronic structure and the interaction of some simple radicals Transactions of the Faraday Society 1934 Vol 30 R 70 148 Lennard Jones J E The Electronic Structure of Some Polyenes and Aromatic Molecules I The Nature of the Links by the Method of Molecular Orbitals Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences 1937 158 894 R 280 Lennard Jones J E The Molecular Orbital Theory of Chemical Valency I The Determination of Molecular OrbitalsProceedings of the Royal Society A Mathematical Physical and Engineering Sciences 1949 198 1052 Hall G G Lennard Jones J E The Molecular Orbital Theory of Chemical Valency III Properties of Molecular Orbitals Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences 1950 202 1069 R 155 Lucas R Ueber das Zeitgesetz des Kapillaren Aufstiegs von Flussigkeiten Kolloid Z 1018 Vol 23 1 P 15 22 Washburn E W The Dynamics of Capillary Flow Physical Review 1921 Vol 17 3 P 273 283 Rideal E An Introduction to Surface Chemistry Cambridge University Press 1926 346 p Rideal E Bakerian Lectures On Reactions in Monolayers Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences 1951 Vol 209 1099 P 321 446 Hamraoui A and Nylander T Analytical Approach for the Lucas Washburn Equation Journal of Colloid and Interface Science 2002 Vol 250 R 415 421 Brunauer S Emmet P H Teller E Adsorption of Gases in Multimolecular Layers Journal of American Chemical Society 1938 Vol 60 2 P 309 319 Fan X Phan Thien N Tanner R Numerical Study on Some Rheological Problems of Fibre Suspensions Numerical Simulations of Fibre Suspensions Germany VDM Verlag Dr Muller 2008 188 r Zheng R Tanner R Fan X Injection Molding Integration of Theory and Modeling Methods Heidelberg Dordrecht London New York Springer 2011 187 p Warrick A W Soil Water Dynamics Oxford University Press 2003 416 r Devereux D F de Bruin P L Interaction of Plane Parallel Double Layers Massachusetts Institute of Technology The MIT Press 1963 361 r Haydon D A The Electrical Double Layer and Electrokinetic Phenomena In Recent Progress in Surface Science Ed by Danielly J F Panknurst K G A Ridiford A C N Y Academic Press 1964 R 94 157 Levine S Neale G Epstein N The prediction of electro kinetic phenomena with in multiparticle systems 2 Sedimentation potential J Coll Int Sci 1976 Vol 57 3 R 424 437 Lyklema J Fundamentals of Interface and Colloid Science Solid Liquid Interfaces Vol 2 New York Academic Press 1995 768 p Ajdari A Electroosmosis on inhomogeneously charged surfaces Phys Rev Lett 1995 Vol 75 R 755 758 Ajdari A Pumping liquids using asymmetric electrode arrays Phys Rev 2000 Vol E 61 R45 R48 Squires T M and Bazant M Z Induced charge electro osmosis J Fluid Mech 2004 Vol 509 R 217 252 Squires T M and Bazant M Z Breaking symmetries in induced charge electro osmosis and electrophoresis J Fluid Mech 2006 Vol 560 R 65 101 Huang D M et al Molecular views of electrokinetic phenomena In Surface Electrical Phenomena in Membranes and Microchannels A Szymczyk Ed Research Signpost 2008 Ohshima H Theory of electrostatics and electrokinetics of soft particles Sci Technol Adv Mater 2009 Vol 10 6 R 1 13 Bazant M Z et al Towards an understanding of induced charge electrokinetics at large applied voltages Advances in Colloid and Interface Science 2009 Vol 152 R 48 88 Lacoste D et al Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane European Physical Journal 2009 Vol E 28 R 243 264 Kilic M S and Bazant M Z Induced charge electrophoresis near a wall Electrophoresis 2011 Vol 32 R 614 628 Bazant M Z and Squires T M Induced charge electrokinetic phenomena Current Opinion in Colloid and Interface Science 2010 Vol 15 R 203 213 Duhin S S Shilov V N Dielektricheskie yavleniya i dvojnoj sloj v dispersnyh sistemah i polielektrolitah Kiev Nauk dumka 1972 246 s Dukhin S S and Shilov V N Dielectric phenomena and the double layer in dispersed systems and polyelectrolytes New York John Wiley and Sons 1974 Dukhin S S amp Derjaguin B V Electrokinetic Phenomena New York John Wiley and Sons 1974 Duhin S S Elektroprovodnost i elektrokineticheskie svojstva dispersnyh sistem Kiev Nauk dumka 1975 246 s Duhin S S Deryagin B V Elektroforez M Nauka 1976 326 s Dukhin S S amp Shilov V N Kinetic aspects of electrochemistry of disperse systems Part 2 Induced dipole moment and the nonequilibrium double layer of a colloid particle Adv Colloid Interface Sci 1980 Vol 13 R 153 195 Zharkih N I Shilov V N Teoriya obratnogo osmosa na membrane iz sfericheskih chastic Priblizhenie Debaya Himiya i tehnologiya vody 1981 T 4 1 S 3 9 Delgado A V et al Measurement and interpretation of electrokinetic phenomena IUPAC Technical Report Pure Appl Chem 2005 Vol 77 10 R 1753 1805 Delgado A V Interfacial Electrokinetics and Electrophoresis New York NY Marcel Dekker Inc 2002 991 p Berthier J Micro Drops and Digital Microfluidics Norvich NY William Andrew Inc 2008 441 p Tabeling P Introduction to Microfluidics USA Oxford University Press 2010 310 p Ramos A Ed Electrokinetics and Electrohydrodynamics in Microsystems Wien New York Springer 2011 300 p Galindo Rosales F J Ed Complex Fluid Flows in Microfluidics Springer International publisher AG 2018 111 p Burgreen D and Nakache F R Efficiency of Pumping and Power Generation in Ultrafine Electrokinetic Systems J Appl Mech 1965 32 3 P 675 679 Van der Heyden F H et al Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels Nano Letters 2006 Vol 6 10 P 2232 2237 Van der Heyden F H et al Power Generation by Pressure Driven Transport of Ions in Nanofluidic Channels Nano Letters 2007 Vol 7 4 P 1022 1025 Linde N et al Streaming current generation in two phase flow conditions Geophys Res Lett 2007 34 3 L03306 Sherwood J D et al Theoretical aspects of electrical power generation from two phase flow streaming potentials Microfluidics and Nanofluidics 2013 15 R 347 359 Duffin A M Saykelly R I Electrokinetic Power Generation from Liquid Water Microjets J Phys Chem 2008 112 43 R 17018 17022 Mansouri A Bhattacharjee S Kostiuk L W High power electrokinetic energy conversion in a glass microchannel array Lab on a Chip 2012 12 R 4033 4036 Lin C H Ferguson G S and Chaudhury M K Electrokinetics of Polar Liquids in Contact with Nonpolar Surfaces Langmuir 2013 Vol 29 25 P 7793 7801 Haldrup S et al High Electrokinetic Energy Conversion Efficiency in Charged Nanoporous Nitrocellulose Sulfonated Polystyrene Membranes 2015 Vol 15 2 P 1158 1165 Pattle R E Production of electric power by mixing fresh and salt water in the hydroelectric pile Nature 1954 Vol 174 R 660 666 Norman R S Water salination a source of energy Science 1974 Vol 186 R 350 352 Loeb S Osmotic power plants Science 1975 Vol 189 R 654 655 Loeb S Method and apparatus for generating power utilizing pressure retarded osmosis United States patent US 3 906 250 1975 McGinnis R L McCutcheon J R Elimelech M A novel ammonia carbon dioxide osmotic heat engine for power generation Journal of Membrane Science 2007 Vol 305 R 13 19 Nijmeijer K Metz S Salinity Gradient Energy In Sustainability Science and Engineering Isabel C E Andrea I S Eds Elsevier 2010 Vol 2 R 95 139 Yip N Y Elimelech M Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis Environ Sci Technol 2014 Vol 48 R 11002 11012 Cipollina A Micale G Sustainable Energy from Salinity Gradients Cambridge Woodhead Publishing 2016 350 p Touati K Tadeo F Kim J H Silva O A Pressure Retarded Osmosis Renewable Energy Generation and Recovery Academic Press 2017 188 p Tufa R A et al Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage Applied Energy 2018 Vol 225 C R 290 331 Alfven H Existance of electromagnatic hydrodynamic waves Nature 1942 Vol 150 Iss 3805 P 405 406 Alfven H On the cosmogony of the solar system III Stockholms Observatoriums Annaler Vol 14 R 1 9 Lundquist S Experimental investigations of magneto hydrodynamic waves Physical Review 1949 Vol 76 R 1805 1809 Sutton G W and Sherman A Engineering Magnetohydrodynamics New York MacGraw Hill 1965 548 p Hughes W F and Young F J The Electromagnet dynamics of fluids New York John Wiley and Sons 1966 Elliott D G Direct current liquid metal magnetohydrodynamic power generation AIAA Journal 1966 Vol 4 4 R 627 634 Rosa R J Magnetohydrodynamic energy conversion Washington Hemisphere Pub Corp 1987 Yoshizawa A Hydrodynamic and Magnetohydrodynamic Turbulent Flows Modelling and Statistical Theory Publisher Springer Netherlands 1998 Takeda M et al Fundamental Studies on Helical Type Seawater MHD Generation System IEEE Transactions on Applied Superconductivity 2005 Vol 15 2 R 2170 2173 Takeda M Hirosaki H Kiyoshi T Nishio S Fundamental Study of Helical Type Seawater MHD Power Generation with Partitioned Electrodes Journal of the JIME 2014 Vol 49 3 R 113 117 Morgan E R and Shafer M W Marine Energy Harvesting Using Magnetohydrodynamic Power Generation ASME 2014 Conference on Smart Materials Adaptive Structures and Intelligent Systems Volume 2 Mechanics and Behavior of Active Materials Integrated System Design and Implementation Bioinspired Smart Materials and Systems Energy Harvesting Newport Rhode Island USA September 8 10 2014 Directing Matter and Energy Five Challenges for Science and the Imagination a Report from the Basic Energy Sciences Advisory Committee U S Department of Energy Office of Basic Energy Sciences 2007 Energy development 134 p Wolf E L Nanophysics of Solar and Renewable Energy Wiley VCH 2012 270 p Kirby B J Micro and Nanoscales Fluid Mechanics Transport in Microfluidic Devices Cambridge Univirsity Press 2010 536 p Ohta T Energy Technology Sources Systems and Frontier Conversion Oxford Pergamon Press 1994 235 p