Багатовимірний час — гіпотези існування часу з розмірністю T > 1. Ці гіпотези мають певне поширення у фізиці, філософії і фантастиці.
У фізиці
Спеціальна теорія відносності (СТО) описує простір-час у вигляді псевдоріманового многовиду з одним від'ємним власним значенням метричного тензора, яке відповідає «часоподібному» напрямку. Метрика з кількома від'ємними власними значеннями буде відповідно мати на увазі наявність декількох часових напрямків, тобто час буде багатовимірним, але нині немає консенсусу щодо зв'язку цих додаткових «часів» з часом у звичайному розумінні.
Гіпотези багатовимірного часу висувалися у фізиці двоїсто: як можливий теоретичний опис реальності чи як цікава можливість, що, ймовірно, не має стосунку до відомої природи. Наприклад, [en] опублікував роботу «Фізика двовимірного часу», засновану на симетрії SO(10, 2) розширеної структури суперсиметрії М-теорії, яка є найсучаснішим та систематизованим різновидом цієї теорії (див. також [en]).
Якщо спеціальна теорія відносності може бути узагальнена на випадок k-вимірного часу (t1, t2, …, tk) і n-вимірного простору (xk+1, xk+2, …, xk+n), то (k + n)-розмірний інтервал, як інваріантний, дає вираз (dsk,n)2 = (cdt1)2 + … + (cdtk)2 − (dxk+1)2 − … − (dxk+n)2. Сигнатура метрики тоді матиме такий вигляд:
- — часово-подібне [en],
або
- — просторово-подібне правило знаків.
Перетворення між двома інерційними системами відліку K і K', які перебувають у стандартній конфігурації (наприклад, перетворення без переведення і/або обертання осі простору в гіперплощині простору і/або поворотів осі часу в гіперплощині часу) виглядають так:
де є векторами швидкостей K' проти K, визначають відповідно залежно від розмірів часу t1, t2, …, tk; σ = 1, 2, …, k; λ = k + 2, k + 3, …, k + n. Тут δσθ є символом Кронекера. Ці перетворення є узагальненням перетворення Лоренца у фіксованому просторовому напрямку (xk+1) в ділянці багатовимірного часу і багатовимірного простору.
Позначимо: , і де σ = 1, 2, …, k; η = k + 1, k + 2, …, k + n. Додавання швидкостей потім дасть
де σ = 1, 2, …, k; λ = k + 2, k + 3, …, k + n.
Для простоти розглянемо тільки одну просторову розмірність x3 і дві часові розмірності x1 і x2 (тобто, x1 = ct1, x2 = ct2, x3 = x). Припустимо, що в точці O, яка має координати x1 = 0, x2 = 0, x3 = 0, відбулася подія E. Припустимо далі, що з моменту події E пройшов інтервал часу. Причинно-наслідкова ділянка, пов'язана з подією E, включає себе бічну поверхню прямого кругового конуса {(x1)2 + (x2)2 − (x3)2 = 0}, бічну поверхню прямого кругового циліндра {(x1)2 + (x2)2 = c2 ∆ T2} і внутрішню ділянку, обмежену цими поверхнями, тобто причинно-наслідкова ділянка включає всі точки (x1, x2, x3), для яких виконуються умови:
- {(x1)2 + (x2)2 − (x3)2 = 0 і |x3| ⩽ cΔT} або
- {(x1)2 + (x2)2 = c2 ∆ T2 і |x3| ⩽ cΔT} або
- {(x1)2 + (x2)2 − (x3)2 > 0 і (x1)2 + (x2)2 < c2 ∆ T2}
Проте, сигнатури (1, 3) і (3, 1) фізично еквівалентні, оскільки додатна довжина вектора в просторі Мінковського для часовоподібних інтервалів — це умовність, яка залежить від домовленості про знак метричного тензора. Так, деякі фізики як правило використовують метрику з сигнатурою (+---), що призводить до додатної «довжини» Мінковського для часовоподібних інтервалів і енергії, тоді як просторова відстань буде мати від'ємну «довжину» Мінковського. Релятивісти, однак, як правило дотримуються протилежної конвенції (−+++), що дає для просторової відстані додатну «довжину» Мінковського[].
Всі всесвіти багатовимірного часу можна розглядати як фрідмони.
Зв'язок з антропним принципом
Як доказ тривимірності простору (якщо не зважати на можливі виміри непідтвердженої теорії струн) можуть наводитися фізичні наслідки припущення про те, що кількість вимірів відрізняється від трьох просторових плюс одного часового. Цей аргумент виконаний в дусі антропного принципу, і можливо, це перший випадок його використання, нехай і до того, як концепція даного принципу була сформульована повністю.
Неявне уявлення про те, що розмірність існуючого Всесвіту є особливою, вперше висловив Лейбніц, який у «Міркуванні про метафізику» припустив, що «світ відповідає такій моделі, яка є найпростішою в гіпотезі і найбагатшою в явищах».
Макс Тегмарк розглядає гіпотези світів з розмірністю часу T > 1 з точки зору антропного принципу і приходить до висновку про неможливість існування розумного життя в такій моделі світу. В загальному випадку невідома дія фізичних законів у світі з багатовимірним часом. Якщо Т відмінне від 1, поведінку фізичних систем неможливо вивести зі знання відповідних диференціальних рівнянь у частинних похідних — задача Коші для хвильового рівняння стає погано визначеною. Іншими словами, у світі з багатовимірним часом неможливо точно розрахувати поведінку фізичних систем у майбутньому, а будь-який розрахунок фізичних законів буде мати кілька розв'язків — майбутнє такого всесвіту неможливо спрогнозувати. Розумне життя, здатне використовувати технології, в подібному всесвіті не могло б виникнути. Більше того, Тегмарк стверджує, що якщо T > 1, протони і електрони були б нестійкими і могли б розпадатися на більш масивні частинки. (Це не проблема, якщо частинки мають достатньо низьку температуру.) При T > 1 субатомні частинки, які розпадаються протягом певного періоду, поводилися б непередбачувано, геодезична лінія не обов'язково була б максимальною для часу. Випадок світу з розмірністю простору N = 1 і часу T = 3 має цікаву властивість: швидкість світла є нижньою межею швидкості матеріальних тіл, а вся матерія складається з тахіонів.
Тільки в світі з одновимірним часом можна надійно розрахувати стан фізичних систем у майбутньому (у світі без часу такі розрахунки неможливі, а в світі з багатовимірним часом розрахунок майбутнього стану фізичних систем дає кілька варіантів розв'язку). Єдиний варіант одного розв'язку для фізичних рівнянь у світі з багатовимірним часом — це рух спостерігача зі швидкістю світла, коли час для нього взагалі не існує. Тільки світ з тривимірним простором дає достатню стабільність і складність, оскільки в світі з числом вимірів простору менше 3 малоймовірна гравітація і виникають топологічні проблеми, а в світі з числом вимірів простору більше 3 неможливе існування стабільних орбіт (для гравітаційного та електромагнітного полів або інших далекодійних взаємодій). Тому світи з розмірністю часу відмінною від 1 мають нестачу прогнозованості, а світи з розгорнутою розмірністю простору більше 3 — брак стабільності. Таким чином, дотримання антропного принципу виключає будь-які варіанти світу крім N = 3 і Т = 1 (або N = 1 і Т = 3 в інших концепціях).
Зв'язок з довжиною Планка і швидкість світла
Рух пробної частинки можна описати координатою:
що є канонічним (1,3) вектором простору-часу з розширеним на додаткову часоподібну координату . тоді другий параметр часу, описує розмір другого часового виміру і є характеристичною швидкістю, таким чином, еквівалент . описує форму другого часового виміру і параметр нормалізації такий, що безрозмірне. Розбиваючи з
і використовуючи метрику , тоді механіка Лагранжа стає
Застосування рівняння Ейлера — Лагранжа дає
Як наслідок цієї моделі було висловлено припущення, що швидкість світла не була постійною в ранній Всесвіту.
У філософії
1927 року опубліковано есе «Експеримент із часом» [en]. В ньому висувається гіпотеза про існування людини одночасно на двох рівнях: у суб'єктивній течії часу (див. вісь часу) і поза часовою віссю з можливістю одночасно бачити минуле, сьогодення і майбутнє (див. етерналізм). У своїй статті «Нереальність часу» англійський філософ Джон Елліс Мак-Таггарт поділяє час на два ряди: [ru] (див. (Етерналізм#Аргументи_проти)).
Гіпотеза багатовимірного часу також розглядалася в аналітичній філософії.
Англійський філософ [en] розглядає модель Всесвіту з 6 вимірами: 3 просторовими і 3 часовими (які мають назви «час», «вічність» і «гіпарксис (hyparxis)»). Під часом Джон Беннет розуміє звичний для нас лінійний перебіг подій. До гіперчасу він відносить вічність і гіпарксис, що мають власні, відмінні від часу властивості. Вічність Джон Беннет називає космологічним часом і позачасовим часом. Гіпарксис (від дав.-гр. ὕπαρξις — існування) є станом буття і діє в на рівні квантових процесів. Поєднання часу і вічності дає можливість створення багатоваріантної космології з паралельними всесвітами, які дають великий спектр можливостей. Існування такого часового виміру, як гіпарксис, робить можливим багато науково-фантастичних ідей: подорож у часі, переміщення між паралельними світами та рух швидше від швидкості світла. Хоча ідеї Джона Беннета досить цікаві, але вони засновані на суб'єктивних аспектах сприйняття часу і не мають повністю наукової основи. Також залишається відкритим питання вимірювання цих гіпотетичних часових вимірів.
Для вирішення проблеми суб'єктивного проходження часу, Данн запропонував нескінченну ієрархію вимірів часу, населену аналогічною ієрархією рівнів свідомості. Данн припустив, що в контексті «блокового» простору-часу, модельованого загальною теорією відносності, необхідний інший вимір часу, щоб виміряти швидкість свого просування по власній шкалі часу. Це в свою чергу вимагало рівня свідомого я, який існує на другому рівні часу. Але ті ж самі аргументи потім застосовувалися до цього нового рівня, що вимагає третього рівня, і так далі в нескінченній регресії. В кінці регресії був «чудовий генеральний спостерігач», який існував у вічності. Він опублікував свою теорію щодо віщих снів у своїй книзі Експеримент з часом і продовжив досліджувати її співвідношення з сучасною фізикою в Послідовному Всесвіті (The Serial Universe, 1934). Його нескінченний регрес був розкритикований як логічно помилковий і непотрібний, хоча такі автори, як Прістлі, визнавали можливість його другого часового виміру.
У фантастиці
- В завершальному романі трилогії «Люди як боги» «Кільце зворотного часу» (1977) Сергій Снєгов вкладає в уста головного героя слова: «В цьому і є моя думка — вирватися з одновимірного, прямолінійного часу в час двовимірний…»
- В романі Роберта Гайнлайна «Число звіра» (1979) Всесвіт має 6 вимірів, з яких 3 часових (позначаються t, τ (тау) і т).
- В романі «Поранене небо» (1983) серіалу «Зоряний шлях» [ru] фізик Hamalki K t lk стверджує, що час має 3 виміри («початок», «продовження» і «кінець»).
- В тетралогії «Забезпечення» (англ. Ware) (2000) Руді Ракера інопланетна раса метамарсіян походить з області космосу з двомірним часом.
- В серії коміксів [ru] теорія багатовимірного часу використовується для пояснення зустрічі головного героя Соніка зі своїм злим близнюком Скорджем.
Див. також
Примітки
- Bars, Itzhak. Two-Time Physics. Архів оригіналу за 5 лютого 2013. Процитовано 8 грудня 2012.
- Velev, Milen. Relativistic mechanics in multiple time dimensions // [en] : journal. — 2012. — Vol. 25, no. 3 (16 June). — P. 403—438. — Bibcode: . — DOI: .
- Синг Дж. Л. Общая теория относительности. — М. : ИЛ, 1963. — С. 349.
- Геометрия черных и белых дыр (Часть 1) [ 6 лютого 2016 у Wayback Machine.].
- Leibniz, Gottfried. Discourse on Metaphysics // Die philosophischen schriften von Gottfried Wilhelm Leibniz, Volume 4. — Weidmann, 1880. — С. 427—463.
- Tegmark, Max. On the dimensionality of spacetime // [en] : journal. — 1997. — Vol. 14, no. 4 (4). — P. L69—L75. — arXiv:gr-qc/9702052. — Bibcode: . — DOI: . з джерела 3 листопада 2020. Процитовано 2006-12-16.
- A. Albrecht, J. Magueijo. A Time Varying Speed of Light as a Solution to Cosmological Puzzles. Phys. Rev. D vol. 59 043516 (1999)
- Philosophy Faculty Members: Steven Weinstein. Department of Philosophy, University of Waterloo, Canada. Архів оригіналу за 5 лютого 2013. Процитовано 8 грудня 2012.
- McDonald, John Q. (15 листопада 2006). . Архів оригіналу за 30 грудня 2018. Процитовано 8 грудня 2012.
- J.A. Gunn; The Problem of Time, Unwin, 1929.
- J.B. Priestley, Man and Time, Aldus, 1964.
- Сергей Снегов. [1] / Сост. и авт. вступ. ст. Е. Брандис, В. Дмитревский. — Л. : Лениздат, 1977. — С. 11—270. — 100000 прим. з джерела 21 вересня 2020
- Rucker, Rudy (25 листопада 2005). Notes for Realware (PDF). Архів (PDF) оригіналу за 5 лютого 2013. Процитовано 8 грудня 2012.
Література
- Введение в философию [ 19 січня 2013 у Wayback Machine.] — М.: Политиздат, 1989. Ч. 2. — С. 85.
- Itzhak Bars, Gauge Symmetry in Phase Space, Consequences for Physics and Spacetime. arXiv:1004.0688 [hep-th].
- Itzhak Bars, The Standard model as a 2T-physics theory [ 22 березня 2021 у Wayback Machine.]. hep-th/0610187.
- Itzhak Bars, John Terning, Extra dimensions in space and time [ 25 листопада 2013 у Wayback Machine.], N.Y.: Springer, Multiversal journeys series, 2010, . DOI: 10.1007/978-0-387-77638-5.
- Steven Weinstein, Multiple Time Dimensions, arXiv:0812.3869 [physics.gen-ph].
- Jacob G. Foster, Berndt Muller, Physics With Two Time Dimensions. arXiv:1001.2485 [hep-th].
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Bagatovimirnij chas gipotezi isnuvannya chasu z rozmirnistyu T gt 1 Ci gipotezi mayut pevne poshirennya u fizici filosofiyi i fantastici Vlastivosti S T vimirnogo prostoru chasuU fiziciSpecialna teoriya vidnosnosti STO opisuye prostir chas u viglyadi psevdorimanovogo mnogovidu z odnim vid yemnim vlasnim znachennyam metrichnogo tenzora yake vidpovidaye chasopodibnomu napryamku Metrika z kilkoma vid yemnimi vlasnimi znachennyami bude vidpovidno mati na uvazi nayavnist dekilkoh chasovih napryamkiv tobto chas bude bagatovimirnim ale nini nemaye konsensusu shodo zv yazku cih dodatkovih chasiv z chasom u zvichajnomu rozuminni Gipotezi bagatovimirnogo chasu visuvalisya u fizici dvoyisto yak mozhlivij teoretichnij opis realnosti chi yak cikava mozhlivist sho jmovirno ne maye stosunku do vidomoyi prirodi Napriklad en opublikuvav robotu Fizika dvovimirnogo chasu zasnovanu na simetriyi SO 10 2 rozshirenoyi strukturi supersimetriyi M teoriyi yaka ye najsuchasnishim ta sistematizovanim riznovidom ciyeyi teoriyi div takozh en Yaksho specialna teoriya vidnosnosti mozhe buti uzagalnena na vipadok k vimirnogo chasu t1 t2 tk i n vimirnogo prostoru xk 1 xk 2 xk n to k n rozmirnij interval yak invariantnij daye viraz dsk n 2 cdt1 2 cdtk 2 dxk 1 2 dxk n 2 Signatura metriki todi matime takij viglyad k n displaystyle underbrace cdots k underbrace cdots n chasovo podibne en abo k n displaystyle underbrace cdots k underbrace cdots n prostorovo podibne pravilo znakiv Peretvorennya mizh dvoma inercijnimi sistemami vidliku K i K yaki perebuvayut u standartnij konfiguraciyi napriklad peretvorennya bez perevedennya i abo obertannya osi prostoru v giperploshini prostoru i abo povorotiv osi chasu v giperploshini chasu viglyadayut tak t s 8 1 k d s 8 t 8 c 2 v s v 8 b 2 z 1 t 8 1 v s b 2 z x k 1 displaystyle t sigma sum theta 1 k left delta sigma theta t theta frac c 2 v sigma v theta beta 2 zeta 1 t theta right frac 1 v sigma beta 2 zeta x k 1 x k 1 c 2 b 2 z 8 1 k t 8 v 8 z x k 1 displaystyle x k 1 c 2 beta 2 zeta sum theta 1 k frac t theta v theta zeta x k 1 x l x l displaystyle x lambda x lambda de v 1 v 1 0 0 n 1 displaystyle mathbf v 1 v 1 underbrace 0 cdots 0 n 1 v 2 v 2 0 0 n 1 displaystyle mathbf v 2 v 2 underbrace 0 cdots 0 n 1 v k v k 0 0 n 1 displaystyle mathbf v k v k underbrace 0 cdots 0 n 1 ye vektorami shvidkostej K proti K viznachayut vidpovidno zalezhno vid rozmiriv chasu t1 t2 tk b 1 m 1 k c 2 v m 2 displaystyle beta frac 1 sqrt sum mu 1 k frac c 2 v mu 2 z 1 1 b 2 displaystyle zeta frac 1 sqrt 1 beta 2 s 1 2 k l k 2 k 3 k n Tut ds8 ye simvolom Kronekera Ci peretvorennya ye uzagalnennyam peretvorennya Lorenca u fiksovanomu prostorovomu napryamku xk 1 v dilyanci bagatovimirnogo chasu i bagatovimirnogo prostoru Prichinno naslidkova struktura prostoru chasu z dvoma chasovimi vimirami i prostorom odniyeyi rozmirnosti Poznachimo d x h d t s V s h displaystyle frac dx eta dt sigma V sigma eta i d x h d t s V s h displaystyle frac dx eta dt sigma V sigma eta de s 1 2 k h k 1 k 2 k n Dodavannya shvidkostej potim dast V s k 1 V s k 1 z 1 b 2 8 1 k c 2 v 8 V 8 k 1 1 V s k 1 v s b 2 z 1 8 1 k c 2 v 8 V 8 k 1 z displaystyle V sigma k 1 frac V sigma k 1 zeta left 1 beta 2 sum theta 1 k frac c 2 v theta V theta k 1 right 1 frac V sigma k 1 v sigma beta 2 left zeta 1 sum theta 1 k frac c 2 v theta V theta k 1 zeta right V s l V s l 1 V s k 1 v s b 2 z 1 8 1 k c 2 v 8 V 8 k 1 z displaystyle V sigma lambda frac V sigma lambda 1 frac V sigma k 1 v sigma beta 2 left zeta 1 sum theta 1 k frac c 2 v theta V theta k 1 zeta right de s 1 2 k l k 2 k 3 k n Dlya prostoti rozglyanemo tilki odnu prostorovu rozmirnist x3 i dvi chasovi rozmirnosti x1 i x2 tobto x1 ct1 x2 ct2 x3 x Pripustimo sho v tochci O yaka maye koordinati x1 0 x2 0 x3 0 vidbulasya podiya E Pripustimo dali sho z momentu podiyi E projshov interval chasuD T D t 1 2 D t 2 2 0 displaystyle Delta T sqrt Delta t 1 2 Delta t 2 2 geqslant 0 Prichinno naslidkova dilyanka pov yazana z podiyeyu E vklyuchaye sebe bichnu poverhnyu pryamogo krugovogo konusa x1 2 x2 2 x3 2 0 bichnu poverhnyu pryamogo krugovogo cilindra x1 2 x2 2 c2 T2 i vnutrishnyu dilyanku obmezhenu cimi poverhnyami tobto prichinno naslidkova dilyanka vklyuchaye vsi tochki x1 x2 x3 dlya yakih vikonuyutsya umovi x1 2 x2 2 x3 2 0 i x3 cDT abo x1 2 x2 2 c2 T2 i x3 cDT abo x1 2 x2 2 x3 2 gt 0 i x1 2 x2 2 lt c2 T2 Prote signaturi 1 3 i 3 1 fizichno ekvivalentni oskilki dodatna dovzhina vektora v prostori Minkovskogo dlya chasovopodibnih intervaliv ce umovnist yaka zalezhit vid domovlenosti pro znak metrichnogo tenzora Tak deyaki fiziki yak pravilo vikoristovuyut metriku z signaturoyu sho prizvodit do dodatnoyi dovzhini Minkovskogo dlya chasovopodibnih intervaliv i energiyi todi yak prostorova vidstan bude mati vid yemnu dovzhinu Minkovskogo Relyativisti odnak yak pravilo dotrimuyutsya protilezhnoyi konvenciyi sho daye dlya prostorovoyi vidstani dodatnu dovzhinu Minkovskogo dzherelo Vsi vsesviti bagatovimirnogo chasu mozhna rozglyadati yak fridmoni Zv yazok z antropnim principom Yak dokaz trivimirnosti prostoru yaksho ne zvazhati na mozhlivi vimiri nepidtverdzhenoyi teoriyi strun mozhut navoditisya fizichni naslidki pripushennya pro te sho kilkist vimiriv vidriznyayetsya vid troh prostorovih plyus odnogo chasovogo Cej argument vikonanij v dusi antropnogo principu i mozhlivo ce pershij vipadok jogo vikoristannya nehaj i do togo yak koncepciya danogo principu bula sformulovana povnistyu Neyavne uyavlennya pro te sho rozmirnist isnuyuchogo Vsesvitu ye osoblivoyu vpershe visloviv Lejbnic yakij u Mirkuvanni pro metafiziku pripustiv sho svit vidpovidaye takij modeli yaka ye najprostishoyu v gipotezi i najbagatshoyu v yavishah Maks Tegmark rozglyadaye gipotezi svitiv z rozmirnistyu chasu T gt 1 z tochki zoru antropnogo principu i prihodit do visnovku pro nemozhlivist isnuvannya rozumnogo zhittya v takij modeli svitu V zagalnomu vipadku nevidoma diya fizichnih zakoniv u sviti z bagatovimirnim chasom Yaksho T vidminne vid 1 povedinku fizichnih sistem nemozhlivo vivesti zi znannya vidpovidnih diferencialnih rivnyan u chastinnih pohidnih zadacha Koshi dlya hvilovogo rivnyannya staye pogano viznachenoyu Inshimi slovami u sviti z bagatovimirnim chasom nemozhlivo tochno rozrahuvati povedinku fizichnih sistem u majbutnomu a bud yakij rozrahunok fizichnih zakoniv bude mati kilka rozv yazkiv majbutnye takogo vsesvitu nemozhlivo sprognozuvati Rozumne zhittya zdatne vikoristovuvati tehnologiyi v podibnomu vsesviti ne moglo b viniknuti Bilshe togo Tegmark stverdzhuye sho yaksho T gt 1 protoni i elektroni buli b nestijkimi i mogli b rozpadatisya na bilsh masivni chastinki Ce ne problema yaksho chastinki mayut dostatno nizku temperaturu Pri T gt 1 subatomni chastinki yaki rozpadayutsya protyagom pevnogo periodu povodilisya b neperedbachuvano geodezichna liniya ne obov yazkovo bula b maksimalnoyu dlya chasu Vipadok svitu z rozmirnistyu prostoru N 1 i chasu T 3 maye cikavu vlastivist shvidkist svitla ye nizhnoyu mezheyu shvidkosti materialnih til a vsya materiya skladayetsya z tahioniv Tilki v sviti z odnovimirnim chasom mozhna nadijno rozrahuvati stan fizichnih sistem u majbutnomu u sviti bez chasu taki rozrahunki nemozhlivi a v sviti z bagatovimirnim chasom rozrahunok majbutnogo stanu fizichnih sistem daye kilka variantiv rozv yazku Yedinij variant odnogo rozv yazku dlya fizichnih rivnyan u sviti z bagatovimirnim chasom ce ruh sposterigacha zi shvidkistyu svitla koli chas dlya nogo vzagali ne isnuye Tilki svit z trivimirnim prostorom daye dostatnyu stabilnist i skladnist oskilki v sviti z chislom vimiriv prostoru menshe 3 malojmovirna gravitaciya i vinikayut topologichni problemi a v sviti z chislom vimiriv prostoru bilshe 3 nemozhlive isnuvannya stabilnih orbit dlya gravitacijnogo ta elektromagnitnogo poliv abo inshih dalekodijnih vzayemodij Tomu sviti z rozmirnistyu chasu vidminnoyu vid 1 mayut nestachu prognozovanosti a sviti z rozgornutoyu rozmirnistyu prostoru bilshe 3 brak stabilnosti Takim chinom dotrimannya antropnogo principu viklyuchaye bud yaki varianti svitu krim N 3 i T 1 abo N 1 i T 3 v inshih koncepciyah Zv yazok z dovzhinoyu Planka i shvidkist svitla Ruh probnoyi chastinki mozhna opisati koordinatoyu x m c t r f g t L x displaystyle x mu begin pmatrix ct r cdot f left frac gamma tau Lambda right mathbf x end pmatrix sho ye kanonichnim 1 3 vektorom prostoru chasu c t x T displaystyle ct mathbf x T z x R 3 displaystyle x in mathbb R 3 rozshirenim na dodatkovu chasopodibnu koordinatu r f g t L displaystyle r cdot f gamma tau Lambda t displaystyle tau todi drugij parametr chasu r R displaystyle r in mathbb R opisuye rozmir drugogo chasovogo vimiru i g displaystyle gamma ye harakteristichnoyu shvidkistyu takim chinom ekvivalent c displaystyle c f displaystyle f opisuye formu drugogo chasovogo vimiru i L R displaystyle Lambda in mathbb R parametr normalizaciyi takij sho g t L displaystyle gamma tau Lambda bezrozmirne Rozbivayuchi x m x t m x t m displaystyle x mu x t mu x tau mu z x t m c t 0 h x x t m 0 r f g t L 1 h x h 0 1 displaystyle x t mu begin pmatrix ct 0 eta mathbf x end pmatrix x tau mu begin pmatrix 0 r cdot f left frac gamma tau Lambda right 1 eta mathbf x end pmatrix eta in 0 1 i vikoristovuyuchi metriku displaystyle todi mehanika Lagranzha staye L x x x t t r L c 2 t 2 c 2 h 2 x 2 2 c c t g 2 t 2 g 2 2 g g t d f d z z g t L 2 1 h 2 x 2 displaystyle L x dot x x prime t tau frac r Lambda sqrt dot c 2 t 2 c 2 eta 2 dot mathbf x 2 2 dot c ct sqrt gamma prime 2 tau 2 gamma 2 2 gamma gamma prime tau left left frac df dz right z frac gamma tau Lambda right 2 1 eta 2 mathbf x prime 2 Zastosuvannya rivnyannya Ejlera Lagranzha daye d d t L x i d d t L x i L x i 0 displaystyle frac d dt frac partial L partial dot x i frac d d tau frac partial L partial x i prime frac partial L partial x i 0 Yak naslidok ciyeyi modeli bulo vislovleno pripushennya sho shvidkist svitla ne bula postijnoyu v rannij Vsesvitu U filosofiyi1927 roku opublikovano ese Eksperiment iz chasom en V nomu visuvayetsya gipoteza pro isnuvannya lyudini odnochasno na dvoh rivnyah u sub yektivnij techiyi chasu div vis chasu i poza chasovoyu vissyu z mozhlivistyu odnochasno bachiti minule sogodennya i majbutnye div eternalizm U svoyij statti Nerealnist chasu anglijskij filosof Dzhon Ellis Mak Taggart podilyaye chas na dva ryadi ru div Eternalizm Argumenti proti Gipoteza bagatovimirnogo chasu takozh rozglyadalasya v analitichnij filosofiyi Anglijskij filosof en rozglyadaye model Vsesvitu z 6 vimirami 3 prostorovimi i 3 chasovimi yaki mayut nazvi chas vichnist i giparksis hyparxis Pid chasom Dzhon Bennet rozumiye zvichnij dlya nas linijnij perebig podij Do giperchasu vin vidnosit vichnist i giparksis sho mayut vlasni vidminni vid chasu vlastivosti Vichnist Dzhon Bennet nazivaye kosmologichnim chasom i pozachasovim chasom Giparksis vid dav gr ὕpar3is isnuvannya ye stanom buttya i diye v na rivni kvantovih procesiv Poyednannya chasu i vichnosti daye mozhlivist stvorennya bagatovariantnoyi kosmologiyi z paralelnimi vsesvitami yaki dayut velikij spektr mozhlivostej Isnuvannya takogo chasovogo vimiru yak giparksis robit mozhlivim bagato naukovo fantastichnih idej podorozh u chasi peremishennya mizh paralelnimi svitami ta ruh shvidshe vid shvidkosti svitla Hocha ideyi Dzhona Benneta dosit cikavi ale voni zasnovani na sub yektivnih aspektah sprijnyattya chasu i ne mayut povnistyu naukovoyi osnovi Takozh zalishayetsya vidkritim pitannya vimiryuvannya cih gipotetichnih chasovih vimiriv Dlya virishennya problemi sub yektivnogo prohodzhennya chasu Dann zaproponuvav neskinchennu iyerarhiyu vimiriv chasu naselenu analogichnoyu iyerarhiyeyu rivniv svidomosti Dann pripustiv sho v konteksti blokovogo prostoru chasu modelovanogo zagalnoyu teoriyeyu vidnosnosti neobhidnij inshij vimir chasu shob vimiryati shvidkist svogo prosuvannya po vlasnij shkali chasu Ce v svoyu chergu vimagalo rivnya svidomogo ya yakij isnuye na drugomu rivni chasu Ale ti zh sami argumenti potim zastosovuvalisya do cogo novogo rivnya sho vimagaye tretogo rivnya i tak dali v neskinchennij regresiyi V kinci regresiyi buv chudovij generalnij sposterigach yakij isnuvav u vichnosti Vin opublikuvav svoyu teoriyu shodo vishih sniv u svoyij knizi Eksperiment z chasom i prodovzhiv doslidzhuvati yiyi spivvidnoshennya z suchasnoyu fizikoyu v Poslidovnomu Vsesviti The Serial Universe 1934 Jogo neskinchennij regres buv rozkritikovanij yak logichno pomilkovij i nepotribnij hocha taki avtori yak Pristli viznavali mozhlivist jogo drugogo chasovogo vimiru U fantasticiV zavershalnomu romani trilogiyi Lyudi yak bogi Kilce zvorotnogo chasu 1977 Sergij Snyegov vkladaye v usta golovnogo geroya slova V comu i ye moya dumka virvatisya z odnovimirnogo pryamolinijnogo chasu v chas dvovimirnij V romani Roberta Gajnlajna Chislo zvira 1979 Vsesvit maye 6 vimiriv z yakih 3 chasovih poznachayutsya t t tau i t V romani Poranene nebo 1983 serialu Zoryanij shlyah ru fizik Hamalki K t lk stverdzhuye sho chas maye 3 vimiri pochatok prodovzhennya i kinec V tetralogiyi Zabezpechennya angl Ware 2000 Rudi Rakera inoplanetna rasa metamarsiyan pohodit z oblasti kosmosu z dvomirnim chasom V seriyi komiksiv ru teoriya bagatovimirnogo chasu vikoristovuyetsya dlya poyasnennya zustrichi golovnogo geroya Sonika zi svoyim zlim bliznyukom Skordzhem Div takozhRozmirnist prostoru Uyavnij chasPrimitkiBars Itzhak Two Time Physics Arhiv originalu za 5 lyutogo 2013 Procitovano 8 grudnya 2012 Velev Milen Relativistic mechanics in multiple time dimensions en journal 2012 Vol 25 no 3 16 June P 403 438 Bibcode 2012PhyEs 25 403V DOI 10 4006 0836 1398 25 3 403 Sing Dzh L Obshaya teoriya otnositelnosti M IL 1963 S 349 Geometriya chernyh i belyh dyr Chast 1 6 lyutogo 2016 u Wayback Machine Leibniz Gottfried Discourse on Metaphysics Die philosophischen schriften von Gottfried Wilhelm Leibniz Volume 4 Weidmann 1880 S 427 463 Tegmark Max On the dimensionality of spacetime en journal 1997 Vol 14 no 4 4 P L69 L75 arXiv gr qc 9702052 Bibcode 1997CQGra 14L 69T DOI 10 1088 0264 9381 14 4 002 z dzherela 3 listopada 2020 Procitovano 2006 12 16 A Albrecht J Magueijo A Time Varying Speed of Light as a Solution to Cosmological Puzzles Phys Rev D vol 59 043516 1999 Philosophy Faculty Members Steven Weinstein Department of Philosophy University of Waterloo Canada Arhiv originalu za 5 lyutogo 2013 Procitovano 8 grudnya 2012 McDonald John Q 15 listopada 2006 Arhiv originalu za 30 grudnya 2018 Procitovano 8 grudnya 2012 J A Gunn The Problem of Time Unwin 1929 J B Priestley Man and Time Aldus 1964 Sergej Snegov 1 Sost i avt vstup st E Brandis V Dmitrevskij L Lenizdat 1977 S 11 270 100000 prim z dzherela 21 veresnya 2020 Rucker Rudy 25 listopada 2005 Notes for Realware PDF Arhiv PDF originalu za 5 lyutogo 2013 Procitovano 8 grudnya 2012 LiteraturaVvedenie v filosofiyu 19 sichnya 2013 u Wayback Machine M Politizdat 1989 Ch 2 S 85 Itzhak Bars Gauge Symmetry in Phase Space Consequences for Physics and Spacetime arXiv 1004 0688 hep th Itzhak Bars The Standard model as a 2T physics theory 22 bereznya 2021 u Wayback Machine hep th 0610187 Itzhak Bars John Terning Extra dimensions in space and time 25 listopada 2013 u Wayback Machine N Y Springer Multiversal journeys series 2010 ISBN 978 0 387 77638 5 DOI 10 1007 978 0 387 77638 5 Steven Weinstein Multiple Time Dimensions arXiv 0812 3869 physics gen ph Jacob G Foster Berndt Muller Physics With Two Time Dimensions arXiv 1001 2485 hep th