У теорії чисел досконале число — натуральне число, що дорівнює сумі його додатних дільників, не враховуючи самого числа. Наприклад, 6 має дільники 1, 2, 3 (не враховуючи його самого), , тому 6 — досконале число.
Сума дільників числа, не враховуючи самого числа, називається [en], тому досконале число — це число, що дорівнює його аліквотній сумі. Що рівносильно, що досконале число — число, яке є половиною суми всіх своїх додатних дільників, враховуючи себе. У символьному записі: , де — функція суми дільників числа . Наприклад, 28 — досконале, оскільки .
Це стародавнє означення, воно з'явилось ще в Началах Евкліда (VII.22), де такі числа називалися досконалими, ідеальними чи повними. Евклід також довів правило утворення (IX/36), за яким є парним досконалим числом тоді, коли , і — прості числа. Такі називаються [en]. Через два тисячоліття Ейлер довів, що всі парні досконалі числа мають таку форму. Цей результат відомий як [en].
Невідомо, чи існують непарні досконалі числа і чи є нескінченною послідовність досконалих чисел. Декілька перших досконалих чисел — 6, 28, [en], [en] (див. послідовність послідовність A000396 з Онлайн енциклопедії послідовностей цілих чисел, OEIS.
Історія
Приблизно в 300-му році до н. е. Евклід показав, що, якщо — просте число, то — досконале число. Перші 3 досконалі числа були єдиними, які знала давньогрецька математика і число 8128, яке знайшов Нікомах приблизно у 100-му році н. е. Нікомах стверджував без доведення, що будь-яке досконале число має вигляд , де — просте число. Здається, він не знав, що також має бути простим числом. Також він помилково вважав, що досконалі числа по черзі закінчуються на 6 і на 8 (перші п'ять досконалих чисел закінчуються на 6, 8, 6, 8, 6 відповідно, але шосте закінчується знову на 6). Філон Олександрійський у своїй книзі першого століття «Про створення світу» згадує досконалі числа, стверджуючи, що світ був створений за 6 днів, а Місяць здійснює повний оберт по орбіті за 28 днів, тому що 6 і 28 — досконалі. До Філона приєднались Оріген і Дідим Сліпець, котрі зазначають, що є лише чотири досконалі числа, менші за 10000 (коментар до книги Буття 1.14-19). Св. Августин на початку п'ятого віку н. е. зазначає досконалі числа у книзі «Місто Боже» (книга XI, глава 30), повторюючи висловлювання, що Бог створив світ за 6 днів, бо 6 — найменше досконале число. Єгипетський математик Ізмаїл ібн Фоллус (1194-1252) згадує наступні три досканалі числа (33,550,336; 8,589,869,056; 137,438,691,328) і ще декілька, які виявились хибними. Перша згадка п'ятого досконалого числа європейцями — рукопис, написаний між 1456 і 1461 роками невідомим математиком. У 1588 році італійський математик П'єтро Катальді знайшов шосте (8,589,869,056) і сьоме (137,438,691,328) досконалі числа, а також довів, що кожне досконале число, отримане з правила Евкліда, закінчується на 6 чи 8.
Парні досконалі числа
Див. також: [en].
Евклід довів, що є досконалими, коли є простим (Начала, твердження IX.36).
Наприклад, перші чотири досконалі числа, отримані за допомогою цієї формули:
- при :
- при :
- при :
- при :
Прості числа вигляду , відомі як [en], названі на честь монаха сімнадцятого століття Марена Мерсенна, що вивчав теорію чисел і досконалі числа. Для того, щоб було простим, необхідно щоб і було простим. Але це не достатня умова; наприклад, не є простим. Насправді, прості числа Мерсенна дуже рідкісні — з 2.610.944 простих чисел менших [en], число є простим лише для 47 з них.
Хоча Нікомах стверджував (без доведення), що всі досконалі числа мають вигляд , де — просте число (саме твердження було трохи в іншій формі), Ібн аль-Хайсам приблизно в 1000-му році н. е. припускав, що формула описує лише будь-яке парне досконале число. Тільки в XVIII столітті Леонард Ейлер довів, що формула описує всі парні досконалі числа. Таким чином існує взаємно однозначна відповідність між парними досконалими числами і простими числами Мерсенна; кожне просте число Мерсенна породжує одне парне досконале число, і навпаки. Цей результат часто називають [en].
Вичерпний пошук у рамках проекту GIMPS показав, що першим 47-ми парним досконалим числам вигляду відповідають
- = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801 і 43112609 послідовність A000043 з Онлайн енциклопедії послідовностей цілих чисел, OEIS.
Також знайдено чотири більші досконалі числа, а саме при =57.885.161, 74.207.281, 77.232.917 і 82.589.933, але в цих межах можуть бути й інші. Станом на грудень 2018 року відомо 51 просте число Мерсенна і, відповідно, 51 парне досконале число (найбільше з яких — з 49.724.095 цифрами). Невідомо чи існує нескінченно багато досконалих чисел і простих чисел Мерсенна.
Крім того, що будь-яке парне досконале число має вигляд , воно ще є -им трикутним числом (і, як наслідок, є сумою цілих чисел від 1 до ), а також є -им шестикутним числом. Більш того, будь-яке парне досконале число (за винятком 6) є -им центрованим дев'ятикутним числом, а значить воно дорівнює сумі перших непарних кубів:
Парні досконалі числа (крім 6) мають вигляд
- ,
де кожне трикутне число , , після віднімання одиниці і ділення на дев'ять закінчується на 3 або 5; послідовність починається з , , , Це можна переформулювати наступним чином: сумування цифр будь-якого парного досконалого числа (крім 6), а потім повтор таких дій з отриманими результатами до моменту, коли залишиться одна цифра (знаходження цифрового кореня), дасть в результаті одиницю. Наприклад, цифровий корінь числа 8128 дорівнює одиниці, бо , , . Це справедливо для усіх чисел вигляду , де — непарне число.
Завдяки своїй формі кожне парне досконале число записується у двійковій системі як одиниць, а за ними нулів. Наприклад,
Таким чином парні досконалі числа є [en].
Кожне парне досконале число також є практичним числом.
Непарні досконалі числа
Невідомо чи існує хоч якесь непарне досконале число, хоча деякі результати у цьому напрямі були отримані. У 1496 році Жак Лефевр стверджував, що правило Евкліда дає абсолютно всі досконалі числа, з чого слідує відсутність непарних досконалих чисел. Ейлер стверджував, що найважчим питанням є питання існування непарних досконалих чисел. Нещодавно [en] представив [en], який передбачає, що дійсно непарного досконалого числа не має існувати. Усі досконалі числа також є [en], а також існує гіпотеза, що немає непарних гармонічних чисел Оре (крім одиниці).
Будь-яке непарне досконале число має задовольняти наступним умовам:
- не ділиться на 105
- конгурентне або 1 по модулю 12, або 117 по модулю 468, або 81 по модулю 324
- має вигляд , де
- є різними простими числами (Ейлер);
- (mod 4) (Ейлер);
- Найменший простий дільник числа менший за ;
- Або , або для деякого ;
- ;
- ;
- .
- Найбільший простий дільник числа більший за і менший за .
- Наступний найбільший простий дільник більший за і менший за .
- Третій найбільший простий дільник більший за 100.
- має щонайменше 101 простий дільник, де щонайменше 10 різних.
- Якщо не ділиться на 3, то має щонайменше 12 простих дільників.
Також відомо декілька другорядних результатів, що стосуються показників числа .
- Не всі (mod 3).
- Не всі (mod 5).
- Якщо (mod 3) або (mod 5), найменший простий дільник числа буде знаходитись в межах від до .
- У загальному випадку, якщо всі мають простий дільник у скінченній множині , то найменший простий дільник числа має бути найменшим за ефективно обчислювальну константу, що залежить лише від .
- Якщо з одиницями і двійками, то .
- , , .
- Якщо , то
- не може дорівнювати 3, 5, 24, 6, 8, 11, 14 або 18.
- і .
У 1888 році Сильвестр стверджував: «… довгі роздуми на цю тему переконали мене, що існування будь-якого такого (непарного досконалого) числа — це вихід із величезної павутини умов, що його оточують, і є просто чудом.»
Багато властивостей, доведених відносно непарних досконалих чисел, також стосуються [en], а тому Пейс Нільсен припустив, що достатнє вивчення таких чисел може привести до доведення відсутності непарних досконалих чисел.
Незначні результати
Усі парні досконалі числа мають дуже точну форму; непарні досконалі числа або не існують, або є дуже рідкісними. Є цілий ряд результатів щодо досконалих чисел, які насправді досить легко довести, але, втім, є вражаючими; деякі з них підходять під [en] Річарда Ґая:
- 28 — єдине парне досконале число вигляду
- 28 — також єдине парне досконале число, яке є сумою кубів двох додатних чисел
- Сума чисел, обернених до дільників досконалого числа, дорівнює двійці (щоб отримати це, необхідно скористатися означенням досконалого числа і поділити обидві частини рівності на ):
- Для 6 маємо: ;
- Для 28 маємо: , і так далі.
- Кількість дільників будь-якого досконалого числа (парного чи непарного) має бути парною, оскільки досконале число не може бути повним квадратом
- З двох зазначених вище властивостей випливає, що кожне досконале число є [en].
- Парні досконалі числа не є [en]; тобто їх не можна представити у вигляді різниці двох додатних непослідовних трикутних чисел. Існує лише три типи нетрапецієвидних чисел: парні досконалі числа, степені двійки і числа вигляду , які утворені як добуток простого числа Ферма та , що аналогічно побудові досконалих чисел з простих чисел Мерсенна.
- Кількість досконалих чисел менших за менша за , де — додатна константа. Насправді це (використовується позначення -малого).
- Кожне парне досконале число закінчується на 6 чи 28 в десятковій системі і закінчується на 1 (за винятком числа 6) в системі за базою 9. Тому цифровий корінь будь-якого парного досконалого числа (відмінного від 6) дорівнює 1.
- 6 — єдине досконале число, яке є безквадратичним.
Пов'язані поняття
Сума власних дільників дає різні інші види чисел. Числа, де сума їх дільників менша за саме число, називають недостатніми, а де більша — надлишковими. Ці терміни і саме поняття досконалих чисел прийшло до нас з грецької нумерології. Пари чисел, які є сумами власних дільників один одного, називаються дружними, а більші цикли таких чисел називаються [en]. Натуральне число таке, що кожне менше за нього натуральне число є сумою його різних дільників, називається практичним.
За означенням, досконале число — нерухома точка [en] , а пов'язана з досконалими числами [en] є постійною послідовністю. Всі досконалі числа також є -досконалими або [en].
Напівдосконале число — натуральне число, яке дорівнює сумі всіх або деяких власних дільників. Напівдосконале число, яке дорівнює сумі всіх власних дільників, є досконалим числом. Більшість надлишкових чисел також є напівдосконалими; надлишкові числа, що не є напівдосконалими, називаються [en].
Див. також
- [en]
- [en]
- [en]
- [en]
- [en]
Примітки
- Caldwell, Chris, «A proof that all even perfect numbers are a power of two times a Mersenne prime»
- Dickson, L. E. (1919). History of the Theory of Numbers, Vol.~I. Washington: Carnegie Institution of Washington. p.~4.
- «Perfect numbers». www-groups.dcs.st-and.ac.uk. Retrieved 9 May 2018
- У «Вступі в арифметику» (глава 16) він стверджує, що є акуратний і безвідмовний метод, який описує кожне досконале число і не описує жодне інше, що здійснюється вказаним ним чином, який є еквівалентним знаходженню трикутних чисел за допомогою простих чисел Мерсенна
- Commentary on the Gospel of John 28.1.1-4, with further references in the Sources Chrétiennes edition: vol.~385, 58-61
- http://torreys.org/sblpapers2015/S22-05\_philonic\_arithmological\_exegesis.pdf[недоступне посилання]
- Roshdi Rashed, The Development of Arabic Mathematics: Between Arithmetic and Algebra (Dordrecht: Kluwer Academic Publishers, 1994), pp. 328—329.
- Bayerische Staatsbibliothek, Clm 14908. See David Eugene Smith (1925). History of Mathematics: Volume II. New York: Dover. p. 21. .
- Dickson, L. E. (1919). History of the Theory of Numbers, Vol. I. Washington: Carnegie Institution of Washington. p. 10
- Pickover, C (2001). Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning. Oxford: Oxford University Press. p. 360.
- Peterson, I (2002). Mathematical Treks: From Surreal Numbers to Magic Circles. Washington: Mathematical Association of America. p. 132.
- Усі дільники числа конгруентні одиниці по модулю . Наприклад, . І 23, і 89 дають остачу 1 при діленні на 22. Більш того, якщо є простим числом Софі Жермен (якщо — теж просте і конгруентне 1 або 7 за модулем 8), то буде дільником числа , що справедливо для , (послідовність A002515 з Онлайн енциклопедії послідовностей цілих чисел, OEIS)
- «Numbers of prime ». Wolfram Alpha. Retrieved 2018-10-28
- O'Connor, John J.;Robertson, Edmund F., «Abu Ali al-Hasan ibn al-Haytham», MacTutor History of Mathematics archive, University of St Andrews
- GIMPS Milestones Report. Retrieved 2018-02-27
- GIMPS Milestones Report [ 3 вересня 2016 у Wayback Machine.]. Retrieved 2018-02-27
- «GIMPS Home». Mersenne.org. Retrieved 2018-12-21
- Weisstein, Eric W. «Perfect Number». MathWorld
- Dickson, L. E. (1919). History of the Theory of Numbers, Vol. I. Washington: Carnegie Institution of Washington. p. 6.
- (PDF). Архів оригіналу (PDF) за 28 травня 2016. Процитовано 15 травня 2021.
{{}}
: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title () - Oddperfect.org. Archived 2006-12-29 at the Wayback Machine
- Ochem, Pascal; Rao, Michaël (2012). «Odd perfect numbers are greater than 101500» (PDF). Mathematics of Computation. 81 (279): 1869—1877. doi:10.1090/S0025-5718-2012-02563-4. ISSN 0025-5718. Zbl 1263.11005
- Kühnel, Ullrich (1950). ``Verschärfung der notwendigen Bedingungen für die Existenz von ungeraden vollkommenen Zahlen. Mathematische Zeitschrift (in German). 52: 202—211. doi:10.1007/BF02230691
- Roberts, T (2008). «On the Form of an Odd Perfect Number» (PDF). Australian Mathematical Gazette. 35 (4): 244.
- Grün, O (1952). «Über ungerade vollkommene Zahlen». Mathematische Zeitschrift. 55 (3): 353—354. doi:10.1007/BF01181133
- Chen, Yong-Gao; Tang, Cui-E (2014). «Improved upper bounds for odd multiperfect numbers». Bulletin of the Australian Mathematical Society. 89 (3): 353—359
- Nielsen, Pace P. (2003). «An upper bound for odd perfect numbers». Integers. 3: A14–A22. Retrieved 23 March 2021
- Zelinsky, Joshua (25 May 2018). «An improvement of an inequality of Ochem and Rao concerning odd perfect numbers». Integers. 18. arXiv:1706.07009. Bibcode:2017arXiv170607009Z. Retrieved 23 May 2018
- Ochem, Pascal; Rao, Michaël (2014). «On the number of prime factors of an odd perfect number». Mathematics of Computation. 83 (289): 2435—2439. doi:10.1090/S0025-5718-2013-02776-7
- Pomerance, Carl; Luca, Florian (2010). «On the radical of a perfect number». New York Journal of Mathematics. 16: 23–30. Retrieved 7 December 2018
- Goto, T; Ohno, Y (2008). «Odd perfect numbers have a prime factor exceeding 108»(PDF). Mathematics of Computation. 77 (263): 1859—1868. Bibcode:2008MaCom..77.1859G.doi:10.1090/S0025-5718-08-02050-9. Retrieved 30 March 2011
- Konyagin, Sergei; Acquaah, Peter (2012). «On Prime Factors of Odd Perfect Numbers». International Journal of Number Theory. 8 (6): 1537—1540. doi:10.1142/S1793042112500935
- Zelinsky, Joshua (July 2019). «Upper bounds on the second largest prime factor of an odd perfect number». International Journal of Number Theory. 15 (6): 1183—1189. arXiv:1810.11734. doi:10.1142/S1793042119500659
- Iannucci, DE (1999). «The second largest prime divisor of an odd perfect number exceeds ten thousand»(PDF). Mathematics of Computation. 68 (228): 1749—1760. Bibcode:1999MaCom..68.1749I. doi:10.1090/S0025-5718-99-01126-6. Retrieved 30 March 2011.
- Iannucci, DE (2000). «The third largest prime divisor of an odd perfect number exceeds one hundred»(PDF). Mathematics of Computation. 69 (230): 867—879. Bibcode:2000MaCom..69..867I. doi:10.1090/S0025-5718-99-01127-8. Retrieved 30 March 2011.
- Nielsen, Pace P. (2015). «Odd perfect numbers, Diophantine equations, and upper bounds»(PDF). Mathematics of Computation. 84 (295): 2549—2567. doi:10.1090/S0025-5718-2015-02941-X. Retrieved 13 August 2015.
- Nielsen, Pace P. (2007). «Odd perfect numbers have at least nine distinct prime factors»(PDF). Mathematics of Computation. 76 (260): 2109—2126. arXiv: math/0602485. Bibcode:2007MaCom..76.2109N. doi:10.1090/S0025-5718-07-01990-4. Retrieved 30 March 2011.
- McDaniel, Wayne L. (1970). «The non-existence of odd perfect numbers of a certain form». Archiv der Mathematik. 21 (1): 52–53. doi:10.1007/BF01220877. ISSN 1420-8938. MR 0258723
- Fletcher, S. Adam; Nielsen, Pace P.; Ochem, Pascal (2012). «Sieve methods for odd perfect numbers»(PDF). Mathematics of Computation. 81 (279): 1753?1776. doi:10.1090/S0025-5718-2011-02576-7. ISSN 0025-5718. MR 2904601
- Cohen, G. L. (1987). «On the largest component of an odd perfect number». Journal of the Australian Mathematical Society, Series A. 42 (2): 280—286. doi:10.1017/S1446788700028251. ISSN 1446-8107. MR 0869751
- Kanold, Hans-Joachim (1950). «Satze uber Kreisteilungspolynome und ihre Anwendungen auf einige zahlentheoretisehe Probleme. II». Journal für die reine und angewandte Mathematik. 188 (1): 129—146. doi:10.1515/crll.1950.188.129. ISSN 1435-5345. MR 0044579
- Cohen, G. L.; Williams, R. J. (1985). «Extensions of some results concerning odd perfect numbers» (PDF). Fibonacci Quarterly. 23 (1): 70–76. ISSN 0015-0517. MR 0786364
- Hagis, Peter Jr.; McDaniel, Wayne L. (1972). «A new result concerning the structure of odd perfect numbers». Proceedings of the American Mathematical Society. 32 (1): 13–15. doi:10.1090/S0002-9939-1972-0292740-5. ISSN 1088-6826. MR 0292740
- McDaniel, Wayne L.; Hagis, Peter Jr. (1975). «Some results concerning the non-existence of odd perfect numbers of the form »(PDF). Fibonacci Quarterly. 13 (1): 25–28. ISSN 0015-0517. MR 0354538
- Yamada, Tomohiro (2019). «A new upper bound for odd perfect numbers of a special form». Colloquium Mathematicum. 156 (1): 15–21. arXiv:1706.09341. doi:10.4064/cm7339-3-2018. ISSN 1730-6302
- The Collected Mathematical Papers of James Joseph Sylvester p. 590, tr. from «Sur les nombres dits de Hamilton», Compte Rendu de l'Association Française (Toulouse, 1887), pp. 164—168.
- Nadis, Steve (10 September 2020). «Mathematicians Open a New Front on an Ancient Number Problem». Quanta Magazine. Retrieved 10 September 2020.
- Makowski, A. (1962). «Remark on perfect numbers». Elem. Math. 17 (5): 109.
- Gallardo, Luis H. (2010). «On a remark of Makowski about perfect numbers». Elem. Math. 65: 121—126. doi:10.4171/EM/149
- Yan, Song Y. (2012), Computational Number Theory and Modern Cryptography, John Wiley, Sons, Section 2.3, Exercise 2(6), .
- Jones, Chris; Lord, Nick (1999). «Characterising non-trapezoidal numbers». The Mathematical Gazette. The Mathematical Association. 83 (497): 262—263. doi:10.2307/3619053. JSTOR 3619053
- Hornfeck, B (1955). «Zur Dichte der Menge der vollkommenen zahlen». Arch. Math. 6 (6): 442—443. doi:10.1007/BF01901120
- Kanold, HJ (1956). «Eine Bemerkung uber die Menge der vollkommenen zahlen». Math. Ann. 131 (4): 390—392. doi:10.1007/BF01350108
- H. Novarese. Note sur les nombres parfaits Texeira J. VIII (1886), 11–16.
- Dickson, L. E. (1919). History of the Theory of Numbers, Vol. I. Washington: Carnegie Institution of Washington. p. 25.
- Redmond, Don (1996). Number Theory: An Introduction to Pure and Applied Mathematics. Chapman, Hall/CRC Pure and Applied Mathematics. 201. CRC Press. Problem 7.4.11, p. 428. .
Посилання
- David Moews: Perfect, amicable and sociable numbers [ 28 грудня 2014 у Wayback Machine.]
- Perfect numbers — History and Theory [ 30 червня 2004 у Wayback Machine.]
- Weisstein, Eric W. Perfect Number(англ.) на сайті Wolfram MathWorld.
- A projected distributed computing project to search for odd perfect numbers.
- Great Internet Mersenne Prime Search [ 14 серпня 2021 у Wayback Machine.] (GIMPS)
- Perfect Numbers [ 12 лютого 2015 у Wayback Machine.], math forum at Drexel.
- Grimes, James. . Numberphile. Архів оригіналу за 31 травня 2013. Процитовано 2 квітня 2013.
Література
- Euclid, Elements, Book IX, Proposition 36. See D.E. Joyce's website [ 2 березня 2011 у Wayback Machine.] for a translation and discussion of this proposition and its proof.
- Kanold, H.-J. (1941). Untersuchungen über ungerade vollkommene Zahlen. Journal für die Reine und Angewandte Mathematik. 183: 98—109.
- Steuerwald, R. Verschärfung einer notwendigen Bedingung für die Existenz einer ungeraden vollkommenen Zahl. S.-B. Bayer. Akad. Wiss. 1937: 69—72.
Додаткова література
- Nankar, M.L.: "History of perfect numbers, " Ganita Bharati 1, no. 1–2 (1979), 7–8.
- Riele, H.J.J. «Perfect Numbers and Aliquot Sequences» in H.W. Lenstra and R. Tijdeman (eds.): Computational Methods in Number Theory, Vol. 154, Amsterdam, 1982, pp. 141–157.
- Riesel, H. Prime Numbers and Computer Methods for Factorisation, Birkhauser, 1985.
- Sándor, Jozsef; Crstici, Borislav (2004). Handbook of number theory II. Dordrecht: Kluwer Academic. с. 15–98. ISBN . Zbl 1079.11001.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
U teoriyi chisel doskonale chislo naturalne chislo sho dorivnyuye sumi jogo dodatnih dilnikiv ne vrahovuyuchi samogo chisla Napriklad 6 maye dilniki 1 2 3 ne vrahovuyuchi jogo samogo 6 1 2 3 displaystyle 6 1 2 3 tomu 6 doskonale chislo Ilyustraciya doskonalogo chisla 6 Suma dilnikiv chisla ne vrahovuyuchi samogo chisla nazivayetsya en tomu doskonale chislo ce chislo sho dorivnyuye jogo alikvotnij sumi Sho rivnosilno sho doskonale chislo chislo yake ye polovinoyu sumi vsih svoyih dodatnih dilnikiv vrahovuyuchi sebe U simvolnomu zapisi s 1 n 2 n displaystyle sigma 1 n 2n de s 1 n displaystyle sigma 1 n funkciya sumi dilnikiv chisla n displaystyle n Napriklad 28 doskonale oskilki 1 2 4 7 14 28 56 2 28 displaystyle 1 2 4 7 14 28 56 2 cdot 28 Ce starodavnye oznachennya vono z yavilos she v Nachalah Evklida VII 22 de taki chisla nazivalisya doskonalimi idealnimi chi povnimi Evklid takozh doviv pravilo utvorennya IX 36 za yakim q q 1 2 displaystyle frac q q 1 2 ye parnim doskonalim chislom todi koli q 2 p 1 displaystyle q 2 p 1 q displaystyle q i p displaystyle p prosti chisla Taki q displaystyle q nazivayutsya en Cherez dva tisyacholittya Ejler doviv sho vsi parni doskonali chisla mayut taku formu Cej rezultat vidomij yak en Nevidomo chi isnuyut neparni doskonali chisla i chi ye neskinchennoyu poslidovnist doskonalih chisel Dekilka pershih doskonalih chisel 6 28 en en div poslidovnist poslidovnist A000396 z Onlajn enciklopediyi poslidovnostej cilih chisel OEIS IstoriyaPriblizno v 300 mu roci do n e Evklid pokazav sho yaksho 2 p 1 displaystyle 2 p 1 proste chislo to 2 p 1 2 p 1 displaystyle 2 p 1 2 p 1 doskonale chislo Pershi 3 doskonali chisla buli yedinimi yaki znala davnogrecka matematika i chislo 8128 yake znajshov Nikomah priblizno u 100 mu roci n e Nikomah stverdzhuvav bez dovedennya sho bud yake doskonale chislo maye viglyad 2 n 1 2 n 1 displaystyle 2 n 1 2 n 1 de 2 n 1 displaystyle 2 n 1 proste chislo Zdayetsya vin ne znav sho n displaystyle n takozh maye buti prostim chislom Takozh vin pomilkovo vvazhav sho doskonali chisla po cherzi zakinchuyutsya na 6 i na 8 pershi p yat doskonalih chisel zakinchuyutsya na 6 8 6 8 6 vidpovidno ale shoste zakinchuyetsya znovu na 6 Filon Oleksandrijskij u svoyij knizi pershogo stolittya Pro stvorennya svitu zgaduye doskonali chisla stverdzhuyuchi sho svit buv stvorenij za 6 dniv a Misyac zdijsnyuye povnij obert po orbiti za 28 dniv tomu sho 6 i 28 doskonali Do Filona priyednalis Origen i Didim Slipec kotri zaznachayut sho ye lishe chotiri doskonali chisla menshi za 10000 komentar do knigi Buttya 1 14 19 Sv Avgustin na pochatku p yatogo viku n e zaznachaye doskonali chisla u knizi Misto Bozhe kniga XI glava 30 povtoryuyuchi vislovlyuvannya sho Bog stvoriv svit za 6 dniv bo 6 najmenshe doskonale chislo Yegipetskij matematik Izmayil ibn Follus 1194 1252 zgaduye nastupni tri doskanali chisla 33 550 336 8 589 869 056 137 438 691 328 i she dekilka yaki viyavilis hibnimi Persha zgadka p yatogo doskonalogo chisla yevropejcyami rukopis napisanij mizh 1456 i 1461 rokami nevidomim matematikom U 1588 roci italijskij matematik P yetro Kataldi znajshov shoste 8 589 869 056 i some 137 438 691 328 doskonali chisla a takozh doviv sho kozhne doskonale chislo otrimane z pravila Evklida zakinchuyetsya na 6 chi 8 Parni doskonali chislaDiv takozh en Evklid doviv sho 2 p 1 2 p 1 displaystyle 2 p 1 2 p 1 ye doskonalimi koli 2 p 1 displaystyle 2 p 1 ye prostim Nachala tverdzhennya IX 36 Napriklad pershi chotiri doskonali chisla otrimani za dopomogoyu ciyeyi formuli pri p 2 displaystyle p 2 2 1 2 2 1 2 3 6 displaystyle 2 1 2 2 1 2 cdot 3 6 pri p 3 displaystyle p 3 2 2 2 3 1 4 7 28 displaystyle 2 2 2 3 1 4 cdot 7 28 pri p 5 displaystyle p 5 2 4 2 5 1 16 31 496 displaystyle 2 4 2 5 1 16 cdot 31 496 pri p 7 displaystyle p 7 2 6 2 7 1 64 127 8128 displaystyle 2 6 2 7 1 64 cdot 127 8128 Prosti chisla viglyadu 2 p 1 displaystyle 2 p 1 vidomi yak en nazvani na chest monaha simnadcyatogo stolittya Marena Mersenna sho vivchav teoriyu chisel i doskonali chisla Dlya togo shob 2 p 1 displaystyle 2 p 1 bulo prostim neobhidno shob i p displaystyle p bulo prostim Ale ce ne dostatnya umova napriklad 2 11 1 2047 23 89 displaystyle 2 11 1 2047 23 times 89 ne ye prostim Naspravdi prosti chisla Mersenna duzhe ridkisni z 2 610 944 prostih chisel menshih en chislo 2 p 1 displaystyle 2 p 1 ye prostim lishe dlya 47 z nih Hocha Nikomah stverdzhuvav bez dovedennya sho vsi doskonali chisla mayut viglyad 2 n 1 2 n 1 displaystyle 2 n 1 2 n 1 de 2 n 1 displaystyle 2 n 1 proste chislo same tverdzhennya bulo trohi v inshij formi Ibn al Hajsam priblizno v 1000 mu roci n e pripuskav sho formula opisuye lishe bud yake parne doskonale chislo Tilki v XVIII stolitti Leonard Ejler doviv sho formula 2 p 1 2 p 1 displaystyle 2 p 1 2 p 1 opisuye vsi parni doskonali chisla Takim chinom isnuye vzayemno odnoznachna vidpovidnist mizh parnimi doskonalimi chislami i prostimi chislami Mersenna kozhne proste chislo Mersenna porodzhuye odne parne doskonale chislo i navpaki Cej rezultat chasto nazivayut en Vicherpnij poshuk u ramkah proektu GIMPS pokazav sho pershim 47 mi parnim doskonalim chislam viglyadu 2 p 1 2 p 1 displaystyle 2 p 1 2 p 1 vidpovidayut p displaystyle p 2 3 5 7 13 17 19 31 61 89 107 127 521 607 1279 2203 2281 3217 4253 4423 9689 9941 11213 19937 21701 23209 44497 86243 110503 132049 216091 756839 859433 1257787 1398269 2976221 3021377 6972593 13466917 20996011 24036583 25964951 30402457 32582657 37156667 42643801 i 43112609 poslidovnist A000043 z Onlajn enciklopediyi poslidovnostej cilih chisel OEIS Takozh znajdeno chotiri bilshi doskonali chisla a same pri p displaystyle p 57 885 161 74 207 281 77 232 917 i 82 589 933 ale v cih mezhah mozhut buti j inshi Stanom na gruden 2018 roku vidomo 51 proste chislo Mersenna i vidpovidno 51 parne doskonale chislo najbilshe z yakih 2 82589932 2 82589933 1 displaystyle 2 82589932 2 82589933 1 z 49 724 095 ciframi Nevidomo chi isnuye neskinchenno bagato doskonalih chisel i prostih chisel Mersenna Krim togo sho bud yake parne doskonale chislo maye viglyad 2 p 1 2 p 1 displaystyle 2 p 1 2 p 1 vono she ye 2 p 1 displaystyle 2 p 1 im trikutnim chislom i yak naslidok ye sumoyu cilih chisel vid 1 do 2 p 1 displaystyle 2 p 1 a takozh ye 2 p 1 displaystyle 2 p 1 im shestikutnim chislom Bilsh togo bud yake parne doskonale chislo za vinyatkom 6 ye 2 p 1 3 displaystyle left frac 2 p 1 3 right im centrovanim dev yatikutnim chislom a znachit vono dorivnyuye sumi 2 p 1 2 displaystyle 2 frac p 1 2 pershih neparnih kubiv 6 2 1 2 2 1 1 2 3 28 2 2 2 3 1 1 2 3 4 5 6 7 1 3 3 3 496 2 4 2 5 1 1 2 3 29 30 31 1 3 3 3 5 3 7 3 8128 2 6 2 7 1 1 2 3 125 126 127 1 3 3 3 5 3 7 3 9 3 11 3 13 3 15 3 33550336 2 12 2 13 1 1 2 3 8189 8190 8191 1 3 3 3 5 3 123 3 125 3 127 3 displaystyle begin aligned 6 2 1 left 2 2 1 right amp 1 2 3 8pt 28 2 2 left 2 3 1 right amp 1 2 3 4 5 6 7 1 3 3 3 8pt 496 2 4 left 2 5 1 right amp 1 2 3 cdots 29 30 31 amp 1 3 3 3 5 3 7 3 8pt 8128 2 6 left 2 7 1 right amp 1 2 3 cdots 125 126 127 amp 1 3 3 3 5 3 7 3 9 3 11 3 13 3 15 3 8pt 33550336 2 12 left 2 13 1 right amp 1 2 3 cdots 8189 8190 8191 amp 1 3 3 3 5 3 cdots 123 3 125 3 127 3 end aligned Parni doskonali chisla krim 6 mayut viglyad T 2 p 1 1 2 p 2 2 p 1 2 1 9 T 2 p 2 3 displaystyle T 2 p 1 1 frac 2 p 2 times 2 p 1 2 1 9 times T frac 2 p 2 3 de kozhne trikutne chislo T 7 28 displaystyle T 7 28 T 31 496 displaystyle T 31 496 T 127 8128 displaystyle T 127 8128 pislya vidnimannya odinici i dilennya na dev yat zakinchuyetsya na 3 abo 5 poslidovnist pochinayetsya z T 2 3 displaystyle T 2 3 T 10 55 displaystyle T 10 55 T 42 903 displaystyle T 42 903 T 2730 3727815 displaystyle T 2730 3727815 dots Ce mozhna pereformulyuvati nastupnim chinom sumuvannya cifr bud yakogo parnogo doskonalogo chisla krim 6 a potim povtor takih dij z otrimanimi rezultatami do momentu koli zalishitsya odna cifra znahodzhennya cifrovogo korenya dast v rezultati odinicyu Napriklad cifrovij korin chisla 8128 dorivnyuye odinici bo 8 1 2 8 19 displaystyle 8 1 2 8 19 1 9 10 displaystyle 1 9 10 1 0 1 displaystyle 1 0 1 Ce spravedlivo dlya usih chisel viglyadu 2 m 1 2 m 1 displaystyle 2 m 1 2 m 1 de m displaystyle m neparne chislo Zavdyaki svoyij formi 2 p 1 2 p 1 displaystyle 2 p 1 2 p 1 kozhne parne doskonale chislo zapisuyetsya u dvijkovij sistemi yak p displaystyle p odinic a za nimi p 1 displaystyle p 1 nuliv Napriklad 6 10 2 2 2 1 110 2 displaystyle 6 10 2 2 2 1 110 2 28 10 2 4 2 3 2 2 11100 2 displaystyle 28 10 2 4 2 3 2 2 11100 2 496 10 2 8 2 7 2 6 2 5 2 4 111110000 2 displaystyle 496 10 2 8 2 7 2 6 2 5 2 4 111110000 2 8128 10 2 12 2 11 2 7 2 6 1111111000000 2 displaystyle 8128 10 2 12 2 11 cdots 2 7 2 6 1111111000000 2 Takim chinom parni doskonali chisla ye en Kozhne parne doskonale chislo takozh ye praktichnim chislom Neparni doskonali chislaNevidomo chi isnuye hoch yakes neparne doskonale chislo hocha deyaki rezultati u comu napryami buli otrimani U 1496 roci Zhak Lefevr stverdzhuvav sho pravilo Evklida daye absolyutno vsi doskonali chisla z chogo sliduye vidsutnist neparnih doskonalih chisel Ejler stverdzhuvav sho najvazhchim pitannyam ye pitannya isnuvannya neparnih doskonalih chisel Neshodavno en predstaviv en yakij peredbachaye sho dijsno neparnogo doskonalogo chisla ne maye isnuvati Usi doskonali chisla takozh ye en a takozh isnuye gipoteza sho nemaye neparnih garmonichnih chisel Ore krim odinici Bud yake neparne doskonale chislo N displaystyle N maye zadovolnyati nastupnim umovam N 10 1500 displaystyle N geq 10 1500 N displaystyle N ne dilitsya na 105 N displaystyle N kongurentne abo 1 po modulyu 12 abo 117 po modulyu 468 abo 81 po modulyu 324 N displaystyle N maye viglyad N q a p 1 2 e 1 p k 2 e k displaystyle N q alpha p 1 2e 1 cdots p k 2e k de q p 1 p k displaystyle q p 1 dots p k ye riznimi prostimi chislami Ejler N a 1 displaystyle N equiv alpha equiv 1 mod 4 Ejler Najmenshij prostij dilnik chisla N displaystyle N menshij za 2 k 8 3 displaystyle frac 2k 8 3 Abo q a gt 10 62 displaystyle q alpha gt 10 62 abo p j 2 e j gt 10 62 displaystyle p j 2e j gt 10 62 dlya deyakogo j displaystyle j N lt 2 4 k 1 2 k 1 displaystyle N lt 2 4 k 1 2 k 1 a 2 e 1 2 e 2 2 e k 21 k 18 8 displaystyle alpha 2e 1 2e 2 dots 2e k geq frac 21k 18 8 q p 1 p 2 p k lt 2 N 17 26 displaystyle qp 1 p 2 dots p k lt 2N frac 17 26 Najbilshij prostij dilnik chisla N displaystyle N bilshij za 10 8 displaystyle 10 8 i menshij za 3 N 1 3 displaystyle 3N frac 1 3 Nastupnij najbilshij prostij dilnik N displaystyle N bilshij za 10 4 displaystyle 10 4 i menshij za 2 N 1 5 displaystyle 2N frac 1 5 Tretij najbilshij prostij dilnik N displaystyle N bilshij za 100 N displaystyle N maye shonajmenshe 101 prostij dilnik de shonajmenshe 10 riznih Yaksho N displaystyle N ne dilitsya na 3 to N displaystyle N maye shonajmenshe 12 prostih dilnikiv Takozh vidomo dekilka drugoryadnih rezultativ sho stosuyutsya pokaznikiv e 1 e k displaystyle e 1 dots e k chisla N q a p 1 2 e 1 p k 2 e k displaystyle N q alpha p 1 2e 1 cdots p k 2e k Ne vsi e i 1 displaystyle e i equiv 1 mod 3 Ne vsi e i 2 displaystyle e i equiv 2 mod 5 Yaksho e i 1 displaystyle e i equiv 1 mod 3 abo e i 2 displaystyle e i equiv 2 mod 5 najmenshij prostij dilnik chisla N displaystyle N bude znahoditis v mezhah vid 10 8 displaystyle 10 8 do 10 1000 displaystyle 10 1000 U zagalnomu vipadku yaksho vsi 2 e i 1 displaystyle 2e i 1 mayut prostij dilnik u skinchennij mnozhini S displaystyle S to najmenshij prostij dilnik chisla N displaystyle N maye buti najmenshim za efektivno obchislyuvalnu konstantu sho zalezhit lishe vid S displaystyle S Yaksho e i e k 1 1 2 2 displaystyle e i dots e k 1 dots 1 2 dots 2 z t displaystyle t odinicyami i u displaystyle u dvijkami to t 1 4 u 2 t a displaystyle frac t 1 4 leq u leq 2t sqrt alpha e i e k 1 1 3 displaystyle e i dots e k neq 1 dots 1 3 1 1 5 displaystyle 1 dots 1 5 1 1 6 displaystyle 1 dots 1 6 Yaksho e 1 e k e displaystyle e 1 dots e k e to e displaystyle e ne mozhe dorivnyuvati 3 5 24 6 8 11 14 abo 18 k 2 e 2 8 e 2 displaystyle k leq 2e 2 8e 2 i N lt 2 4 2 e 2 8 e 3 displaystyle N lt 2 4 2e 2 8e 3 U 1888 roci Silvestr stverdzhuvav dovgi rozdumi na cyu temu perekonali mene sho isnuvannya bud yakogo takogo neparnogo doskonalogo chisla ce vihid iz velicheznoyi pavutini umov sho jogo otochuyut i ye prosto chudom Bagato vlastivostej dovedenih vidnosno neparnih doskonalih chisel takozh stosuyutsya en a tomu Pejs Nilsen pripustiv sho dostatnye vivchennya takih chisel mozhe privesti do dovedennya vidsutnosti neparnih doskonalih chisel Neznachni rezultatiUsi parni doskonali chisla mayut duzhe tochnu formu neparni doskonali chisla abo ne isnuyut abo ye duzhe ridkisnimi Ye cilij ryad rezultativ shodo doskonalih chisel yaki naspravdi dosit legko dovesti ale vtim ye vrazhayuchimi deyaki z nih pidhodyat pid en Richarda Gaya 28 yedine parne doskonale chislo viglyadu x 3 1 displaystyle x 3 1 28 takozh yedine parne doskonale chislo yake ye sumoyu kubiv dvoh dodatnih chisel Suma chisel obernenih do dilnikiv doskonalogo chisla dorivnyuye dvijci shob otrimati ce neobhidno skoristatisya oznachennyam doskonalogo chisla s 1 n 2 n displaystyle sigma 1 n 2n i podiliti obidvi chastini rivnosti na n displaystyle n Dlya 6 mayemo 1 6 1 3 1 2 1 1 2 displaystyle frac 1 6 frac 1 3 frac 1 2 frac 1 1 2 Dlya 28 mayemo 1 28 1 14 1 7 1 4 1 2 1 1 2 displaystyle frac 1 28 frac 1 14 frac 1 7 frac 1 4 frac 1 2 frac 1 1 2 i tak dali Kilkist dilnikiv bud yakogo doskonalogo chisla parnogo chi neparnogo maye buti parnoyu oskilki doskonale chislo N displaystyle N ne mozhe buti povnim kvadratom Z dvoh zaznachenih vishe vlastivostej viplivaye sho kozhne doskonale chislo ye en Parni doskonali chisla ne ye en tobto yih ne mozhna predstaviti u viglyadi riznici dvoh dodatnih neposlidovnih trikutnih chisel Isnuye lishe tri tipi netrapeciyevidnih chisel parni doskonali chisla stepeni dvijki i chisla viglyadu 2 n 1 2 n 1 displaystyle 2 n 1 2 n 1 yaki utvoreni yak dobutok prostogo chisla Ferma 2 n 1 displaystyle 2 n 1 ta 2 n 1 displaystyle 2 n 1 sho analogichno pobudovi doskonalih chisel z prostih chisel Mersenna Kilkist doskonalih chisel menshih za n displaystyle n mensha za c n displaystyle c sqrt n de c displaystyle c dodatna konstanta Naspravdi ce o n displaystyle o sqrt n vikoristovuyetsya poznachennya o displaystyle o malogo Kozhne parne doskonale chislo zakinchuyetsya na 6 chi 28 v desyatkovij sistemi i zakinchuyetsya na 1 za vinyatkom chisla 6 v sistemi za bazoyu 9 Tomu cifrovij korin bud yakogo parnogo doskonalogo chisla vidminnogo vid 6 dorivnyuye 1 6 yedine doskonale chislo yake ye bezkvadratichnim Pov yazani ponyattyaDiagrama Ejlera dlya nadlishkovih nedostatnih doskonalih i t d chisel menshih za 100 Suma vlasnih dilnikiv daye rizni inshi vidi chisel Chisla de suma yih dilnikiv mensha za same chislo nazivayut nedostatnimi a de bilsha nadlishkovimi Ci termini i same ponyattya doskonalih chisel prijshlo do nas z greckoyi numerologiyi Pari chisel yaki ye sumami vlasnih dilnikiv odin odnogo nazivayutsya druzhnimi a bilshi cikli takih chisel nazivayutsya en Naturalne chislo take sho kozhne menshe za nogo naturalne chislo ye sumoyu jogo riznih dilnikiv nazivayetsya praktichnim Za oznachennyam doskonale chislo neruhoma tochka en s n s n n displaystyle s n sigma n n a pov yazana z doskonalimi chislami en ye postijnoyu poslidovnistyu Vsi doskonali chisla takozh ye S displaystyle mathcal S doskonalimi abo en Napivdoskonale chislo naturalne chislo yake dorivnyuye sumi vsih abo deyakih vlasnih dilnikiv Napivdoskonale chislo yake dorivnyuye sumi vsih vlasnih dilnikiv ye doskonalim chislom Bilshist nadlishkovih chisel takozh ye napivdoskonalimi nadlishkovi chisla sho ne ye napivdoskonalimi nazivayutsya en Div takozh en en en en en PrimitkiCaldwell Chris A proof that all even perfect numbers are a power of two times a Mersenne prime Dickson L E 1919 History of the Theory of Numbers Vol I Washington Carnegie Institution of Washington p 4 Perfect numbers www groups dcs st and ac uk Retrieved 9 May 2018 U Vstupi v arifmetiku glava 16 vin stverdzhuye sho ye akuratnij i bezvidmovnij metod yakij opisuye kozhne doskonale chislo i ne opisuye zhodne inshe sho zdijsnyuyetsya vkazanim nim chinom yakij ye ekvivalentnim znahodzhennyu trikutnih chisel za dopomogoyu prostih chisel Mersenna Commentary on the Gospel of John 28 1 1 4 with further references in the Sources Chretiennes edition vol 385 58 61 http torreys org sblpapers2015 S22 05 philonic arithmological exegesis pdf nedostupne posilannya Roshdi Rashed The Development of Arabic Mathematics Between Arithmetic and Algebra Dordrecht Kluwer Academic Publishers 1994 pp 328 329 Bayerische Staatsbibliothek Clm 14908 See David Eugene Smith 1925 History of Mathematics Volume II New York Dover p 21 ISBN 0 486 20430 8 Dickson L E 1919 History of the Theory of Numbers Vol I Washington Carnegie Institution of Washington p 10 Pickover C 2001 Wonders of Numbers Adventures in Mathematics Mind and Meaning Oxford Oxford University Press p 360 ISBN 0 19 515799 0 Peterson I 2002 Mathematical Treks From Surreal Numbers to Magic Circles Washington Mathematical Association of America p 132 ISBN 88 8358 537 2 Usi dilniki chisla 2 p 1 displaystyle 2 p 1 kongruentni odinici po modulyu 2 p displaystyle 2p Napriklad 2 11 1 2047 23 89 displaystyle 2 11 1 2047 23 times 89 I 23 i 89 dayut ostachu 1 pri dilenni na 22 Bilsh togo yaksho p displaystyle p ye prostim chislom Sofi Zhermen yaksho 2 p 1 displaystyle 2p 1 tezh proste i 2 p 1 displaystyle 2p 1 kongruentne 1 abo 7 za modulem 8 to 2 p 1 displaystyle 2p 1 bude dilnikom chisla 2 p 1 displaystyle 2 p 1 sho spravedlivo dlya p 11 23 83 131 179 191 239 251 displaystyle p 11 23 83 131 179 191 239 251 dots poslidovnist A002515 z Onlajn enciklopediyi poslidovnostej cilih chisel OEIS Numbers of prime 43112609 displaystyle leq 43112609 Wolfram Alpha Retrieved 2018 10 28 O Connor John J Robertson Edmund F Abu Ali al Hasan ibn al Haytham MacTutor History of Mathematics archive University of St Andrews GIMPS Milestones Report Retrieved 2018 02 27 GIMPS Milestones Report 3 veresnya 2016 u Wayback Machine Retrieved 2018 02 27 GIMPS Home Mersenne org Retrieved 2018 12 21 Weisstein Eric W Perfect Number MathWorld Dickson L E 1919 History of the Theory of Numbers Vol I Washington Carnegie Institution of Washington p 6 PDF Arhiv originalu PDF za 28 travnya 2016 Procitovano 15 travnya 2021 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Obslugovuvannya CS1 Storinki z tekstom archived copy yak znachennya parametru title posilannya Oddperfect org Archived 2006 12 29 at the Wayback Machine Ochem Pascal Rao Michael 2012 Odd perfect numbers are greater than 101500 PDF Mathematics of Computation 81 279 1869 1877 doi 10 1090 S0025 5718 2012 02563 4 ISSN 0025 5718 Zbl 1263 11005 Kuhnel Ullrich 1950 Verscharfung der notwendigen Bedingungen fur die Existenz von ungeraden vollkommenen Zahlen Mathematische Zeitschrift in German 52 202 211 doi 10 1007 BF02230691 Roberts T 2008 On the Form of an Odd Perfect Number PDF Australian Mathematical Gazette 35 4 244 Grun O 1952 Uber ungerade vollkommene Zahlen Mathematische Zeitschrift 55 3 353 354 doi 10 1007 BF01181133 Chen Yong Gao Tang Cui E 2014 Improved upper bounds for odd multiperfect numbers Bulletin of the Australian Mathematical Society 89 3 353 359 Nielsen Pace P 2003 An upper bound for odd perfect numbers Integers 3 A14 A22 Retrieved 23 March 2021 Zelinsky Joshua 25 May 2018 An improvement of an inequality of Ochem and Rao concerning odd perfect numbers Integers 18 arXiv 1706 07009 Bibcode 2017arXiv170607009Z Retrieved 23 May 2018 Ochem Pascal Rao Michael 2014 On the number of prime factors of an odd perfect number Mathematics of Computation 83 289 2435 2439 doi 10 1090 S0025 5718 2013 02776 7 Pomerance Carl Luca Florian 2010 On the radical of a perfect number New York Journal of Mathematics 16 23 30 Retrieved 7 December 2018 Goto T Ohno Y 2008 Odd perfect numbers have a prime factor exceeding 108 PDF Mathematics of Computation 77 263 1859 1868 Bibcode 2008MaCom 77 1859G doi 10 1090 S0025 5718 08 02050 9 Retrieved 30 March 2011 Konyagin Sergei Acquaah Peter 2012 On Prime Factors of Odd Perfect Numbers International Journal of Number Theory 8 6 1537 1540 doi 10 1142 S1793042112500935 Zelinsky Joshua July 2019 Upper bounds on the second largest prime factor of an odd perfect number International Journal of Number Theory 15 6 1183 1189 arXiv 1810 11734 doi 10 1142 S1793042119500659 Iannucci DE 1999 The second largest prime divisor of an odd perfect number exceeds ten thousand PDF Mathematics of Computation 68 228 1749 1760 Bibcode 1999MaCom 68 1749I doi 10 1090 S0025 5718 99 01126 6 Retrieved 30 March 2011 Iannucci DE 2000 The third largest prime divisor of an odd perfect number exceeds one hundred PDF Mathematics of Computation 69 230 867 879 Bibcode 2000MaCom 69 867I doi 10 1090 S0025 5718 99 01127 8 Retrieved 30 March 2011 Nielsen Pace P 2015 Odd perfect numbers Diophantine equations and upper bounds PDF Mathematics of Computation 84 295 2549 2567 doi 10 1090 S0025 5718 2015 02941 X Retrieved 13 August 2015 Nielsen Pace P 2007 Odd perfect numbers have at least nine distinct prime factors PDF Mathematics of Computation 76 260 2109 2126 arXiv math 0602485 Bibcode 2007MaCom 76 2109N doi 10 1090 S0025 5718 07 01990 4 Retrieved 30 March 2011 McDaniel Wayne L 1970 The non existence of odd perfect numbers of a certain form Archiv der Mathematik 21 1 52 53 doi 10 1007 BF01220877 ISSN 1420 8938 MR 0258723 Fletcher S Adam Nielsen Pace P Ochem Pascal 2012 Sieve methods for odd perfect numbers PDF Mathematics of Computation 81 279 1753 1776 doi 10 1090 S0025 5718 2011 02576 7 ISSN 0025 5718 MR 2904601 Cohen G L 1987 On the largest component of an odd perfect number Journal of the Australian Mathematical Society Series A 42 2 280 286 doi 10 1017 S1446788700028251 ISSN 1446 8107 MR 0869751 Kanold Hans Joachim 1950 Satze uber Kreisteilungspolynome und ihre Anwendungen auf einige zahlentheoretisehe Probleme II Journal fur die reine und angewandte Mathematik 188 1 129 146 doi 10 1515 crll 1950 188 129 ISSN 1435 5345 MR 0044579 Cohen G L Williams R J 1985 Extensions of some results concerning odd perfect numbers PDF Fibonacci Quarterly 23 1 70 76 ISSN 0015 0517 MR 0786364 Hagis Peter Jr McDaniel Wayne L 1972 A new result concerning the structure of odd perfect numbers Proceedings of the American Mathematical Society 32 1 13 15 doi 10 1090 S0002 9939 1972 0292740 5 ISSN 1088 6826 MR 0292740 McDaniel Wayne L Hagis Peter Jr 1975 Some results concerning the non existence of odd perfect numbers of the form p a M 2 b displaystyle p alpha M 2 beta PDF Fibonacci Quarterly 13 1 25 28 ISSN 0015 0517 MR 0354538 Yamada Tomohiro 2019 A new upper bound for odd perfect numbers of a special form Colloquium Mathematicum 156 1 15 21 arXiv 1706 09341 doi 10 4064 cm7339 3 2018 ISSN 1730 6302 The Collected Mathematical Papers of James Joseph Sylvester p 590 tr from Sur les nombres dits de Hamilton Compte Rendu de l Association Francaise Toulouse 1887 pp 164 168 Nadis Steve 10 September 2020 Mathematicians Open a New Front on an Ancient Number Problem Quanta Magazine Retrieved 10 September 2020 Makowski A 1962 Remark on perfect numbers Elem Math 17 5 109 Gallardo Luis H 2010 On a remark of Makowski about perfect numbers Elem Math 65 121 126 doi 10 4171 EM 149 Yan Song Y 2012 Computational Number Theory and Modern Cryptography John Wiley Sons Section 2 3 Exercise 2 6 ISBN 9781118188613 Jones Chris Lord Nick 1999 Characterising non trapezoidal numbers The Mathematical Gazette The Mathematical Association 83 497 262 263 doi 10 2307 3619053 JSTOR 3619053 Hornfeck B 1955 Zur Dichte der Menge der vollkommenen zahlen Arch Math 6 6 442 443 doi 10 1007 BF01901120 Kanold HJ 1956 Eine Bemerkung uber die Menge der vollkommenen zahlen Math Ann 131 4 390 392 doi 10 1007 BF01350108 H Novarese Note sur les nombres parfaits Texeira J VIII 1886 11 16 Dickson L E 1919 History of the Theory of Numbers Vol I Washington Carnegie Institution of Washington p 25 Redmond Don 1996 Number Theory An Introduction to Pure and Applied Mathematics Chapman Hall CRC Pure and Applied Mathematics 201 CRC Press Problem 7 4 11 p 428 ISBN 9780824796969 PosilannyaDavid Moews Perfect amicable and sociable numbers 28 grudnya 2014 u Wayback Machine Perfect numbers History and Theory 30 chervnya 2004 u Wayback Machine Weisstein Eric W Perfect Number angl na sajti Wolfram MathWorld A projected distributed computing project to search for odd perfect numbers Great Internet Mersenne Prime Search 14 serpnya 2021 u Wayback Machine GIMPS Perfect Numbers 12 lyutogo 2015 u Wayback Machine math forum at Drexel Grimes James Numberphile Arhiv originalu za 31 travnya 2013 Procitovano 2 kvitnya 2013 LiteraturaEuclid Elements Book IX Proposition 36 See D E Joyce s website 2 bereznya 2011 u Wayback Machine for a translation and discussion of this proposition and its proof Kanold H J 1941 Untersuchungen uber ungerade vollkommene Zahlen Journal fur die Reine und Angewandte Mathematik 183 98 109 Steuerwald R Verscharfung einer notwendigen Bedingung fur die Existenz einer ungeraden vollkommenen Zahl S B Bayer Akad Wiss 1937 69 72 Dodatkova literaturaNankar M L History of perfect numbers Ganita Bharati 1 no 1 2 1979 7 8 Riele H J J Perfect Numbers and Aliquot Sequences in H W Lenstra and R Tijdeman eds Computational Methods in Number Theory Vol 154 Amsterdam 1982 pp 141 157 Riesel H Prime Numbers and Computer Methods for Factorisation Birkhauser 1985 Sandor Jozsef Crstici Borislav 2004 Handbook of number theory II Dordrecht Kluwer Academic s 15 98 ISBN 1 4020 2546 7 Zbl 1079 11001