Однорі́дний многогранник — вершинно транзитивний многогранник (транзитивний відносно вершин, а також ізогональний, тобто є рух, що переводить вершину в будь-яку іншу), грані якого є правильними многокутниками. Звідси випливає, що всі вершини конгруентні і многогранник має високий рівень дзеркальної й обертової симетрії.
Однорідні многогранники можна поділити на опуклі форми з гранями у вигляді правильних опуклих многокутників і зірчасті форми. Зірчасті форми мають грані у вигляді правильних зірчастих многокутників, вершинних фігур або обох видів разом.
Список включає:
- всі 75 непризматичних однорідних многогранників;
- деяких представників нескінченної множини призм та антипризм;
- один окремий випадок, многогранник Скілінга з ребрами, що перетинаються.
1970 року радянський учений Сопов довів, що існує лише 75 однорідних многогранників, які не входять до нескінченних серій призм і антипризм. Джон Скілінг (John Skilling) відкрив ще один многогранник, послабивши умову, що ребро може належати лише двом граням. Деякі автори не вважають цей многогранник однорідним, оскільки деякі пари ребер збігаються.
Не включено:
- 40 потенційних [ru]вершинними фігурами, які мають ребра, що перетинаються (не перераховані Коксетером);
- Однорідні мозаїки (нескінченні многогранники)
- 11 евклідових [en]
- 14 евклідових [en]
- Нескінченна кількість .
Нумерація
Використовують чотири схеми нумерації однорідних многогранників, що відрізняються літерами:
- [C] Коксетер зі співавторами (1954). Список містить опуклі види з номерами від 15 до 32, три призматичні види (номери 33—35) та неопуклі види (номери 36—92).
- [W] Веннінджер (1974). Список містить 119 фігур: номери 1—5 для платонових тіл, 6—18 для архімедових тіл, 19—66 для зірчастих видів, включно з 4 правильними неопуклими многогранниками, та 67—119 для неопуклих однорідних многогранників.
- [K] Kaleido (програма, 1993). Список містить 80 фігур, номери згруповано за симетрією: 1—5 представляють нескінченні серії призматичних форм з [en], 6—9 з , 10—26 з [en], 46—80 з .
- [U] Mathematica (програма, 1993). У програмі, загалом, використано таку ж нумерацію, як у програмі Kaleido, лише перші 5 призматичних види перенесено в кінець списку, отже непризматичні види отримали номери 1—75.
Список многогранників
Опуклі форми перераховано в порядку степенів вершинних конфігурацій від 3 граней/вершин і далі, і збільшення сторін грані. Таке впорядкування дозволяє показати топологічну схожість.
Опуклі однорідні багатогранники
Назва | Малюнок | Тип вершинної конфігурації | Символ Вітгоффа | Сим. | C# | W# | U# | K# | Вер- шин | Ре- бер | Гра- ней | Щіль- ність | Граней за типами | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Тетраедр | 3.3.3 | 2 3 | Td | C15 | W001 | U01 | K06 | 4 | 6 | 4 | 2 | 1 | 4{3} | |
Трикутна призма | 3.4.4 | 2 | D3h | C33a | -- | U76a | K01a | 6 | 9 | 5 | 2 | 1 | 2{3} +3{4} | |
Зрізаний тетраедр | 3.6.6 | 3 | Td | C16 | W006 | U02 | K07 | 12 | 18 | 8 | 2 | 1 | 4{3} +4{6} | |
Зрізаний куб | 3.8.8 | 4 | Oh | C21 | W008 | U09 | K14 | 24 | 36 | 14 | 2 | 1 | 8{3} +6{8} | |
Зрізаний додекаедр | 3.10.10 | 5 | Ih | C29 | W010 | U26 | K31 | 60 | 90 | 32 | 2 | 1 | 20{3} +12{10} | |
Куб | 4.4.4 | 2 4 | Oh | C18 | W003 | U06 | K11 | 8 | 12 | 6 | 2 | 1 | 6{4} | |
Пятикутна призма | 4.4.5 | 2 | D5h | C33b | -- | U76b | K01b | 10 | 15 | 7 | 2 | 1 | 5{4} +2{5} | |
Шестикутна призма | 4.4.6 | 2 | D6h | C33c | -- | U76c | K01c | 12 | 18 | 8 | 2 | 1 | 6{4} +2{6} | |
4.4.8 | 2 | D8h | C33e | -- | U76e | K01e | 16 | 24 | 10 | 2 | 1 | 8{4} +2{8} | ||
4.4.10 | 2 | D10h | C33g | -- | U76g | K01g | 20 | 30 | 12 | 2 | 1 | 10{4} +2{10} | ||
[en] | 4.4.12 | 2 | D12h | C33i | -- | U76i | K01i | 24 | 36 | 14 | 2 | 1 | 12{4} +2{12} | |
Зрізаний октаедр | 4.6.6 | 3 | Oh | C20 | W007 | U08 | K13 | 24 | 36 | 14 | 2 | 1 | 6{4} +8{6} | |
Зрізаний кубооктаедр | 4.6.8 | Oh | C23 | W015 | U11 | K16 | 48 | 72 | 26 | 2 | 1 | 12{4} +8{6} +6{8} | ||
Ромбозрізаний ікосододекаедр | 4.6.10 | Ih | C31 | W016 | U28 | K33 | 120 | 180 | 62 | 2 | 1 | 30{4} +20{6} +12{10} | ||
Додекаедр | 5.5.5 | 2 5 | Ih | C26 | W005 | U23 | K28 | 20 | 30 | 12 | 2 | 1 | 12{5} | |
Зрізаний ікосаедр | 5.6.6 | 3 | Ih | C27 | W009 | U25 | K30 | 60 | 90 | 32 | 2 | 1 | 12{5} +20{6} | |
Октаедр | 3.3.3.3 | 2 3 | Oh | C17 | W002 | U05 | K10 | 6 | 12 | 8 | 2 | 1 | 8{3} | |
Квадратна антипризма | 3.3.3.4 | 2 2 4 | D4d | C34a | -- | U77a | K02a | 8 | 16 | 10 | 2 | 1 | 8{3} +2{4} | |
П'ятикутна антипризма | 3.3.3.5 | 2 2 5 | D5d | C34b | -- | U77b | K02b | 10 | 20 | 12 | 2 | 1 | 10{3} +2{5} | |
Шестикутна антипризма | 3.3.3.6 | 2 2 6 | D6d | C34c | -- | U77c | K02c | 12 | 24 | 14 | 2 | 1 | 12{3} +2{6} | |
Восьмикутна антипризма | 3.3.3.8 | 2 2 8 | D8d | C34e | -- | U77e | K02e | 16 | 32 | 18 | 2 | 1 | 16{3} +2{8} | |
[en] | 3.3.3.10 | 2 2 10 | D10d | C34g | -- | U77g | K02g | 20 | 40 | 22 | 2 | 1 | 20{3} +2{10} | |
Дванадцятикутна антипризма | 3.3.3.12 | 2 2 12 | D12d | C34i | -- | U77i | K02i | 24 | 48 | 26 | 2 | 1 | 24{3} +2{12} | |
Кубооктаедр | 3.4.3.4 | 3 4 | Oh | C19 | W011 | U07 | K12 | 12 | 24 | 14 | 2 | 1 | 8{3} +6{4} | |
Ромбокубооктаедр | 3.4.4.4 | 2 | Oh | C22 | W013 | U10 | K15 | 24 | 48 | 26 | 2 | 1 | 8{3} +(6+12){4} | |
Ромбоікосододекаедр | 3.4.5.4 | 2 | Ih | C30 | W014 | U27 | K32 | 60 | 120 | 62 | 2 | 1 | 20{3} +30{4} +12{5} | |
Ікосододекаедр | 3.5.3.5 | 3 5 | Ih | C28 | W012 | U24 | K29 | 30 | 60 | 32 | 2 | 1 | 20{3} +12{5} | |
Ікосаедр | 3.3.3.3.3 | 2 3 | Ih | C25 | W004 | U22 | K27 | 12 | 30 | 20 | 2 | 1 | 20{3} | |
Кирпатий куб | 3.3.3.3.4 | 2 3 4 | O | C24 | W017 | U12 | K17 | 24 | 60 | 38 | 2 | 1 | (8+24){3} +6{4} | |
Кирпатий додекаедр | 3.3.3.3.5 | 2 3 5 | I | C32 | W018 | U29 | K34 | 60 | 150 | 92 | 2 | 1 | (20+60){3} +12{5} |
Однорідні зірчасті многогранники
Назва | Малюнок | Символ Вітгоффа | Тип вершинної конфігурації | Сим. | C# | W# | U# | K# | Вер- шин | Ре- бер | Гра- ней | Щіль- ність | Граней за типом | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[en] | 3 | 6.3/2.6.3 | Oh | C37 | W068 | U03 | K08 | 12 | 24 | 12 | 0 | 8{3}+4{6} | |||
Тетрагемігексаедр | 2 | 4.3/2.4.3 | Td | C36 | W067 | U04 | K09 | 6 | 12 | 7 | 1 | 4{3}+3{4} | |||
[en] | 3 | 6.4/3.6.4 | Oh | C51 | W078 | U15 | K20 | 12 | 24 | 10 | -2 | 6{4}+4{6} | |||
Великий додекаедр | 2 5 | (5.5.5.5.5)/2 | Ih | C44 | W021 | U35 | K40 | 12 | 30 | 12 | -6 | 3 | 12{5} | ||
Великий ікосаедр | 2 3 | (3.3.3.3.3)/2 | Ih | C69 | W041 | U53 | K58 | 12 | 30 | 20 | 2 | 7 | 20{3} | ||
[en] | 3 5 | (5.3.5.3.5.3)/2 | Ih | C61 | W087 | U47 | K52 | 20 | 60 | 32 | -8 | 6 | 20{3}+12{5} | ||
[en] | 4.8.4/3.8 | Oh | C60 | W086 | U18 | K23 | 24 | 48 | 18 | -6 | 12{4}+6{8} | ||||
[en] | 4 | 8.3/2.8.4 | Oh | C38 | W069 | U13 | K18 | 24 | 48 | 20 | -4 | 2 | 8{3}+6{4}+6{8} | ||
[en] | 2 | 4.3/2.4.4 | Oh | C59 | W085 | U17 | K22 | 24 | 48 | 26 | 2 | 5 | 8{3}+(6+12){4} | ||
[en] | 5 | 10.5/4.10.5 | Ih | C65 | W091 | U51 | K56 | 30 | 60 | 18 | -12 | 12{5}+6{10} | |||
[en] | 3 | 6.5/4.6.5 | Ih | C81 | W102 | U65 | K70 | 30 | 60 | 22 | -8 | 12{5}+10{6} | |||
[en] | 5 | 10.3/2.10.3 | Ih | C63 | W089 | U49 | K54 | 30 | 60 | 26 | -4 | 20{3}+6{10} | |||
[en] | 10.6.10/9.6/5 | Ih | C64 | W090 | U50 | K55 | 60 | 120 | 32 | -28 | 20{6}+12{10} | ||||
[en] | 10.4.10/9.4/3 | Ih | C46 | W074 | U39 | K44 | 60 | 120 | 42 | -18 | 30{4}+12{10} | ||||
[en] | 5 | 10.3/2.10.5 | Ih | C42 | W072 | U33 | K38 | 60 | 120 | 44 | -16 | 2 | 20{3}+12{5}+12{10} | ||
[en] | 6.4.6/5.4/3 | Ih | C72 | W096 | U56 | K61 | 60 | 120 | 50 | -10 | 30{4}+20{6} | ||||
[en] | 3 | 6.3/2.6.5 | Ih | C62 | W088 | U48 | K53 | 60 | 120 | 52 | -8 | 6 | 20{3}+12{5}+20{6} | ||
Пентаграмна призма | 2 | 5/2.4.4 | D5h | C33b | -- | U78a | K03a | 10 | 15 | 7 | 2 | 2 | 5{4}+2{5/2} | ||
Гептаграмна призма 7/2 | 2 | 7/2.4.4 | D7h | C33d | -- | U78b | K03b | 14 | 21 | 9 | 2 | 2 | 7{4}+2{7/2} | ||
Гептаграмна призма 7/3 | 2 | 7/3.4.4 | D7h | C33d | -- | U78c | K03c | 14 | 21 | 9 | 2 | 3 | 7{4}+2{7/3} | ||
[en] | 2 | 8/3.4.4 | D8h | C33e | -- | U78d | K03d | 16 | 24 | 10 | 2 | 3 | 8{4}+2{8/3} | ||
[en] | 2 2 5/2 | 5/2.3.3.3 | D5h | C34b | -- | U79a | K04a | 10 | 20 | 12 | 2 | 2 | 10{3}+2{5/2} | ||
[en] | 2 2 5/3 | 5/3.3.3.3 | D5d | C35a | -- | U80a | K05a | 10 | 20 | 12 | 2 | 3 | 10{3}+2{5/2} | ||
Гептаграмна антипризма 7/2 | 2 2 7/2 | 7/2.3.3.3 | D7h | C34d | -- | U79b | K04b | 14 | 28 | 16 | 2 | 3 | 14{3}+2{7/2} | ||
Гептаграмна антипризма 7/3 | 2 2 7/3 | 7/3.3.3.3 | D7d | C34d | -- | U79c | K04c | 14 | 28 | 16 | 2 | 3 | 14{3}+2{7/3} | ||
Гептаграмна перехрещена антипризма | 2 2 7/4 | 7/4.3.3.3 | D7h | C35b | -- | U80b | K05b | 14 | 28 | 16 | 2 | 4 | 14{3}+2{7/3} | ||
[en] | 2 2 8/3 | 8/3.3.3.3 | D8d | C34e | -- | U79d | K04d | 16 | 32 | 18 | 2 | 3 | 16{3}+2{8/3} | ||
[en] | 2 2 8/5 | 8/5.3.3.3 | D8d | C35c | -- | U80c | K05c | 16 | 32 | 18 | 2 | 5 | 16{3}+2{8/3} | ||
Малий зірчастий додекаедр | 2 5/2 | (5/2)5 | Ih | C43 | W020 | U34 | K39 | 12 | 30 | 12 | -6 | 3 | 12{5/2} | ||
Великий зірчастий додекаедр | 2 5/2 | (5/2)3 | Ih | C68 | W022 | U52 | K57 | 20 | 30 | 12 | 2 | 7 | 12{5/2} | ||
[en] | 5/3 5 | (5/3.5)3 | Ih | C53 | W080 | U41 | K46 | 20 | 60 | 24 | -16 | 4 | 12{5}+12{5/2} | ||
[en] | 5/2 3 | (5/2.3)3 | Ih | C39 | W070 | U30 | K35 | 20 | 60 | 32 | -8 | 2 | 20{3}+12{5/2} | ||
[en] | 4/3 | 8/3.8/3.3 | Oh | C66 | W092 | U19 | K24 | 24 | 36 | 14 | 2 | 7 | 8{3}+6{8/3} | ||
Великий ромбогексаедр | 4.8/3.4/3.8/5 | Oh | C82 | W103 | U21 | K26 | 24 | 48 | 18 | -6 | 12{4}+6{8/3} | ||||
[en] | 4/3 | 8/3.3.8/3.4 | Oh | C50 | W077 | U14 | K19 | 24 | 48 | 20 | -4 | 4 | 8{3}+6{4}+6{8/3} | ||
[en] | 5/3 | 10/3.5/3.10/3.5/2 | Ih | C86 | W107 | U70 | K75 | 30 | 60 | 18 | -12 | 12{5/2}+6{10/3} | |||
[en] | 3 | 6.5/3.6.5/2 | Ih | C78 | W100 | U62 | K67 | 30 | 60 | 22 | -8 | 12{5/2}+10{6} | |||
5/2 5 | (5/2.5)2 | Ih | C45 | W073 | U36 | K41 | 30 | 60 | 24 | -6 | 3 | 12{5}+12{5/2} | |||
[en] | 5/3 | 10/3.3/2.10/3.3 | Ih | C85 | W106 | U71 | K76 | 30 | 60 | 26 | -4 | 20{3}+6{10/3} | |||
Великий ікосо- додекаедр | 5/2 3 | (5/2.3)2 | Ih | C70 | W094 | U54 | K59 | 30 | 60 | 32 | 2 | 7 | 20{3}+12{5/2} | ||
[en] | 8/3.6.8 | Oh | C52 | W079 | U16 | K21 | 48 | 72 | 20 | -4 | 4 | 8{6}+6{8}+6{8/3} | |||
[en] | 8/3.4.6/5 | Oh | C67 | W093 | U20 | K25 | 48 | 72 | 26 | 2 | 1 | 12{4}+8{6}+6{8/3} | |||
[en] | 5 | 10.10.5/2 | Ih | C47 | W075 | U37 | K42 | 60 | 90 | 24 | -6 | 3 | 12{5/2}+12{10} | ||
[en] | 5/3 | 10/3.10/3.5 | Ih | C74 | W097 | U58 | K63 | 60 | 90 | 24 | -6 | 9 | 12{5}+12{10/3} | ||
[en] | 5/3 | 10/3.10/3.3 | Ih | C83 | W104 | U66 | K71 | 60 | 90 | 32 | 2 | 13 | 20{3}+12{10/3} | ||
[en] | 3 | 6.6.5/2 | Ih | C71 | W095 | U55 | K60 | 60 | 90 | 32 | 2 | 7 | 12{5/2}+20{6} | ||
[en] | 6.10/3.6/5.10/7 | Ih | C79 | W101 | U63 | K68 | 60 | 120 | 32 | -28 | 20{6}+12{10/3} | ||||
[en] | 4.10/3.4/3.10/7 | Ih | C89 | W109 | U73 | K78 | 60 | 120 | 42 | -18 | 30{4}+12{10/3} | ||||
[en] | 3 | 6.5/3.6.5 | Ih | C56 | W083 | U44 | K49 | 60 | 120 | 44 | -16 | 4 | 12{5}+12{5/2}+20{6} | ||
[en] | 5 | 10.5/3.10.3 | Ih | C55 | W082 | U43 | K48 | 60 | 120 | 44 | -16 | 4 | 20{3}+12{;5/2}+12{10} | ||
[en] | 5/3 | 10/3.3.10/3.5 | Ih | C54 | W081 | U42 | K47 | 60 | 120 | 44 | -16 | 4 | 20{3}+12{5}+12{10/3} | ||
[en] | 5/3 | 10/3.5/2.10/3.3 | Ih | C77 | W099 | U61 | K66 | 60 | 120 | 44 | -16 | 10 | 20{3}+12{5/2}+12{10/3} | ||
[en] | 3 | 6.5/2.6.3 | Ih | C40 | W071 | U31 | K36 | 60 | 120 | 52 | -8 | 2 | 20{3}+12{5/2}+20{6} | ||
[en] | 2 | 4.5/2.4.5 | Ih | C48 | W076 | U38 | K43 | 60 | 120 | 54 | -6 | 3 | 30{4}+12{5}+12{5/2} | ||
[en] | 2 | 4.5/3.4.3 | Ih | C84 | W105 | U67 | K72 | 60 | 120 | 62 | 2 | 13 | 20{3}+30{4}+12{5/2} | ||
[en] | 10/3.6.10 | Ih | C57 | W084 | U45 | K50 | 120 | 180 | 44 | -16 | 4 | 20{6}+12{10}+12{10/3} | |||
[en] | 10/3.4.10/9 | Ih | C75 | W098 | U59 | K64 | 120 | 180 | 54 | -6 | 3 | 30{4}+12{10}+12{10/3} | |||
[en] | 10/3.4.6 | Ih | C87 | W108 | U68 | K73 | 120 | 180 | 62 | 2 | 13 | 30{4}+20{6}+12{10/3} | |||
[en] | 2 5/2 5 | 3.3.5/2.3.5 | I | C49 | W111 | U40 | K45 | 60 | 150 | 84 | -6 | 3 | 60{3}+12{5}+12{5/2} | ||
[en] | 5/3 2 5 | 35/3.3.3.5 | I | C76 | W114 | U60 | K65 | 60 | 150 | 84 | -6 | 9 | 60{3}+12{5}+12{5/2} | ||
[en] | 2 5/2 3 | 34.5/2 | I | C73 | W116 | U57 | K62 | 60 | 150 | 92 | 2 | 7 | (20+60){3}+12{5/2} | ||
[en] | 5/3 2 3 | 33.5/3 | I | C88 | W113 | U69 | K74 | 60 | 150 | 92 | 2 | 13 | (20+60){3}+12{5/2} | ||
Великий вывернутий оберненокирпатий ікосододекаедр | 3/25/3 2 | (34.5/2)/2 | I | C90 | W117 | U74 | K79 | 60 | 150 | 92 | 2 | 37 | (20+60){3}+12{5/2} | ||
[en] | 5/35/2 3 | 33.5/3.3.5/2 | I | C80 | W115 | U64 | K69 | 60 | 180 | 104 | -16 | 10 | (20+60){3}+(12+12){5/2} | ||
[en] | 5/3 3 5 | 33.5.5/3 | I | C58 | W112 | U46 | K51 | 60 | 180 | 104 | -16 | 4 | (20+60){3}+12{5}+12{5/2} | ||
[en] | 5/2 3 3 | 35.5/2 | Ih | C41 | W110 | U32 | K37 | 60 | 180 | 112 | -8 | 2 | (40+60){3}+12{5/2} | ||
[en] | 3/23/25/2 | (35.5/3)/2 | Ih | C91 | W118 | U72 | K77 | 60 | 180 | 112 | -8 | 38 | (40+60){3}+12{5/2} | ||
[en] | nowrap="" | 3/25/3 3 5/2 | (4.5/3.4.3. 4.5/2.4.3/2)/2 | Ih | C92 | W119 | U75 | K80 | 60 | 240 | 124 | -56 | 40{3}+60{4}+24{5/2} |
Особливий випадок
Назва за Бауером (Bower) | Малюнок | Символ Вітгоффа | Вершинна конфігурація | Група симетрії | C# | W# | U# | K# | Вершин | Ребер | Граней | Щіль-ність | Граней за типами | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[en] | (3/2) 5/3 (3) 5/2 | (5/2.4.3.3.3.4.5/3.4.3/2.3/2.3/2.4)/2 | Ih | - | - | - | - | 60 | 240 (*) | 204 | 24 | 120{3}+60{4}+24{5/2} |
- (*): У Великому бікирпатому біромбобідодекаедрі 120 з 240 ребер належать чотирьом граням. Якщо ці 120 ребер рахувати як дві пари ребер, що збігаються, де кожне ребро належить тільки двом граням, то всього буде 360 ребер і характеристика ейлера стане рівною −88. Зважаючи на цю виродженість, ребер многогранник не всі визнають однорідним.
Позначення в стовпцях
- U# — однорідні номери: U01—U80 (тетраедр перший, призми з номерами 76+)
- K# — номери Kaleido software: K01—K80 (Kn = Un-5 для n від 6 до 80) (призми 1-5, тетраедр і далі 6+)
- W# — моделі Маґнуса Веннінґера: W001—W119
- 1—18 — 5 опуклих правильних і 13 опуклих напівправильних
- 20—22, 41 — 4 неопуклі правильні
- 19—66 — 48 зірчастих форм/з'єднань (неправильні відсутні в цьому списку)
- 67—109 — 43 неопуклих гостроносих однорідних многогранників
- 110—119 — 10 неопуклих кирпатих однорідних многогранників
- — ейлерова характеристика. Однорідні мозаїки на площині відповідають топології тора з ейлеровою характеристикою нуль.
- Щільність — [en] представляє число обертів многогранника навколо центру. Число відсутнє для неорієнтовних многогранників і для [en] (многогранників, що мають грані, які проходять через центр многогранника), для яких немає чіткого визначення щільності.
- Зауваження про малюнки вершинних фігур:
- Світлими відрізками подано «вершинну фігуру» многогранника. Кольорові грані включено до малюнка вершинної фігури, щоб бачити їх зв'язки. Деякі грані, що перетинаються, намальовано візуально хибно, оскільки візуально вони не показують, які частини розташовані попереду.
Див. також
Примітки
- Сопов С.П. Доказательство полноты перечня элементарных однородных многогранников // Украинский геометрический сборник. — 1970. — Вип. 8. — С. 139-156.
- Coxeter, 1938.
- Веннинджер, 1974.
- Kaleidoscopic Construction of Uniform Polyhedra, Dr. Zvi Har'El
- Maeder, 1993.
Література
- М. Веннинджер. Модели многогранников. — «Мир», 1974.
- Magnus Wenninger. Dual Models. — Cambridge University Press, 1983. — .
- H. S. M. Coxeter, M. S. Longuet-Higgins, J. C. P. Miller. Uniform polyhedra // Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. — The Royal Society, 1954. — Т. 246, вип. 916 (17 червня). — С. 401—450. — ISSN 0080-4614. — DOI: .
- H. S. M. Coxeter, [en], H. T. Flather, J. F. Petrie. The Fifty-nine Icosahedra. — University of Toronto studies, 1938. — (mathematical series 6: 1–26.) Third edition (1999) Tarquin .
- J. Skilling. The complete set of uniform polyhedra // Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. — 1975. — Т. 278, вип. 1278 (17 червня). — С. 111–135. — ISSN 0080-4614. — DOI: .
- Roman E. Maeder. Uniform Polyhedra // The Mathematica Journal. — 1993. — Т. 3, вип. 4 (17 червня).
Посилання
- Stella: Polyhedron Navigator. оригіналу за 9 липня 2010. Процитовано 15 листопада 2015. — Software able to generate and print nets for all uniform polyhedra. Used to create most images on this page.
- Robert Webb. Uniform Polyhedra and their Duals. оригіналу за 5 грудня 2015. Процитовано 15 листопада 2015.
- Сопов С. П. Доказательство полноты перечня элементарных однородных многогранников Архивная копия от 7 ноября 2017 на Wayback Machine // Украинский геометрический сборник, выпуск 8, 1970 год, стр. 139—156.
- Нумерація однорідних: U1—U80, (тетраедр перший)
- Paul Bourke. . Архів оригіналу за 11 вересня 2006.
- Weisstein, Eric W. Однорідний многогранник(англ.) на сайті Wolfram MathWorld.
- Roman E. Maeder. The Uniform Polyhedra. MathConsult AG. оригіналу за 5 червня 2014. Процитовано 15 листопада 2015.
- All uniform polyhedra by rotation group. оригіналу за 21 жовтня 2014. Процитовано 15 листопада 2015.
- Sam Gratrix. . Gratrix.net. Архів оригіналу за 10 листопада 2017. Процитовано 15 листопада 2015.
- [недоступне посилання — історія]
- James R. Buddenhagen. Uniform Polyhedra. оригіналу за 4 березня 2016. Процитовано 15 листопада 2015.
- Нумерація Kaleido: K1—K80 (п'ятикутна призма перша)
- Zvi Har’El. . Архів оригіналу за 20 травня 2011.
- (PDF). Архів оригіналу (PDF) за 15 липня 2009.
- V. Bulatov. Uniform Polyhedra. оригіналу за 25 липня 2011. Процитовано 15 листопада 2015.
- Jim McNeill. Uniform Polyhedra. оригіналу за 24 вересня 2015. Процитовано 15 листопада 2015.
- U. Mikloweit. Facetings of uniform polyhedra. оригіналу за 24 вересня 2015. Процитовано 15 листопада 2015.
- Zvi Har’El. . Архів оригіналу за 20 травня 2011.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Odnori dnij mnogogrannik vershinno tranzitivnij mnogogrannik tranzitivnij vidnosno vershin a takozh izogonalnij tobto ye ruh sho perevodit vershinu v bud yaku inshu grani yakogo ye pravilnimi mnogokutnikami Zvidsi viplivaye sho vsi vershini kongruentni i mnogogrannik maye visokij riven dzerkalnoyi j obertovoyi simetriyi Odnoridni mnogogranniki mozhna podiliti na opukli formi z granyami u viglyadi pravilnih opuklih mnogokutnikiv i zirchasti formi Zirchasti formi mayut grani u viglyadi pravilnih zirchastih mnogokutnikiv vershinnih figur abo oboh vidiv razom Spisok vklyuchaye vsi 75 neprizmatichnih odnoridnih mnogogrannikiv deyakih predstavnikiv neskinchennoyi mnozhini prizm ta antiprizm odin okremij vipadok mnogogrannik Skilinga z rebrami sho peretinayutsya 1970 roku radyanskij uchenij Sopov doviv sho isnuye lishe 75 odnoridnih mnogogrannikiv yaki ne vhodyat do neskinchennih serij prizm i antiprizm Dzhon Skiling John Skilling vidkriv she odin mnogogrannik poslabivshi umovu sho rebro mozhe nalezhati lishe dvom granyam Deyaki avtori ne vvazhayut cej mnogogrannik odnoridnim oskilki deyaki pari reber zbigayutsya Ne vklyucheno 40 potencijnih ru vershinnimi figurami yaki mayut rebra sho peretinayutsya ne pererahovani Kokseterom Odnoridni mozayiki neskinchenni mnogogranniki 11 evklidovih en 14 evklidovih en Neskinchenna kilkist NumeraciyaVikoristovuyut chotiri shemi numeraciyi odnoridnih mnogogrannikiv sho vidriznyayutsya literami C Kokseter zi spivavtorami 1954 Spisok mistit opukli vidi z nomerami vid 15 do 32 tri prizmatichni vidi nomeri 33 35 ta neopukli vidi nomeri 36 92 W Vennindzher 1974 Spisok mistit 119 figur nomeri 1 5 dlya platonovih til 6 18 dlya arhimedovih til 19 66 dlya zirchastih vidiv vklyuchno z 4 pravilnimi neopuklimi mnogogrannikami ta 67 119 dlya neopuklih odnoridnih mnogogrannikiv K Kaleido programa 1993 Spisok mistit 80 figur nomeri zgrupovano za simetriyeyu 1 5 predstavlyayut neskinchenni seriyi prizmatichnih form z en 6 9 z 10 26 z en 46 80 z U Mathematica programa 1993 U programi zagalom vikoristano taku zh numeraciyu yak u programi Kaleido lishe pershi 5 prizmatichnih vidi pereneseno v kinec spisku otzhe neprizmatichni vidi otrimali nomeri 1 75 Spisok mnogogrannikivOpukli formi pererahovano v poryadku stepeniv vershinnih konfiguracij vid 3 granej vershin i dali i zbilshennya storin grani Take vporyadkuvannya dozvolyaye pokazati topologichnu shozhist Opukli odnoridni bagatogranniki Nazva Malyunok Tip vershinnoyi konfiguraciyi Simvol Vitgoffa Sim C W U K Ver shin Re ber Gra nej x displaystyle chi Shil nist Granej za tipamiTetraedr 3 3 3 2 3 Td C15 W001 U01 K06 4 6 4 2 1 4 3 Trikutna prizma 3 4 4 2 D3h C33a U76a K01a 6 9 5 2 1 2 3 3 4 Zrizanij tetraedr 3 6 6 3 Td C16 W006 U02 K07 12 18 8 2 1 4 3 4 6 Zrizanij kub 3 8 8 4 Oh C21 W008 U09 K14 24 36 14 2 1 8 3 6 8 Zrizanij dodekaedr 3 10 10 5 Ih C29 W010 U26 K31 60 90 32 2 1 20 3 12 10 Kub 4 4 4 2 4 Oh C18 W003 U06 K11 8 12 6 2 1 6 4 Pyatikutna prizma 4 4 5 2 D5h C33b U76b K01b 10 15 7 2 1 5 4 2 5 Shestikutna prizma 4 4 6 2 D6h C33c U76c K01c 12 18 8 2 1 6 4 2 6 4 4 8 2 D8h C33e U76e K01e 16 24 10 2 1 8 4 2 8 4 4 10 2 D10h C33g U76g K01g 20 30 12 2 1 10 4 2 10 en 4 4 12 2 D12h C33i U76i K01i 24 36 14 2 1 12 4 2 12 Zrizanij oktaedr 4 6 6 3 Oh C20 W007 U08 K13 24 36 14 2 1 6 4 8 6 Zrizanij kubooktaedr 4 6 8 Oh C23 W015 U11 K16 48 72 26 2 1 12 4 8 6 6 8 Rombozrizanij ikosododekaedr 4 6 10 Ih C31 W016 U28 K33 120 180 62 2 1 30 4 20 6 12 10 Dodekaedr 5 5 5 2 5 Ih C26 W005 U23 K28 20 30 12 2 1 12 5 Zrizanij ikosaedr 5 6 6 3 Ih C27 W009 U25 K30 60 90 32 2 1 12 5 20 6 Oktaedr 3 3 3 3 2 3 Oh C17 W002 U05 K10 6 12 8 2 1 8 3 Kvadratna antiprizma 3 3 3 4 2 2 4 D4d C34a U77a K02a 8 16 10 2 1 8 3 2 4 P yatikutna antiprizma 3 3 3 5 2 2 5 D5d C34b U77b K02b 10 20 12 2 1 10 3 2 5 Shestikutna antiprizma 3 3 3 6 2 2 6 D6d C34c U77c K02c 12 24 14 2 1 12 3 2 6 Vosmikutna antiprizma 3 3 3 8 2 2 8 D8d C34e U77e K02e 16 32 18 2 1 16 3 2 8 en 3 3 3 10 2 2 10 D10d C34g U77g K02g 20 40 22 2 1 20 3 2 10 Dvanadcyatikutna antiprizma 3 3 3 12 2 2 12 D12d C34i U77i K02i 24 48 26 2 1 24 3 2 12 Kubooktaedr 3 4 3 4 3 4 Oh C19 W011 U07 K12 12 24 14 2 1 8 3 6 4 Rombokubooktaedr 3 4 4 4 2 Oh C22 W013 U10 K15 24 48 26 2 1 8 3 6 12 4 Romboikosododekaedr 3 4 5 4 2 Ih C30 W014 U27 K32 60 120 62 2 1 20 3 30 4 12 5 Ikosododekaedr 3 5 3 5 3 5 Ih C28 W012 U24 K29 30 60 32 2 1 20 3 12 5 Ikosaedr 3 3 3 3 3 2 3 Ih C25 W004 U22 K27 12 30 20 2 1 20 3 Kirpatij kub 3 3 3 3 4 2 3 4 O C24 W017 U12 K17 24 60 38 2 1 8 24 3 6 4 Kirpatij dodekaedr 3 3 3 3 5 2 3 5 I C32 W018 U29 K34 60 150 92 2 1 20 60 3 12 5 Odnoridni zirchasti mnogogranniki Dokladnishe Odnoridnij zirchastij mnogogrannik Nazva Malyunok Simvol Vitgoffa Tip vershinnoyi konfiguraciyi Sim C W U K Ver shin Re ber Gra nej x displaystyle chi Shil nist Granej za tipom en 3 6 3 2 6 3 Oh C37 W068 U03 K08 12 24 12 0 8 3 4 6 Tetragemigeksaedr 2 4 3 2 4 3 Td C36 W067 U04 K09 6 12 7 1 4 3 3 4 en 3 6 4 3 6 4 Oh C51 W078 U15 K20 12 24 10 2 6 4 4 6 Velikij dodekaedr 2 5 5 5 5 5 5 2 Ih C44 W021 U35 K40 12 30 12 6 3 12 5 Velikij ikosaedr 2 3 3 3 3 3 3 2 Ih C69 W041 U53 K58 12 30 20 2 7 20 3 en 3 5 5 3 5 3 5 3 2 Ih C61 W087 U47 K52 20 60 32 8 6 20 3 12 5 en 4 8 4 3 8 Oh C60 W086 U18 K23 24 48 18 6 12 4 6 8 en 4 8 3 2 8 4 Oh C38 W069 U13 K18 24 48 20 4 2 8 3 6 4 6 8 en 2 4 3 2 4 4 Oh C59 W085 U17 K22 24 48 26 2 5 8 3 6 12 4 en 5 10 5 4 10 5 Ih C65 W091 U51 K56 30 60 18 12 12 5 6 10 en 3 6 5 4 6 5 Ih C81 W102 U65 K70 30 60 22 8 12 5 10 6 en 5 10 3 2 10 3 Ih C63 W089 U49 K54 30 60 26 4 20 3 6 10 en 10 6 10 9 6 5 Ih C64 W090 U50 K55 60 120 32 28 20 6 12 10 en 10 4 10 9 4 3 Ih C46 W074 U39 K44 60 120 42 18 30 4 12 10 en 5 10 3 2 10 5 Ih C42 W072 U33 K38 60 120 44 16 2 20 3 12 5 12 10 en 6 4 6 5 4 3 Ih C72 W096 U56 K61 60 120 50 10 30 4 20 6 en 3 6 3 2 6 5 Ih C62 W088 U48 K53 60 120 52 8 6 20 3 12 5 20 6 Pentagramna prizma 2 5 2 4 4 D5h C33b U78a K03a 10 15 7 2 2 5 4 2 5 2 Geptagramna prizma 7 2 2 7 2 4 4 D7h C33d U78b K03b 14 21 9 2 2 7 4 2 7 2 Geptagramna prizma 7 3 2 7 3 4 4 D7h C33d U78c K03c 14 21 9 2 3 7 4 2 7 3 en 2 8 3 4 4 D8h C33e U78d K03d 16 24 10 2 3 8 4 2 8 3 en 2 2 5 2 5 2 3 3 3 D5h C34b U79a K04a 10 20 12 2 2 10 3 2 5 2 en 2 2 5 3 5 3 3 3 3 D5d C35a U80a K05a 10 20 12 2 3 10 3 2 5 2 Geptagramna antiprizma 7 2 2 2 7 2 7 2 3 3 3 D7h C34d U79b K04b 14 28 16 2 3 14 3 2 7 2 Geptagramna antiprizma 7 3 2 2 7 3 7 3 3 3 3 D7d C34d U79c K04c 14 28 16 2 3 14 3 2 7 3 Geptagramna perehreshena antiprizma 2 2 7 4 7 4 3 3 3 D7h C35b U80b K05b 14 28 16 2 4 14 3 2 7 3 en 2 2 8 3 8 3 3 3 3 D8d C34e U79d K04d 16 32 18 2 3 16 3 2 8 3 en 2 2 8 5 8 5 3 3 3 D8d C35c U80c K05c 16 32 18 2 5 16 3 2 8 3 Malij zirchastij dodekaedr 2 5 2 5 2 5 Ih C43 W020 U34 K39 12 30 12 6 3 12 5 2 Velikij zirchastij dodekaedr 2 5 2 5 2 3 Ih C68 W022 U52 K57 20 30 12 2 7 12 5 2 en 5 3 5 5 3 5 3 Ih C53 W080 U41 K46 20 60 24 16 4 12 5 12 5 2 en 5 2 3 5 2 3 3 Ih C39 W070 U30 K35 20 60 32 8 2 20 3 12 5 2 en 4 3 8 3 8 3 3 Oh C66 W092 U19 K24 24 36 14 2 7 8 3 6 8 3 Velikij rombogeksaedr 4 8 3 4 3 8 5 Oh C82 W103 U21 K26 24 48 18 6 12 4 6 8 3 en 4 3 8 3 3 8 3 4 Oh C50 W077 U14 K19 24 48 20 4 4 8 3 6 4 6 8 3 en 5 3 10 3 5 3 10 3 5 2 Ih C86 W107 U70 K75 30 60 18 12 12 5 2 6 10 3 en 3 6 5 3 6 5 2 Ih C78 W100 U62 K67 30 60 22 8 12 5 2 10 6 5 2 5 5 2 5 2 Ih C45 W073 U36 K41 30 60 24 6 3 12 5 12 5 2 en 5 3 10 3 3 2 10 3 3 Ih C85 W106 U71 K76 30 60 26 4 20 3 6 10 3 Velikij ikoso dodekaedr 5 2 3 5 2 3 2 Ih C70 W094 U54 K59 30 60 32 2 7 20 3 12 5 2 en 8 3 6 8 Oh C52 W079 U16 K21 48 72 20 4 4 8 6 6 8 6 8 3 en 8 3 4 6 5 Oh C67 W093 U20 K25 48 72 26 2 1 12 4 8 6 6 8 3 en 5 10 10 5 2 Ih C47 W075 U37 K42 60 90 24 6 3 12 5 2 12 10 en 5 3 10 3 10 3 5 Ih C74 W097 U58 K63 60 90 24 6 9 12 5 12 10 3 en 5 3 10 3 10 3 3 Ih C83 W104 U66 K71 60 90 32 2 13 20 3 12 10 3 en 3 6 6 5 2 Ih C71 W095 U55 K60 60 90 32 2 7 12 5 2 20 6 en 6 10 3 6 5 10 7 Ih C79 W101 U63 K68 60 120 32 28 20 6 12 10 3 en 4 10 3 4 3 10 7 Ih C89 W109 U73 K78 60 120 42 18 30 4 12 10 3 en 3 6 5 3 6 5 Ih C56 W083 U44 K49 60 120 44 16 4 12 5 12 5 2 20 6 en 5 10 5 3 10 3 Ih C55 W082 U43 K48 60 120 44 16 4 20 3 12 5 2 12 10 en 5 3 10 3 3 10 3 5 Ih C54 W081 U42 K47 60 120 44 16 4 20 3 12 5 12 10 3 en 5 3 10 3 5 2 10 3 3 Ih C77 W099 U61 K66 60 120 44 16 10 20 3 12 5 2 12 10 3 en 3 6 5 2 6 3 Ih C40 W071 U31 K36 60 120 52 8 2 20 3 12 5 2 20 6 en 2 4 5 2 4 5 Ih C48 W076 U38 K43 60 120 54 6 3 30 4 12 5 12 5 2 en 2 4 5 3 4 3 Ih C84 W105 U67 K72 60 120 62 2 13 20 3 30 4 12 5 2 en 10 3 6 10 Ih C57 W084 U45 K50 120 180 44 16 4 20 6 12 10 12 10 3 en 10 3 4 10 9 Ih C75 W098 U59 K64 120 180 54 6 3 30 4 12 10 12 10 3 en 10 3 4 6 Ih C87 W108 U68 K73 120 180 62 2 13 30 4 20 6 12 10 3 en 2 5 2 5 3 3 5 2 3 5 I C49 W111 U40 K45 60 150 84 6 3 60 3 12 5 12 5 2 en 5 3 2 5 35 3 3 3 5 I C76 W114 U60 K65 60 150 84 6 9 60 3 12 5 12 5 2 en 2 5 2 3 34 5 2 I C73 W116 U57 K62 60 150 92 2 7 20 60 3 12 5 2 en 5 3 2 3 33 5 3 I C88 W113 U69 K74 60 150 92 2 13 20 60 3 12 5 2 Velikij vyvernutij obernenokirpatij ikosododekaedr 3 25 3 2 34 5 2 2 I C90 W117 U74 K79 60 150 92 2 37 20 60 3 12 5 2 en 5 35 2 3 33 5 3 3 5 2 I C80 W115 U64 K69 60 180 104 16 10 20 60 3 12 12 5 2 en 5 3 3 5 33 5 5 3 I C58 W112 U46 K51 60 180 104 16 4 20 60 3 12 5 12 5 2 en 5 2 3 3 35 5 2 Ih C41 W110 U32 K37 60 180 112 8 2 40 60 3 12 5 2 en 3 23 25 2 35 5 3 2 Ih C91 W118 U72 K77 60 180 112 8 38 40 60 3 12 5 2 en nowrap 3 25 3 3 5 2 4 5 3 4 3 4 5 2 4 3 2 2 Ih C92 W119 U75 K80 60 240 124 56 40 3 60 4 24 5 2 Osoblivij vipadok Nazva za Bauerom Bower Malyunok Simvol Vitgoffa Vershinna konfiguraciya Grupa simetriyi C W U K Vershin Reber Granej x displaystyle chi Shil nist Granej za tipami en 3 2 5 3 3 5 2 5 2 4 3 3 3 4 5 3 4 3 2 3 2 3 2 4 2 Ih 60 240 204 24 120 3 60 4 24 5 2 U Velikomu bikirpatomu birombobidodekaedri 120 z 240 reber nalezhat chotirom granyam Yaksho ci 120 reber rahuvati yak dvi pari reber sho zbigayutsya de kozhne rebro nalezhit tilki dvom granyam to vsogo bude 360 reber i harakteristika ejlera stane rivnoyu 88 Zvazhayuchi na cyu virodzhenist reber mnogogrannik ne vsi viznayut odnoridnim Poznachennya v stovpcyahU odnoridni nomeri U01 U80 tetraedr pershij prizmi z nomerami 76 K nomeri Kaleido software K01 K80 Kn Un 5 dlya n vid 6 do 80 prizmi 1 5 tetraedr i dali 6 W modeli Magnusa Venningera W001 W119 1 18 5 opuklih pravilnih i 13 opuklih napivpravilnih 20 22 41 4 neopukli pravilni 19 66 48 zirchastih form z yednan nepravilni vidsutni v comu spisku 67 109 43 neopuklih gostronosih odnoridnih mnogogrannikiv 110 119 10 neopuklih kirpatih odnoridnih mnogogrannikiv x displaystyle chi ejlerova harakteristika Odnoridni mozayiki na ploshini vidpovidayut topologiyi tora z ejlerovoyu harakteristikoyu nul Shilnist en predstavlyaye chislo obertiv mnogogrannika navkolo centru Chislo vidsutnye dlya neoriyentovnih mnogogrannikiv i dlya en mnogogrannikiv sho mayut grani yaki prohodyat cherez centr mnogogrannika dlya yakih nemaye chitkogo viznachennya shilnosti Zauvazhennya pro malyunki vershinnih figur Svitlimi vidrizkami podano vershinnu figuru mnogogrannika Kolorovi grani vklyucheno do malyunka vershinnoyi figuri shob bachiti yih zv yazki Deyaki grani sho peretinayutsya namalovano vizualno hibno oskilki vizualno voni ne pokazuyut yaki chastini roztashovani poperedu Div takozhDvoyistij odnoridnij mnogogrannik Prizmatichnij odnoridnij mnogogrannik Sferichnij mnogogrannikPrimitkiSopov S P Dokazatelstvo polnoty perechnya elementarnyh odnorodnyh mnogogrannikov Ukrainskij geometricheskij sbornik 1970 Vip 8 S 139 156 Coxeter 1938 Vennindzher 1974 Kaleidoscopic Construction of Uniform Polyhedra Dr Zvi Har El Maeder 1993 LiteraturaM Vennindzher Modeli mnogogrannikov Mir 1974 Magnus Wenninger Dual Models Cambridge University Press 1983 ISBN 0 521 54325 8 H S M Coxeter M S Longuet Higgins J C P Miller Uniform polyhedra Philosophical Transactions of the Royal Society of London Series A Mathematical and Physical Sciences The Royal Society 1954 T 246 vip 916 17 chervnya S 401 450 ISSN 0080 4614 DOI 10 1098 rsta 1954 0003 H S M Coxeter en H T Flather J F Petrie The Fifty nine Icosahedra University of Toronto studies 1938 mathematical series 6 1 26 Third edition 1999 Tarquin ISBN 978 1 899618 32 3 J Skilling The complete set of uniform polyhedra Philosophical Transactions of the Royal Society of London Series A Mathematical and Physical Sciences 1975 T 278 vip 1278 17 chervnya S 111 135 ISSN 0080 4614 DOI 10 1098 rsta 1975 0022 Roman E Maeder Uniform Polyhedra The Mathematica Journal 1993 T 3 vip 4 17 chervnya PosilannyaStella Polyhedron Navigator originalu za 9 lipnya 2010 Procitovano 15 listopada 2015 Software able to generate and print nets for all uniform polyhedra Used to create most images on this page Robert Webb Uniform Polyhedra and their Duals originalu za 5 grudnya 2015 Procitovano 15 listopada 2015 Sopov S P Dokazatelstvo polnoty perechnya elementarnyh odnorodnyh mnogogrannikov Arhivnaya kopiya ot 7 noyabrya 2017 na Wayback Machine Ukrainskij geometricheskij sbornik vypusk 8 1970 god str 139 156 Numeraciya odnoridnih U1 U80 tetraedr pershij Paul Bourke Arhiv originalu za 11 veresnya 2006 Weisstein Eric W Odnoridnij mnogogrannik angl na sajti Wolfram MathWorld Roman E Maeder The Uniform Polyhedra MathConsult AG originalu za 5 chervnya 2014 Procitovano 15 listopada 2015 All uniform polyhedra by rotation group originalu za 21 zhovtnya 2014 Procitovano 15 listopada 2015 Sam Gratrix Gratrix net Arhiv originalu za 10 listopada 2017 Procitovano 15 listopada 2015 nedostupne posilannya istoriya James R Buddenhagen Uniform Polyhedra originalu za 4 bereznya 2016 Procitovano 15 listopada 2015 Numeraciya Kaleido K1 K80 p yatikutna prizma persha Zvi Har El Arhiv originalu za 20 travnya 2011 PDF Arhiv originalu PDF za 15 lipnya 2009 V Bulatov Uniform Polyhedra originalu za 25 lipnya 2011 Procitovano 15 listopada 2015 Jim McNeill Uniform Polyhedra originalu za 24 veresnya 2015 Procitovano 15 listopada 2015 U Mikloweit Facetings of uniform polyhedra originalu za 24 veresnya 2015 Procitovano 15 listopada 2015