Частково впорядкована множина (poset — англ. partially ordered set) — це множина з заданим частковим порядком (антисиметричним передпорядком), тобто з бінарним відношенням, що є транзитивним, рефлексивним та антисиметричним. Позначається
Скінченні частково впорядковані множини графічно зображаються діаграмами Гассе.
Визначення
Частковим порядком, на множині називається бінарне відношення , визначене деякою множиною ), яке задовольняє наступні умови:
Терміни та позначення
Відношення часткового порядку зазвичай позначають символом , за аналогією з відношенням «менше або дорівнює» на множині дійсних чисел. При цьому, якщо , то кажуть, що елемент не перевершує , або, що підпорядкований .
Якщо і , то пишуть , і кажуть, що менше , або, що строго підпорядковане .
Іноді, щоб відрізнити довільний порядок на деякій множині від відомого відношення «менше або дорівнює» на множині дійсних чисел, замість і використовують спеціальні символи і відповідно.
Строгий і нестрогий порядок
Відношення, що задовольняє умовам рефлексивності, транзитивності і антисиметричності, також називають нестрогим, або рефлексивним порядком. Якщо умову рефлексивності замінити на умову антирефлексивності (тоді властивості антисиметричності зміняться на асиметричність):
- ,
то отримаємо визначення строгого, або антирефлексивного порядку.
Пов'язані визначення
Незрівняні елементи
Якщо і — дійсні числа, то має місце тільки одне з наступних співвідношень :
У разі, якщо і — елементи довільної частково впорядкованої множини, то існує четверта логічна можливість: не виконується жодне з вказаних трьох співвідношень. В цьому випадку елементи і називаються непорівнюваними. Наприклад, якщо — множина дійснозначних функцій на відрізку , то елементи і будуть непорівнювані. Можливість існування непорівнюваних елементів пояснює сенс терміну «частково впорядкована множина».
Мінімальні/максимальні та найменші/найбільші елементи
Максимальні та мінімальні елементи
Через те, що в частково впорядкованій множині можуть бути пари непорівнюваних елементів, вводяться два різні визначення: мінімальний елемент і найменший елемент.
Елемент називається мінімальним (англ. minimal element), якщо не існує елемента . Іншими словами — мінімальний елемент, якщо для будь-якого елемента або , або , або і непорівнювані.
Елемент називається найменшим ((англ. least element, lower bound (opp. upper bound)), якщо для будь-якого елементу має місце нерівність . Очевидно, всякий найменший елемент є також мінімальним, але зворотне в загальному випадку є невірним: мінімальний елемент може і не бути найменшим, якщо існують елементи , непорівнювані з .
Очевидно, що якщо в множині існує найменший елемент, то він єдиний. А ось мінімальних елементів може бути декілька. Як приклад, розглянемо множину натуральних чисел без одиниці, впорядковану по відношенню подільності . Тут мінімальними елементами будуть прості числа, а ось найменшого елементу не існує.
Аналогічно вводяться поняття максимального (англ. maximal element) і найбільшого (англ. greatest element) елементів.
Верхні та нижні грані
Нехай — підмножина частково впорядкованої великої множини . Елемент називається верхньою гранню (англ. upper bound) , якщо будь-який елемент не перевершує . Аналогічно вводиться поняття нижньої грані (англ. lower bound) множини .
Будь-який елемент, більший, ніж деяка верхня грань , також буде верхньою гранню . А будь-який елемент, менший, ніж деяка нижня грань , також буде нижньою гранню . Ці міркування ведуть до введення понять найменшої верхньої грані (англ. least upper bound) і найбільшої нижньої грані (англ. greatest lower bound).
Верхня і нижня множина
Для елементу частково впорядкованої множини верхньою множиною (англ. upper set, upset) називається множина усіх елементів, яким передує ().
Двоїстим чином визначається нижня множина (англ. down set, lower set), як множина усіх елементів, передуючих заданому : .
Спеціальні типи частково впорядкованих множин
Лінійно впорядковані множини
Нехай — частково впорядкована множина. Якщо в будь-які два елементи порівнянні, то множина називається лінійно впорядкованою (англ. linearly ordered set). Лінійно впорядковану множину також називають абсолютно впорядкованою (англ. totally ordered set), або просто, впорядкованою множиною. Таким чином, в лінійно впорядкованій множині для будь-яких двох елементів і має місце одне і тільки одне зі співвідношень: або , або , або .
Також всяку лінійно впорядковану підмножину частково впорядкованої множини називають ланцюгом (англ. chain), тобто ланцюг в частково впорядкованій множині — така його підмножина, в якій будь-які два елементи порівнювані.
З наведених вище прикладів частково впорядкованих множин тільки множина дійсних чисел є лінійно впорядкованою. Множина дійснозначних функцій на відрізку (за умови ), булеан (при ), натуральні числа з відношенням подільності — не є лінійно впорядкованими.
Цілком впорядковані множини
Лінійно впорядкована множина називається цілком впорядкованою (англ. well-ordered), якщо кожна його непорожня підмножина має найменший елемент. Такий порядок на множині називається повним порядком (англ. well-order), в контексті, де його неможливо сплутати з повним порядком в сенсі повних частково впорядкованих множин, (англ. complete order).
Класичний приклад цілком впорядкованої множини — множина натуральних чисел . Твердження про те, що будь-яка непорожня підмножина містить найменший елемент, рівносильно принципу математичної індукції. Як приклад лінійно впорядкованої, але не цілком впорядкованої множини можна навести множину невід'ємних чисел, впорядковану природним чином . Дійсно, його підмножина не має найменшого елемента.
Цілком впорядковані множини грають виключно важливу роль в загальній теорії множин.
Повна частково впорядкована множина
Повна частково впорядкована множина (англ. complete partial ordered, ω-complete partial ordered) — частково впорядкована множина, у якої є дно — єдиний елемент, який передує будь-якому іншому елементу і у кожної спрямованої підмножини, у якої є (точна верхня межа). Повні частково впорядковані множини застосовуються в λ-обчисленнях і інформатиці, зокрема, на них вводиться , на основі якої будується несуперечлива модель λ-обчислення і . Спеціальним випадком повної частково впорядкованої множини є — якщо будь-яка підмножина, не обов'язково спрямована, має точну верхню грань, то вона виявляється повними ґратками.
Впорядкована множина тоді і тільки тоді є повною частково впорядкованою, коли будь-яка функція , монотонна відносно порядку володіє хоча б одною нерухомою точкою: .
Будь-яку множину можна перетворити на повну частково впорядковану виділенням дна і визначенням порядку як і для всіх елементів множини .
Теореми про частково впорядковані множини
До числа фундаментальних теорем про частково впорядковані множини відносяться принцип максимуму Гаусдорфа і лема Куратовського — Цорна, які є еквівалентними аксіомі вибору.
Приклади
- Множина дійсних чисел із звичайним відношенням порядку є лінійно впорядкованою множиною.
- Натуральні числа, цілі числа, раціональні числа, ірраціональні числа тощо всі є підмножинами дійсних чисел, тому утворюють лінійно впорядковані множини зі звичайним відношенням порядку.
- На множині натуральних чисел визначимо відношення порядку за подільністю, тобто тоді і тільки тоді, коли є дільником Таким чином ми отримаємо частково впорядковану множину. Наведені вище аксіоми справджуються тому, що будь-яке натуральне число є своїм дільником, два числа, які є дільниками одне одного, збігаються, і, нарешті, якщо є дільником а є дільником то є дільником Ця множина не є лінійно впорядкованою, наприклад, жодне з чисел 2,3 не є дільником іншого. При цьому 1 є дільником будь-якого натурального числа, тому воно є найменшим елементом цієї частково упорядкованої множини.
- Ланцюг з елементів — це лінійно впорядкована множина з елементів. У комбінаториці ланцюг, який складається з позначається або
- Будь-яка множина перетворюється на частково впорядковану множину, якщо визначити на ній таке відношення порядку:
У цьому разі можна порівняти два елементи , лише коли вони збігаються. Така частково впорядкована множина називається антиланцюгом.
- Нехай — це довільна множина, а — це множина всіх підмножин (булеан). Визначимо на частковий порядок за включенням, тобто означає, що де — дві підмножини
- Тоді перетворюється на частково впорядковану множину з найменшим елементом та найбільшим елементом
- Розглянемо множину всіх -елементних послідовностей натуральних чисел з лексикографічним порядком. А саме,
якщо або або або інакше кажучи, якщо у послідовності перший ненульовий елемент — додатний. У такий спосіб перетворюється на лінійно впорядковану множину, яка відіграє провідну роль у (див. ).
Див. також
Примітки
- Колмогоров, 2004.
- Колмогоров, 2004, с. 38.
- Колмогоров, 2004, с. 40.
- Барендрегт, 1985, с. 23.
Джерела
- Хаусдорф Ф. Теория множеств. — Москва ; Ленинград : , 1937. — 304 с. — .(рос.)
- Куратовский К., Мостовский А. Теория множеств = Set Theory (Teoria mnogości). — М. : Мир, 1970. — 416 с.(рос.)
- Александров П.С. Введение в теорию множеств и общую топологию. — Москва : Наука, 1977. — 368 с. — .(рос.)
- Мальцев А. И. Алгебраические системы. — Москва : Наука, 1970. — 392 с.(рос.)
- Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. — 4-е изд. — Москва : Наука, 1976. — 544 с. — .(рос.)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Chastkovo vporyadkovana mnozhina poset angl partially ordered set ce mnozhina P displaystyle P z zadanim chastkovim poryadkom displaystyle leqslant antisimetrichnim peredporyadkom tobto z binarnim vidnoshennyam sho ye tranzitivnim refleksivnim ta antisimetrichnim Poznachayetsya P displaystyle P leqslant Dodatni chisla vporyadkovani za podilnistyu Diagrama Gasse dilnikiv chisla 60 chastkovo vporyadkovana za podilnistyu Diagrama Gasse usih pidmnozhin trielementnoyi mnozhini x y z yaki vporyadkovani vidnoshennyam vklyuchennya mnozhin Skinchenni chastkovo vporyadkovani mnozhini grafichno zobrazhayutsya diagramami Gasse ViznachennyaChastkovim poryadkom na mnozhini S displaystyle S nazivayetsya binarne vidnoshennya displaystyle leqslant viznachene deyakoyu mnozhinoyu R S S displaystyle R leqslant subset S times S yake zadovolnyaye nastupni umovi Tranzitivnist a b c a b b c a c displaystyle forall a b c quad a leqslant b wedge b leqslant c Rightarrow a leqslant c Refleksivnist a a a displaystyle forall a quad a leqslant a Antisimetrichnist a b a b b a a b displaystyle forall a b quad a leqslant b wedge b leqslant a Rightarrow a b Termini ta poznachennya Vidnoshennya chastkovogo poryadku zazvichaj poznachayut simvolom displaystyle leqslant za analogiyeyu z vidnoshennyam menshe abo dorivnyuye na mnozhini dijsnih chisel Pri comu yaksho a b displaystyle a leqslant b to kazhut sho element a displaystyle a ne perevershuye b displaystyle b abo sho a displaystyle a pidporyadkovanij b displaystyle b Yaksho a b displaystyle a leqslant b i a b displaystyle a neq b to pishut a lt b displaystyle a lt b i kazhut sho a displaystyle a menshe b displaystyle b abo sho a displaystyle a strogo pidporyadkovane b displaystyle b Inodi shob vidrizniti dovilnij poryadok na deyakij mnozhini vid vidomogo vidnoshennya menshe abo dorivnyuye na mnozhini dijsnih chisel zamist displaystyle leqslant i lt displaystyle lt vikoristovuyut specialni simvoli displaystyle preccurlyeq i displaystyle prec vidpovidno Strogij i nestrogij poryadok Vidnoshennya sho zadovolnyaye umovam refleksivnosti tranzitivnosti i antisimetrichnosti takozh nazivayut nestrogim abo refleksivnim poryadkom Yaksho umovu refleksivnosti zaminiti na umovu antirefleksivnosti todi vlastivosti antisimetrichnosti zminyatsya na asimetrichnist a a f a displaystyle forall a neg a varphi a to otrimayemo viznachennya strogogo abo antirefleksivnogo poryadku Pov yazani viznachennyaNezrivnyani elementi Yaksho a displaystyle a i b displaystyle b dijsni chisla to maye misce tilki odne z nastupnih spivvidnoshen a lt b a b b lt a displaystyle a lt b qquad a b qquad b lt a U razi yaksho a displaystyle a i b displaystyle b elementi dovilnoyi chastkovo vporyadkovanoyi mnozhini to isnuye chetverta logichna mozhlivist ne vikonuyetsya zhodne z vkazanih troh spivvidnoshen V comu vipadku elementi a displaystyle a i b displaystyle b nazivayutsya neporivnyuvanimi Napriklad yaksho M displaystyle M mnozhina dijsnoznachnih funkcij na vidrizku 0 1 displaystyle 0 1 to elementi f x x displaystyle f x x i g x 1 x displaystyle g x 1 x budut neporivnyuvani Mozhlivist isnuvannya neporivnyuvanih elementiv poyasnyuye sens terminu chastkovo vporyadkovana mnozhina Minimalni maksimalni ta najmenshi najbilshi elementi Maksimalni ta minimalni elementi Dokladnishe Maksimalni ta minimalni elementi Dokladnishe Najbilshij ta najmenshij element Cherez te sho v chastkovo vporyadkovanij mnozhini mozhut buti pari neporivnyuvanih elementiv vvodyatsya dva rizni viznachennya minimalnij element i najmenshij element Element a M displaystyle a in M nazivayetsya minimalnim angl minimal element yaksho ne isnuye elementa b lt a displaystyle b lt a Inshimi slovami a displaystyle a minimalnij element yaksho dlya bud yakogo elementa b M displaystyle b in M abo b gt a displaystyle b gt a abo b a displaystyle b a abo b displaystyle b i a displaystyle a neporivnyuvani Element a displaystyle a nazivayetsya najmenshim angl least element lower bound opp upper bound yaksho dlya bud yakogo elementu b M displaystyle b in M maye misce nerivnist b a displaystyle b geqslant a Ochevidno vsyakij najmenshij element ye takozh minimalnim ale zvorotne v zagalnomu vipadku ye nevirnim minimalnij element a displaystyle a mozhe i ne buti najmenshim yaksho isnuyut elementi b displaystyle b neporivnyuvani z a displaystyle a Ochevidno sho yaksho v mnozhini isnuye najmenshij element to vin yedinij A os minimalnih elementiv mozhe buti dekilka Yak priklad rozglyanemo mnozhinu N 1 2 3 displaystyle mathbb N setminus 1 2 3 ldots naturalnih chisel bez odinici vporyadkovanu po vidnoshennyu podilnosti displaystyle mid Tut minimalnimi elementami budut prosti chisla a os najmenshogo elementu ne isnuye Analogichno vvodyatsya ponyattya maksimalnogo angl maximal element i najbilshogo angl greatest element elementiv Verhni ta nizhni grani Dokladnishe Verhnya ta nizhnya mezha Nehaj A displaystyle A pidmnozhina chastkovo vporyadkovanoyi velikoyi mnozhini M displaystyle langle M leqslant rangle Element u M displaystyle u in M nazivayetsya verhnoyu grannyu angl upper bound A displaystyle A yaksho bud yakij element a A displaystyle a in A ne perevershuye u displaystyle u Analogichno vvoditsya ponyattya nizhnoyi grani angl lower bound mnozhini A displaystyle A Bud yakij element bilshij nizh deyaka verhnya gran A displaystyle A takozh bude verhnoyu grannyu A displaystyle A A bud yakij element menshij nizh deyaka nizhnya gran A displaystyle A takozh bude nizhnoyu grannyu A displaystyle A Ci mirkuvannya vedut do vvedennya ponyat najmenshoyi verhnoyi grani angl least upper bound i najbilshoyi nizhnoyi grani angl greatest lower bound Verhnya i nizhnya mnozhina Dokladnishe Verhnya mnozhina Elementi verhnoyi mnozhini 2 1 2 3 4 1 displaystyle 2 1 2 3 4 uparrow 1 vidmicheni zelenim Dlya elementu m displaystyle m chastkovo vporyadkovanoyi mnozhini M displaystyle langle M leqslant rangle verhnoyu mnozhinoyu angl upper set upset nazivayetsya mnozhina M m displaystyle M uparrow m usih elementiv yakim m displaystyle m pereduye x M m x displaystyle x in M mid m leqslant x Dvoyistim chinom viznachayetsya nizhnya mnozhina angl down set lower set yak mnozhina usih elementiv pereduyuchih zadanomu M m d e f x M x m displaystyle M downarrow m stackrel mathrm def x in M mid x leqslant m Specialni tipi chastkovo vporyadkovanih mnozhinLinijno vporyadkovani mnozhini Dokladnishe Linijno vporyadkovana mnozhina Nehaj M displaystyle langle M leqslant rangle chastkovo vporyadkovana mnozhina Yaksho v M displaystyle M bud yaki dva elementi porivnyanni to mnozhina M displaystyle M nazivayetsya linijno vporyadkovanoyu angl linearly ordered set Linijno vporyadkovanu mnozhinu takozh nazivayut absolyutno vporyadkovanoyu angl totally ordered set abo prosto vporyadkovanoyu mnozhinoyu Takim chinom v linijno vporyadkovanij mnozhini dlya bud yakih dvoh elementiv a displaystyle a i b displaystyle b maye misce odne i tilki odne zi spivvidnoshen abo a lt b displaystyle a lt b abo a b displaystyle a b abo b lt a displaystyle b lt a Takozh vsyaku linijno vporyadkovanu pidmnozhinu chastkovo vporyadkovanoyi mnozhini nazivayut lancyugom angl chain tobto lancyug v chastkovo vporyadkovanij mnozhini M displaystyle langle M leqslant rangle taka jogo pidmnozhina v yakij bud yaki dva elementi porivnyuvani Z navedenih vishe prikladiv chastkovo vporyadkovanih mnozhin tilki mnozhina dijsnih chisel ye linijno vporyadkovanoyu Mnozhina dijsnoznachnih funkcij na vidrizku a b displaystyle a b za umovi a lt b displaystyle a lt b bulean P M displaystyle mathcal P M pri M 2 displaystyle M geqslant 2 naturalni chisla z vidnoshennyam podilnosti ne ye linijno vporyadkovanimi Cilkom vporyadkovani mnozhini Dokladnishe Cilkom vporyadkovana mnozhina Linijno vporyadkovana mnozhina nazivayetsya cilkom vporyadkovanoyu angl well ordered yaksho kozhna jogo neporozhnya pidmnozhina maye najmenshij element Takij poryadok na mnozhini nazivayetsya povnim poryadkom angl well order v konteksti de jogo nemozhlivo splutati z povnim poryadkom v sensi povnih chastkovo vporyadkovanih mnozhin angl complete order Klasichnij priklad cilkom vporyadkovanoyi mnozhini mnozhina naturalnih chisel N displaystyle mathbb N Tverdzhennya pro te sho bud yaka neporozhnya pidmnozhina N displaystyle mathbb N mistit najmenshij element rivnosilno principu matematichnoyi indukciyi Yak priklad linijno vporyadkovanoyi ale ne cilkom vporyadkovanoyi mnozhini mozhna navesti mnozhinu nevid yemnih chisel vporyadkovanu prirodnim chinom R x x 0 displaystyle mathbb R x x geqslant 0 Dijsno jogo pidmnozhina x x gt 1 displaystyle x x gt 1 ne maye najmenshogo elementa Cilkom vporyadkovani mnozhini grayut viklyuchno vazhlivu rol v zagalnij teoriyi mnozhin Povna chastkovo vporyadkovana mnozhina Povna chastkovo vporyadkovana mnozhina angl complete partial ordered w complete partial ordered chastkovo vporyadkovana mnozhina u yakoyi ye dno yedinij element yakij pereduye bud yakomu inshomu elementu i u kozhnoyi spryamovanoyi pidmnozhini u yakoyi ye tochna verhnya mezha Povni chastkovo vporyadkovani mnozhini zastosovuyutsya v l obchislennyah i informatici zokrema na nih vvoditsya na osnovi yakoyi buduyetsya nesuperechliva model l obchislennya i Specialnim vipadkom povnoyi chastkovo vporyadkovanoyi mnozhini ye yaksho bud yaka pidmnozhina ne obov yazkovo spryamovana maye tochnu verhnyu gran to vona viyavlyayetsya povnimi gratkami Vporyadkovana mnozhina M displaystyle M todi i tilki todi ye povnoyu chastkovo vporyadkovanoyu koli bud yaka funkciya f M M displaystyle f colon M rightarrow M monotonna vidnosno poryadku a b f a f b displaystyle a leqslant b Rightarrow f a leqslant f b volodiye hocha b odnoyu neruhomoyu tochkoyu x M f x x displaystyle exists x in M f x x Bud yaku mnozhinu M displaystyle M mozhna peretvoriti na povnu chastkovo vporyadkovanu vidilennyam dna displaystyle bot i viznachennyam poryadku displaystyle leqslant yak m displaystyle bot leqslant m i m m displaystyle m leqslant m dlya vsih elementiv m displaystyle m mnozhini M displaystyle M Teoremi pro chastkovo vporyadkovani mnozhiniDo chisla fundamentalnih teorem pro chastkovo vporyadkovani mnozhini vidnosyatsya princip maksimumu Gausdorfa i lema Kuratovskogo Corna yaki ye ekvivalentnimi aksiomi viboru PrikladiMnozhina R displaystyle mathbb R dijsnih chisel iz zvichajnim vidnoshennyam poryadku ye linijno vporyadkovanoyu mnozhinoyu Naturalni chisla cili chisla racionalni chisla irracionalni chisla tosho vsi ye pidmnozhinami dijsnih chisel tomu utvoryuyut linijno vporyadkovani mnozhini zi zvichajnim vidnoshennyam poryadku Na mnozhini naturalnih chisel N displaystyle mathbb N viznachimo vidnoshennya poryadku za podilnistyu tobto a b displaystyle a leq b todi i tilki todi koli a displaystyle a ye dilnikom b displaystyle b Takim chinom mi otrimayemo chastkovo vporyadkovanu mnozhinu Navedeni vishe aksiomi spravdzhuyutsya tomu sho bud yake naturalne chislo ye svoyim dilnikom dva chisla yaki ye dilnikami odne odnogo zbigayutsya i nareshti yaksho a displaystyle a ye dilnikom b displaystyle b a b displaystyle b ye dilnikom c displaystyle c to a displaystyle a ye dilnikom c displaystyle c Cya mnozhina ne ye linijno vporyadkovanoyu napriklad zhodne z chisel 2 3 ne ye dilnikom inshogo Pri comu 1 ye dilnikom bud yakogo naturalnogo chisla tomu vono ye najmenshim elementom ciyeyi chastkovo uporyadkovanoyi mnozhini Lancyug z n displaystyle n elementiv ce linijno vporyadkovana mnozhina z n displaystyle n elementiv U kombinatorici lancyug yakij skladayetsya z 1 lt 2 lt lt n displaystyle 1 lt 2 lt ldots lt n poznachayetsya n displaystyle n abo n displaystyle mathbf n Bud yaka mnozhina A displaystyle A peretvoryuyetsya na chastkovo vporyadkovanu mnozhinu yaksho viznachiti na nij take vidnoshennya poryadku a b a b displaystyle a leq b iff a b U comu razi mozhna porivnyati dva elementi A displaystyle A lishe koli voni zbigayutsya Taka chastkovo vporyadkovana mnozhina nazivayetsya antilancyugom Nehaj A displaystyle A ce dovilna mnozhina a W A displaystyle Omega A ce mnozhina vsih pidmnozhin A displaystyle A bulean Viznachimo na W A displaystyle Omega A chastkovij poryadok za vklyuchennyam tobto B C displaystyle B leq C oznachaye sho B C displaystyle B subseteq C de B C W A displaystyle B C in Omega A dvi pidmnozhini A displaystyle A Todi W A displaystyle Omega A peretvoryuyetsya na chastkovo vporyadkovanu mnozhinu z najmenshim elementom displaystyle emptyset ta najbilshim elementom A displaystyle A Rozglyanemo mnozhinu N n displaystyle mathbb N n vsih n displaystyle n elementnih poslidovnostej naturalnih chisel z leksikografichnim poryadkom A same a 1 a 2 a n b 1 b 2 b n displaystyle a 1 a 2 ldots a n leq b 1 b 2 ldots b n yaksho a 1 lt b 1 displaystyle a 1 lt b 1 abo a 1 b 1 a 2 lt b 2 displaystyle a 1 b 1 a 2 lt b 2 abo displaystyle ldots abo a 1 b 1 a 2 b 2 a n b n displaystyle a 1 b 1 a 2 b 2 ldots a n b n inakshe kazhuchi yaksho u poslidovnosti b 1 a 1 b 2 a 2 b n a n displaystyle b 1 a 1 b 2 a 2 ldots b n a n pershij nenulovij element dodatnij U takij sposib N n displaystyle mathbb N n peretvoryuyetsya na linijno vporyadkovanu mnozhinu yaka vidigraye providnu rol u div Div takozhPortal Matematika Peredporyadok Linijno vporyadkovana mnozhina Cilkom vporyadkovana mnozhina Najbilshij ta najmenshij element Maksimalni ta minimalni elementi Verhnya ta nizhnya mezha Poslidovno paralelnij chastkovij poryadok Shilnij poryadokPrimitkiKolmogorov 2004 Kolmogorov 2004 s 38 Kolmogorov 2004 s 40 Barendregt 1985 s 23 DzherelaHausdorf F Teoriya mnozhestv Moskva Leningrad 1937 304 s ISBN 978 5 382 00127 2 ros Kuratovskij K Mostovskij A Teoriya mnozhestv Set Theory Teoria mnogosci M Mir 1970 416 s ros Aleksandrov P S Vvedenie v teoriyu mnozhestv i obshuyu topologiyu Moskva Nauka 1977 368 s ISBN 5354008220 ros Malcev A I Algebraicheskie sistemy Moskva Nauka 1970 392 s ros Kolmogorov A N Fomin S V Elementy teorii funkcij i funkcionalnogo analiza 4 e izd Moskva Nauka 1976 544 s ISBN 5 9221 0266 4 ros