Ця стаття містить , але походження окремих тверджень через брак .(грудень 2016) |
Ба́єсова мере́жа, мере́жа Ба́єса, мере́жа перекона́нь, ба́єсова моде́ль або ймові́рнісна орієнто́вана ациклі́чна гра́фова моде́ль (англ. Bayesian network, Bayes network, belief network, Bayes(ian) model, probabilistic directed acyclic graphical model) — це ймовірнісна графова модель (різновид статистичної моделі), яка представляє набір випадкових змінних та їхніх [en] за допомогою орієнтованого ациклічного графу (ОАГ, англ. directed acyclic graph, DAG). Наприклад, баєсова мережа може представляти ймовірнісні зв'язки між захворюваннями та симптомами. Таку мережу можна використовувати для обчислення ймовірностей наявності різних захворювань за наявних симптомів.
Формально баєсові мережі є ОАГ, чиї вершини представляють випадкові змінні у баєсовому сенсі: вони можуть бути спостережуваними величинами, латентними змінними, невідомими параметрами або гіпотезами. Ребра представляють умовні залежності; не з'єднані вершини (такі, що в Баєсовій мережі не існує шляху від однієї змінної до іншої) представляють змінні, що є [en] одна від одної. Кожну вершину пов'язано із функцією ймовірності, що бере на вході певний набір значень батьківських вершин, і видає (на виході) ймовірність (або розподіл імовірності, якщо застосовно) змінної, представленої цією вершиною. Наприклад, якщо батьківських вершин представляють булевих змінних, то функцію ймовірності може бути представлено таблицею записів, по одному запису для кожної з можливих комбінацій істинності або хибності її батьків. Схожі ідеї можуть застосовуватися до неорієнтованих та, можливо, циклічних графів, таких як марковські мережі.
Існують ефективні алгоритми, що виконують висновування та навчання в баєсових мережах. Баєсові мережі, що моделюють послідовності змінних (наприклад, сигнали мовлення, або послідовності білків), називають динамічними баєсовими мережами. Узагальнення баєсових мереж, що можуть представляти та розв'язувати задачі ухвалення рішень за умов невизначеності, називають [en].
Приклад
Припустімо, що існують дві події, які можуть спричинити мокрість трави: або увімкнено розбризкувач, або йде дощ. Також припустімо, що дощ має прямий вплив на використання розбризкувача (а саме, коли йде дощ, розбризкувач зазвичай не увімкнено). Тоді цю ситуацію може бути змодельовано баєсовою мережею (показаною праворуч). Всі три змінні мають два можливі значення, T (істина, англ. True) та F (хиба, англ. False).
Функцією спільного розподілу ймовірності є
де назви змінних є скороченнями G = трава мокра (англ. Grass wet, так/ні), S = розбризкувач увімкнено (англ. Sprinkler, так/ні) та R = іде дощ (англ. Raining, так/ні).
Ця модель може відповідати на такі питання, як «Якою є ймовірність того, що йде дощ, якщо трава мокра?» шляхом застосування формули умовної ймовірності та підбиття сум за всіма [en]:
Використовуючи розклад спільної функції ймовірності , та умовні ймовірності з [en], зазначених у діаграмі, можна оцінити кожен член у сумах чисельника та знаменника. Наприклад,
Тоді числовими результатами (з пов'язаними значеннями змінних в індексах) є
З іншого боку, якщо ми хочемо відповісти на втручальницьке питання «Яка ймовірність того, що піде дощ, якщо ми намочимо траву?», то відповідь визначатиметься післявтручальною функцією спільного розподілу , отриманою усуненням коефіцієнту із довтручального розподілу. Як і очікувалося, на ймовірність дощу ця дія не впливає: .
Понад те, якщо ми хочемо передбачити вплив умикання розбризкувача, то ми маємо
з усуненим членом , що показує, що ця дія має вплив на траву, але не на дощ.
Ці передбачення не можуть бути здійсненними, якщо якісь змінні є неспостережуваними, як у більшості задач оцінки стратегій. Вплив дії все ще можна передбачувати, проте лише якщо задовольняється критерій «чорного ходу». Він заявляє, що якщо може спостерігатися множина вузлів Z, яка о-розділює (або блокує) всі чорні ходи (англ. back-door paths) з X до Y, то . Чорний хід є таким, що закінчується стрілкою в X. Множини, які задовольняють критерій чорного ходу, називають «достатніми» (англ. sufficient) або «прийнятними» (англ. admissible). Наприклад, множина Z = R є прийнятною для передбачування впливу S = T на G, оскільки R о-розділює (єдиний) чорний хід S ← R → G. Проте якщо S не спостерігається, то не існує іншої множини, яка би о-розділювала цей шлях, і вплив умикання розбризкувача (S = T) на траву (G) не може бути передбачено з пасивних спостережень. Тоді ми кажемо, що множина P(G | do(S = T)) є не пізннаною (англ. not identified). Це віддзеркалює той факт, що за умови браку даних втручання ми не можемо визначити, чи завдячує спостережувана залежність між S та G випадковому зв'язкові або є фальшивою (видима залежність, що випливає зі спільної причини, R). (див. парадокс Сімпсона)
Для з'ясування того, чи є причинний зв'язок пізнанним із довільної баєсової мережі з неспостережуваними змінними, можна застосовувати три правила числення дій (англ. do-calculus), і перевіряти, чи всі do-члени може бути усунено з виразу для цього співвідношення, підтверджуючи таким чином, що бажана величина є оцінкою із частотних даних.
Застосування баєсової мережі може заощаджувати значні обсяги пам'яті, якщо залежності в спільному розподілі є розрідженими. Наприклад, наївний спосіб зберігання умовних імовірностей для 10 двозначних змінних як таблиці вимагає простору для зберігання значень. Якщо локальні розподіли жодної зі змінних не залежать більше ніж від трьох батьківських змінних, то представлення як баєсової мережі потребує зберігання щонайбільше значень.
Однією з переваг баєсових мереж є те, що людині інтуїтивно простіше розуміти (розріджені набори) прямих залежностей та локальні розподіли, ніж повні спільні розподіли.
Висновування та навчання
Для баєсових мереж існує три основні завдання для висновування.
Отримування висновків про неспостережувані змінні
Оскільки баєсова мережа є повною моделлю змінних та їхніх взаємозв'язків, її можна використовувати для отримання відповідей на ймовірнісні запити стосовно них. Наприклад, цю мережу можна використовувати для з'ясовування уточненого знання про стан якоїсь підмножини змінних, коли спостерігаються інші змінні (змінні свідчення, англ. evidence). Цей процес обчислення апостеріорного розподілу змінних для заданого свідчення називається ймовірнісним висновуванням (англ. probabilistic inference). Це апостеріорне дає універсальну достатню статистику для застосувань для виявлення, коли потрібно підбирати значення підмножини змінних, які мінімізують певну функцію очікуваних втрат, наприклад, імовірність помилковості рішення. Баєсову мережу відтак можна розглядати як механізм автоматичного застосування теореми Баєса до комплексних задач.
Найпоширенішими методами точного висновування є: [en], яке виключає (інтегруванням або підсумовуванням) неспостережувані не запитові змінні одну по одній шляхом розподілу суми над добутком; [en], яке кешує обчислення таким чином, що одночасно можна робити запит до багатьох змінних, а нові свідчення можуть поширюватися швидко; та рекурсивне обумовлювання й пошук ТА/АБО, які передбачають просторово-часовий компроміс та підбирають ефективність виключення змінних при використанні достатнього простору. Всі ці методи мають експоненційну складність відносно деревної ширини мережі. Найпоширенішими алгоритмами [en] є вибірка за значимістю, стохастична імітація МКМЛ, міні-блокове виключення (англ. mini-bucket elimination), [en], [en] та [en].
Навчання параметрів
Щоби повністю описати баєсову мережу, і відтак повністю представити спільний розподіл імовірності, необхідно для кожного вузла X вказати розподіл імовірності X, обумовлений батьками X. Цей розподіл X, обумовлений батьками X, може мати будь-який вигляд. Є звичним працювати з дискретними або ґаусовими розподілами, оскільки це спрощує обчислення. Іноді відомі лише обмеження на розподіл; тоді можна застосовувати [en] для визначення єдиного розподілу, який має найбільшу ентропію для заданих обмежень. (Аналогічно, в конкретному контексті динамічних баєсових мереж зазвичай вказують такий умовний розподіл розвитку в часі прихованих станів, щоби максимізувати ентропійну швидкість цього неявного стохастичного процесу.)
Ці умовні розподіли часто включають параметри, які є невідомими, і мусять бути оцінені з даних, іноді із застосуванням підходу максимальної правдоподібності. Пряма максимізація правдоподібності (або апостеріорної ймовірності) часто є складною, коли є неспостережувані змінні. Класичним підходом до цієї задачі є алгоритм очікування-максимізації, який чередує обчислення очікуваних значень неспостережених змінних за умови спостережуваних даних із максимізацією повної правдоподібності (або апостеріорного), виходячи з припущення про правильність попередньо обчислених очікуваних значень. За м'яких умов закономірності цей процес збігається до значень параметрів, які дають максимальну правдоподібність (або максимальне апостеріорне).
Повнішим баєсовим підходом до параметрів є розгляд параметрів як додаткових неспостережуваних змінних і обчислення повного апостеріорного розподілу над усіма вузлами за умови спостережуваних даних, із наступним відінтегровуванням параметрів. Цей підхід може бути витратним і вести до моделей великої розмірності, тому на практиці поширенішими є класичні підходи встановлення параметрів.
Навчання структури
У найпростішому випадку баєсова мережа задається фахівцем, і потім застосовується для виконання висновування. В інших застосуваннях задача визначення цієї мережі є занадто складною для людей. В такому випадку структури мережі та параметрів локальних розподілів треба навчатися з даних.
Автоматичне навчання структури баєсової мережі є проблемою, якою займається машинне навчання. Основна ідея сходить до алгоритму виявлення, розробленого Ребане та Перлом 1987 року, який спирається на розрізнення між трьома можливими типами суміжних трійок, дозволеними в орієнтованому ациклічному графі (ОАГ):
Типи 2 та 3 представляють однакові залежності ( та є незалежними за заданого ), і, відтак, є нерозрізнюваними. Проте тип 3 може бути унікально виявлено, оскільки та є відособлено незалежними, а всі інші пари є залежними. Таким чином, в той час як кістяки (англ. skeletons, графи із зачищеними стрілками) цих трьох трійок є однаковими, напрямок стрілок частково підлягає виявленню. Таке саме розрізнення застосовується й тоді, коли та мають спільних батьків, тільки спочатку треба зробити обумовлення за цими батьками. Було розроблено алгоритми для систематичного визначення кістяка графу, що лежить в основі, а потім спрямовуванні всіх стрілок, чия спрямованість диктується спостережуваними умовними незалежностями.
Альтернативний метод навчання структури застосовує пошук на основі оптимізації. Він потребує [en] та стратегії пошуку. Поширеною оцінковою функцією є апостеріорна ймовірність структури за заданих тренувальних даних, така як БІК або BDeu. Часові вимоги вичерпного пошуку, що повертає структуру, яка максимізує оцінку, є суперекспоненційними відносно числа змінних. Стратегія локального пошуку робить поступові зміни, спрямовані на поліпшення оцінки структури. Алгоритм глобального пошуку, такий як метод Монте-Карло марковських ланцюгів, може уникати потрапляння в пастку локального мінімуму. Фрідман та ін. обговорюють застосування взаємної інформації між змінними, та пошуку структури, яка її максимізує. Вони роблять це шляхом обмеження набору кандидатів у батьки k вузлами, і вичерпним пошуком серед таких.
Особливо швидким методом точного навчання БМ є розгляд цієї задачі як задачі оптимізації, й розв'язання її із застосуванням цілочисельного програмування. Обмеження ациклічності додаються цілочисельній програмі під час розв'язання у вигляді [en]. Такий метод може впоруватися із задачами, що мають до 100 змінних.
Щоби мати справу із задачами з тисячами змінних, необхідно застосовувати інший підхід. Одним з них є спочатку вибирати одне впорядкування, і потім знаходити оптимальну структуру БМ по відношенню до цього впорядкування. Це означає роботу на просторі пошуку можливих впорядкувань, що є зручним, оскільки він менший за простір мережних структур. Потім вибираються й оцінюються декілька впорядкувань. Було доведено, що цей метод є найкращим із доступних в наукових працях, коли число змінних є величезним.
Інший метод полягає в зосередженні на підкласах розкладаних моделей, для яких оцінка максимальної правдоподібності має замкнений вигляд. Тоді можливо виявляти цілісну структуру для сотень змінних.
Баєсова мережа може доповнюватися вузлами та ребрами із застосуванням методик машинного навчання на основі правил. Для добування правил та створення нових вузлів може застосовуватися [en]. Підходи [en] (СНВ, англ. statistical relational learning, SRL) використовують [en], що ґрунтується на структурі баєсової мережі, для спрямовування структурного пошуку та доповнення мережі. Поширеною оцінковою функцією СНВ є площа під кривою РХП.
Як зазначено раніше, навчання баєсових мереж із обмеженою деревною шириною є необхідним для уможливлення точного розв'язного висновування, оскільки складність висновування в найгіршому випадку є експоненційною по відношенню до деревної ширини k (за гіпотези експоненційного часу). Проте, будучи глобальною властивістю графу, вона значно підвищує складність процесу навчання. В цьому контексті для ефективного навчання можливо застосовувати поняття k-дерева.
Статистичне введення
Для заданих даних та параметру простий баєсів аналіз починається з апріорної ймовірності (апріорного) та правдоподібності для обчислення апостеріорної ймовірності .
Часто апріорне залежить у свою чергу від інших параметрів , які не згадуються в правдоподібності. Отже, апріорне мусить бути замінено правдоподібністю , і потрібним апріорним нововведених параметрів , що дає в результаті апостеріорну ймовірність
Це є найпростішим прикладом ієрархічної баєсової моделі (англ. hierarchical Bayes model).[: <span style="border-bottom:1px dotted; cursor:help;" title='Що робить її ієрархічною? Ми говоримо про [en], чи ієрархічна структура? Поставте посилання на відповідне. (грудень 2016)'>ком.]
Цей процес може повторюватися; наприклад, параметри можуть у свою чергу залежати від додаткових параметрів , які потребуватимуть свого власного апріорного. Зрештою цей процес мусить завершитися апріорними, які не залежать від жодних інших незгаданих параметрів.
Ввідні приклади
Цей розділ потребує доповнення. (грудень 2016) |
Припустімо, що ми виміряли величини , кожна із нормально розподіленою похибкою відомого стандартного відхилення ,
Припустімо, що нас цікавить оцінка . Підходом буде оцінювати із застосуванням методу максимальної правдоподібності; оскільки спостереження є незалежними, правдоподібність розкладається на множники, і оцінкою максимальної правдоподібності є просто
Проте, якщо ці величини є взаємопов'язаними, так що, наприклад, ми можемо думати, що окремі було й самі вибрано з розподілу, що лежав в основі, то цей взаємозв'язок руйнує незалежність, і пропонує складнішу модель, наприклад,
з некоректними апріорними flat, flat. При це є пізнанною моделлю (тобто, існує унікальний розв'язок для параметрів моделі), а апостеріорні розподіли окремих будуть схильні рухатися, або [en] (англ. shrink) від оцінок максимальної правдоподібності до свого спільного середнього. Це стискання (англ. shrinkage) є типовою поведінкою ієрархічних баєсових моделей.
Обмеження на апріорні
При виборі апріорних в ієрархічній моделі потрібна деяка обережність, зокрема на масштабних змінних на вищих рівнях ієрархії, таких як змінна у цьому прикладі. Звичайні апріорні, такі як [en], часто не працюють, оскільки апостеріорний розподіл буде некоректним (його неможливо буде унормувати), а оцінки, зроблені мінімізуванням очікуваних втрат будуть [en].
Визначення та поняття
Існує декілька рівнозначних визначень баєсової мережі. Для всіх наступних, нехай G = (V,E) є орієнтованим ациклічним графом (або ОАГ), і нехай X = (Xv)v ∈ V є множиною випадкових змінних, проіндексованою за V.
Множникове визначення
X є баєсовою мережею по відношенню до G, якщо функцію її спільної густини ймовірності (по відношенню до добуткової міри) може бути записано як добуток окремих функцій густини, обумовлених їхніми батьківськими змінними:
де pa(v) є множиною батьків v (тобто, тих вершин, які вказують безпосередньо на v через єдине ребро).
Для будь-якої множини випадкових змінних імовірність будь-якого члену спільного розподілу може бути обчислено з умовних імовірностей із застосуванням ланцюгового правила (для заданого топологічного впорядкування X) наступним чином:
Порівняйте це із наведеним вище визначенням, що його може бути записано наступним чином:
- для кожного що є батьком
Різницею між цими двома виразами є [en] змінних від будь-якого з їхніх не-нащадків за заданих значень їхніх батьківських змінних.
Локальна марковська властивість
X є баєсовою мережею по відношенню до G, якщо вона задовольняє локальну марковську властивість (англ. local Markov property): кожна змінна є [en] від своїх не-нащадків за заданих її батьківських змінних:
- для всіх
де de(v) є множиною нащадків, а V \ de(v) є множиною не-нащадків v.
Це також може бути виражено в подібних до першого визначення термінах як
- для кожного що не є нащадком для кожного що є батьківським для
Зауважте, що множина батьків є підмножиною множини не-нащадків, оскільки граф є ациклічним.
Розробка баєсових мереж
Для розробки баєсових мереж ми часто спочатку розробляємо такий ОАГ G, що ми переконані, що X задовольняє локальну марковську властивість по відношенню до G. Іноді це робиться шляхом створення [en] ОАГ. Потім ми з'ясовуємо умовні розподіли ймовірності для кожної змінної за заданих її батьків у G. В багатьох випадках, зокрема, в тому випадку, коли змінні є дискретними, якщо ми визначаємо спільний розподіл X як добуток цих умовних розподілів, то X є баєсовою мережею по відношенню до G.
Марковське покриття
Марковське покриття вузла є множиною вузлів, яка складається з його батьківських вузлів, його дочірніх вузлів, та всіх іншиї батьків його дочірніх вузлів. Марковське покриття робить вузол незалежним від решти мережі; спільний розподіл змінних у марковському покритті вузла є достатнім знанням для обчислення розподілу цього вузла. X є баєсовою мережею по відношенню до G, якщо кожен вузол є умовно незалежним від всіх інших вузлів мережі за заданого його марковського покриття.
о-розділеність
Це визначення можна зробити загальнішим через визначення о-розділеності (англ. d-separation) двох вузлів, де «о» значить «орієнтована» (англ. directional). Нехай P є ланцюгом від вузла u до v. Ланцюг — це ациклічний неорієнтований шлях між двома вузлами (тобто, напрям ребер при побудові цього шляху ігнорується), в якому ребра можуть мати будь-який напрям. Тоді про P кажуть, що він о-розділюється множиною вузлів Z, якщо виконуються будь-які з наступних умов:
- P містить орієнтований шлях, або , такий, що середній вузол m належить Z,
- P містить розгалуження, , таке, що середній вузол m належить Z, або
- P містить обернене розгалуження (або колайдер), , таке, що середній вузол m не належить Z, і жодні з нащадків m не належать Z
X є баєсовою мережею по відношенню до G, якщо для будь-яких двох вузлів u та v
де Z є множиною, яка о-розділює u та v. (Марковське покриття є мінімальним набором вузлів, які о-відділюють вузол v від решти вузлів.)
Ієрархічні моделі
Термін ієрархічна модель (англ. hierarchical model) іноді вважається окремим типом басової мережі, але він не має формального визначення. Іноді цей термін резервують для моделей з трьома або більше шарами випадкових змінних; в інших випадках його резервують для моделей із латентними змінними. Проте в цілому «ієрархічною» зазвичай називають будь-яку помірно складну баєсову мережу.
Причинні мережі
Хоч баєсові мережі й використовують часто для представлення причинних взаємозв'язків, це не обов'язково повинно бути так: орієнтоване ребро з u до v не вимагає, щоби Xv причинно залежало від Xu. Про це свідчить той факт, що баєсові мережі на графах
- та
є рівнозначними: тобто, вони накладають точно такі ж вимоги умовної незалежності.
Причи́нна мере́жа (англ. causal network) — це баєсова мережа з явною вимогою того, що взаємозв'язки є причинними. Додаткова семантика причинних мереж вказує, що якщо вузлові X активно спричинено перебування в заданому стані x (дія, що записується як do(X = x)), то функція густини ймовірності змінюється на функцію густини ймовірності мережі, отриманої відсіканням з'єднань від батьків X до X, і встановленням X у спричинене значення x. Застосовуючи ці семантики, можна передбачувати вплив зовнішніх втручань на основі даних, отриманих до втручання.
Складність висновування та алгоритми наближення
1990 року під час праці в Стенфордському університеті над великими застосунками в біоінформатиці Грег Купер довів, що точне висновування в баєсових мережах є NP-складним. Цей результат спричинив сплеск досліджень алгоритмів наближення з метою розробки розв'язного наближення ймовірнісного висновування. 1993 року та Майкл Любі довели два несподівані результати стосовно складності наближення ймовірнісного висновування в баєсових мережах. По-перше, вони довели, що не існує розв'язного детермінованого алгоритму, який міг би наближувати ймовірнісне висновування в межах абсолютної похибки ɛ< 1/2. По-друге, вони довели, що не існує розв'язного увипадковленого алгоритму, який міг би наближувати ймовірнісне висновування в межах абсолютної похибки ɛ < 1/2 з довірчою ймовірністю понад 1/2.
Приблизно в той же час [en] довів, що точне висновування в баєсових мережах фактично є [en] (і відтак настільки ж складним, як і підрахунок числа задовільних присвоєнь КНФ-формули), і що наближене висновування, навіть для баєсових мереж із обмеженою архітектурою, є NP-складним.
З практичної точки зору, ці результати стосовно складності підказали, що хоча баєсові мережі й були цінними представленнями для застосунків ШІ та машинного навчання, їхнє застосування у великих реальних задачах вимагатиме пом'якшення або топологічними структурними обмеженнями, такими як наївні баєсові мережі, або обмеженнями на умовні ймовірності. Алгоритм обмеженої дисперсії (англ. bounded variance algorithm) був першим алгоритмом довідного швидкого наближення для ефективного наближення ймовірнісного висновування в баєсових мережах з гарантією похибки наближення. Цей потужний алгоритм вимагав другорядних обмежень умовних імовірностей баєсової мережі, щоби отримати відмежування від нуля та одиниці на 1/p(n), де p(n) є будь-яким поліномом від числа вузлів мережі n.
Застосування
Баєсові мережі застосовують для моделювання переконань в обчислювальній біології та біоінформатиці (аналізі генних регуляторних мереж, структур білків, експресії генів, навчанні епістазів із наборів даних [en]), медицині, [en], класифікації документів, інформаційному пошуку, [en], обробці зображень, злитті даних, системах підтримки ухвалення рішень, інженерії, ставках на спорт, іграх, праві, розробці досліджень та аналізі ризиків. Існують праці про застосування баєсових мереж в біоінформатиці та фінансовій і маркетинговій інформатиці.
Програмне забезпечення
- libDAI [Архівовано 14 червня 2017 у Wayback Machine.] Вільна відкрита бібліотека дискретного наближеного висновування (англ. Discrete Approximate Inference) в графових моделях. libDAI підтримує такі методи висновування як точне висновування перебором грубою силою, точне висновування [en], [en], [en], [en], обумовленого поширення переконання (англ. Conditioned Belief Propagation) та деякі інші.
- Mocapy++ [Архівовано 21 грудня 2016 у Wayback Machine.] Інструментарій динамічних баєсових мереж, реалізований мовою C++. Він підтримує дискретні, багаточленні, ґаусові, кентові, фон мізесові та пуассонові вузли. Висновування та навчання здійснюються вибіркою за Ґіббсом/стохастичним очікуванням-максимізацією.
- [en] Одна з перших обчислювальних реалізацій вибірок МКМЛ. Більше не підтримується й не рекомендується для активного застосування.
- [en] (сайт [Архівовано 9 липня 2016 у Wayback Machine.]), подальша (відкрита) розробка WinBUGS.
- [en] (JAGS) (сайт) Інша відкрита альтернатива WinBUGS. Використовує вибірку за Ґіббсом.
- [en] (сайт [Архівовано 3 вересня 2012 у Wayback Machine.]) Відкритий пакет для отримування баєсового висновування із застосуванням безрозворотної вибірки (англ. No-U-Turn sampler), одного з варіантів [en]. Він в чомусь подібний до BUGS, але з іншою мовою для вираження моделей та іншою вибіркою для відбору зразків з їхніх апостеріорних. RStan це інтерфейс R до Stan. Його підтримують [en] з колегами.
- Direct Graphical Models [Архівовано 22 грудня 2016 у Wayback Machine.] (DGM) — відкрита бібліотека C++, яка реалізує різні завдання в імовірнісних графових моделях із попарними залежностями.
- OpenMarkov [Архівовано 25 листопада 2016 у Wayback Machine.] — відкрите програмне забезпечення та ППІ, реалізовані в Java
- Graphical Models Toolkit (GMTK) — відкритий загальнодоступний інструментарій для швидкого прототипування статистичних моделей із застосуванням динамічних графових моделей (ДГМ, англ. dynamic graphical models, DGM) і динамічних баєсових мереж (ДБМ, англ. dynamic Bayesian networks, DBN). GMTK можливо застосовувати для застосунків та досліджень в обробці мовлення та мови, в біоінформатиці, [en] та будь-яких застосунках часових рядів.
- PyMC [Архівовано 4 грудня 2016 у Wayback Machine.] — модуль Python, який реалізує баєсові статистичні моделі та алгоритми допасовування, включно з Монте-Карло марковських ланцюгів. Його гнучкість та розширюваність роблять його застосовним для великого набору задач. Поряд із ядровою функційністю вибірки, PyMC включає методи підсумовування виходу, графічного представлення, а також діагностування якості допасовування та збіжності.
- GeNIe&Smile [Архівовано 1 квітня 2022 у Wayback Machine.] — SMILE це бібліотека C++ для баєсових мереж та діаграм впливу, а GeNIe це ГІК для неї
- SamIam [Архівовано 22 листопада 2016 у Wayback Machine.] — система на основі Java з ГІК та ППІ Java
- Bayes Server [Архівовано 8 квітня 2022 у Wayback Machine.] — користувацький інтерфейс та ППІ для баєсових мереж, включає підтримку часових рядів та послідовностей
- Blip — вебінтерфейс, який пропонує структурне навчання баєсових мереж безпосередньо з дискретних даних. Він може обробляти набори даних із тисячами змінних, і пропонує і пропонує як необмежене, так і обмежене деревною шириною навчання структури.
- Belief and Decision Networks на AIspace [Архівовано 20 грудня 2016 у Wayback Machine.]
- BayesiaLab [Архівовано 20 грудня 2016 у Wayback Machine.] від Bayesia
- Hugin [Архівовано 30 травня 2020 у Wayback Machine.]
- AgenaRisk [Архівовано 9 березня 2022 у Wayback Machine.]
- Netica [Архівовано 4 грудня 2016 у Wayback Machine.] від Norsys
- Bayesian network application library [Архівовано 11 червня 2007 у Wayback Machine.]
- dVelox від Apara Software
- System Modeler від Inatas AB
- UnBBayes [Архівовано 21 грудня 2016 у Wayback Machine.] від GIA-UnB (Intelligence Artificial Group — University of Brasilia)
- [1] [Архівовано 12 жовтня 2016 у Wayback Machine.] із застосуванням технології новітнього аналізу лицьової дисморфології (англ. Facial Dysmorphology Novel Analysis, FDNA)
- Uninet [Архівовано 4 січня 2017 у Wayback Machine.] — неперервні баєсові мережі, які моделюють неперервні змінні, з широким спектром параметричних та непараметричних відособлених розподілів, і залежністю з паруванням. Також підтримуються гібридні дискретно-неперервні моделі. Безкоштовне для некомерційного використання. Розроблено компанією LightTwist Software.
- Tetrad [Архівовано 4 січня 2017 у Wayback Machine.] — відкритий проект, написаний на Java, та розроблений Факультетом філософії університету Карнегі-Меллон, який займається причинними моделями та статистичними даними.
- Dezide [Архівовано 8 березня 2022 у Wayback Machine.]
- bnlearn [Архівовано 2 травня 2022 у Wayback Machine.] — пакет R
- RISO [Архівовано 4 березня 2007 у Wayback Machine.] (розподілені мережі переконань)
- BANSY3 [Архівовано 20 липня 2011 у Wayback Machine.] — Безкоштовне. Від the Non Linear Dynamics Laboratory. Mathematics Department, Science School, UNAM.
- MSBNx [Архівовано 11 жовтня 2008 у Wayback Machine.] — компонентно-орієнтований інструментарій для моделювання та висновування з баєсовими мережами (від Microsoft Research)
- Bayes Net Toolbox [Архівовано 4 січня 2017 у Wayback Machine.] для Matlab
Історія
Термін «баєсові мережі» (англ. Bayesian networks) було запроваджено Йудою Перлом 1985 року для підкреслення трьох аспектів:
- Часто суб'єктивної природи вхідної інформації.
- Покладання на баєсове обумовлювання як основу для уточнення інформації.
- Відмінності причинної та доказової моделей міркування, яка підкреслює працю Томаса Баєса, опубліковану посмертно 1763 року.
Наприкінці 1980-х років праці Йуди Перла «Імовірнісне міркування в інтелектуальних системах» та Річарда Неаполітана «Імовірнісне міркування в експертних системах» підсумували властивості баєсових мереж та утвердили баєсові мережі як область дослідження.
Неофіційні варіанти таких мереж було вперше застосовано 1913 року юристом Джоном Генрі Вігмором у вигляді [en] для аналізу процесуальних доказів. Інший варіант, що називається [en], було розроблено генетиком Сьюелом Райтом, і застосовано в суспільній та поведінковій науці (переважно в лінійних параметричних моделях).
В своїй книзі 2018 року «Книга про Чому» Перл зізнався, що хоч і признає їх успішність в цілому, баєсові мережі не виправдали його сподівань (наблизити машинний інтелект до людського). Він також пояснив чому: мережі виводили висновки через спостережені ймовірності, але не враховували причинність. Думка про ймовірну помилковість конструкції баєсових мереж виникла у нього одразу ж після публікації книги «Імовірнісне міркування в інтелектуальних системах», що і призвело до появи причинних мереж.
Див. також
- Алгоритм очікування-максимізації
- [en]
- Баєсова ймовірність
- [en]
- Баєсове висновування
- Баєсове програмування
- Вирівнювання послідовностей
- Глибока мережа переконань
- [en]
- Графова модель
- [en]
- Динамічна баєсова мережа
- [en]
- [en]
- Ієрархічна часова пам'ять
- Джуда Перл
- Злиття давачів
- Машинне навчання
- [en]
- Наївний баєсів класифікатор
- [en]
- Обчислювальний інтелект
- [en]
- [en]
- [en]
- Розпізнавання мовлення
- Світогляд
- Система пам'яті—передбачування
- [en]
- [en]
- Сумішевий розподіл
- Теорема Баєса
- [en] — узагальнення теореми Баєса
- Фільтр Калмана
- Штучний інтелект
Примітки
- Pearl, Judea (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press. ISBN . OCLC 42291253. (англ.)
- The Back-Door Criterion (PDF). Архів оригіналу (PDF) за 27 грудня 2013. Процитовано 18 вересня 2014. (англ.)
- d-Separation without Tears (PDF). Архів оригіналу (PDF) за 4 березня 2016. Процитовано 18 вересня 2014. (англ.)
- J., Pearl (1994). A Probabilistic Calculus of Actions. У Lopez de Mantaras, R.; Poole, D. (ред.). UAI'94 Proceedings of the Tenth international conference on Uncertainty in artificial intelligence. San Mateo CA: Morgan Kaufman. с. 454—462. arXiv:1302.6835. ISBN . (англ.)
- I. Shpitser, J. Pearl, «Identification of Conditional Interventional Distributions» In R. Dechter and T.S. Richardson (Eds.), Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, 437—444, Corvallis, OR: AUAI Press, 2006. (англ.)
- Rebane, G. and Pearl, J., "The Recovery of Causal Poly-trees from Statistical Data, " Proceedings, 3rd Workshop on Uncertainty in AI, (Seattle, WA) pages 222—228, 1987 (англ.)
- Spirtes, P.; Glymour, C. (1991). An algorithm for fast recovery of sparse causal graphs. Social Science Computer Review. 9 (1): 62—72. doi:10.1177/089443939100900106. Архів оригіналу (PDF) за 16 квітня 2016. Процитовано 9 грудня 2016. (англ.)
- Spirtes, Peter; Glymour, Clark N.; Scheines, Richard (1993). Causation, Prediction, and Search (вид. 1st). Springer-Verlag. ISBN . Архів оригіналу за 7 лютого 2017. Процитовано 9 грудня 2016. (англ.)
- Verma, Thomas; Pearl, Judea (1991). Equivalence and synthesis of causal models. У Bonissone, P.; Henrion, M.; Kanal, L.N.; Lemmer, J.F. (ред.). UAI '90 Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence. Elsevier. с. 255—270. ISBN . (англ.)
- Friedman, Nir; Geiger, Dan; Goldszmidt, Moises (November 1997). Bayesian Network Classifiers. Machine Learning. 29 (2-3): 131—163. doi:10.1023/A:1007465528199. Архів оригіналу за 23 лютого 2015. Процитовано 24 лютого 2015. (англ.)
- Friedman, Nir; Linial, Michal; Nachman, Iftach; Pe'er, Dana (August 2000). Using Bayesian Networks to Analyze Expression Data. Journal of Computational Biology. 7 (3-4): 601—620. doi:10.1089/106652700750050961. PMID 11108481. Процитовано 24 лютого 2015. (англ.)
- Cussens, James (2011). Bayesian network learning with cutting planes (PDF). Proceedings of the 27th Conference Annual Conference on Uncertainty in Artificial Intelligence: 153—160. Архів оригіналу (PDF) за 27 березня 2022. Процитовано 9 грудня 2016. (англ.)
- M. Scanagatta, C. P. de Campos, G. Corani, and M. Zaffalon. Learning Bayesian Networks with Thousands of Variables. [Архівовано 2 травня 2018 у Wayback Machine.] In NIPS-15: Advances in Neural Information Processing Systems 28, pages 1855—1863, 2015. (англ.)
- Petitjean, F.; Webb, G.I.; Nicholson, A.E. (2013). Scaling log-linear analysis to high-dimensional data (PDF). International Conference on Data Mining. Dallas, TX, USA: IEEE. Архів оригіналу (PDF) за 2 червня 2014. Процитовано 9 грудня 2016. (англ.)
- Nassif, Houssam; Wu, Yirong; Page, David; Burnside, Elizabeth (2012). Logical Differential Prediction Bayes Net, Improving Breast Cancer Diagnosis for Older Women (PDF). American Medical Informatics Association Symposium (AMIA'12). Chicago: 1330—1339. Архів оригіналу (PDF) за 6 травня 2015. Процитовано 18 липня 2014. (англ.)
- Nassif, Houssam; Kuusisto, Finn; Burnside, Elizabeth S; Page, David; Shavlik, Jude; Santos Costa, Vitor (2013). Score As You Lift (SAYL): A Statistical Relational Learning Approach to Uplift Modeling (PDF). European Conference on Machine Learning (ECML'13). Prague: 595—611. Архів оригіналу (PDF) за 14 квітня 2016. Процитовано 9 грудня 2016. (англ.)
- M. Scanagatta, G. Corani, C. P. de Campos, and M. Zaffalon. Learning Treewidth-Bounded Bayesian Networks with Thousands of Variables. [Архівовано 26 листопада 2016 у Wayback Machine.] In NIPS-16: Advances in Neural Information Processing Systems 29, 2016. (англ.)
- Russell та Norvig, 2003, с. 496.
- Russell та Norvig, 2003, с. 499.
- Neapolitan, Richard E. (2004). Learning Bayesian networks. Prentice Hall. ISBN . Архів оригіналу за 7 лютого 2017. Процитовано 9 грудня 2016. (англ.)
- Geiger, Dan; Verma, Thomas; Pearl, Judea (1990). Identifying independence in Bayesian Networks (PDF). Networks. 20: 507—534. doi:10.1177/089443939100900106. (англ.)
- Richard Scheines, D-separation, архів оригіналу за 22 листопада 2016, процитовано 9 грудня 2016 (англ.)
- Gregory F. Cooper (1990). The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks (PDF). Artificial Intelligence. 42: 393—405. doi:10.1016/0004-3702(90)90060-d. Архів оригіналу (PDF) за 29 березня 2017. Процитовано 9 грудня 2016. (англ.)
- ; Michael Luby (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence. 60 (1): 141—153. doi:10.1016/0004-3702(93)90036-b. Архів оригіналу за 24 вересня 2015. Процитовано 9 грудня 2016. (англ.)
- D. Roth, On the hardness of approximate reasoning [Архівовано 27 січня 2016 у Wayback Machine.], IJCAI (1993) (англ.)
- D. Roth, On the hardness of approximate reasoning [Архівовано 27 січня 2016 у Wayback Machine.], Artificial Intelligence (1996) (англ.)
- ; Michael Luby (1997). An optimal approximation algorithm for Bayesian inference. Artificial Intelligence. 93 (1-2): 1—27. doi:10.1016/s0004-3702(97)00013-1. Архів оригіналу за 6 липня 2017. Процитовано 9 грудня 2016. (англ.)
- Friedman, N.; Linial, M.; Nachman, I.; Pe'er, D. (2000). Using Bayesian Networks to Analyze Expression Data. Journal of Computational Biology. 7 (3–4): 601—620. doi:10.1089/106652700750050961. PMID 11108481. (англ.)
- Jiang, X.; Neapolitan, R.E.; Barmada, M.M.; Visweswaran, S. (2011). Learning Genetic Epistasis using Bayesian Network Scoring Criteria. BMC Bioinformatics. 12: 89. doi:10.1186/1471-2105-12-89. PMC 3080825. PMID 21453508. Архів оригіналу за 23 вересня 2015. Процитовано 9 грудня 2016.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () (англ.) - J. Uebersax (2004). Genetic Counseling and Cancer Risk Modeling: An Application of Bayes Nets. Marbella, Spain: Ravenpack International. Архів оригіналу за 17 квітня 2016. Процитовано 9 грудня 2016. (англ.)
- Jiang X, Cooper GF (July–August 2010). A Bayesian spatio-temporal method for disease outbreak detection. J Am Med Inform Assoc. 17 (4): 462—71. doi:10.1136/jamia.2009.000356. PMC 2995651. PMID 20595315. (англ.)
- Luis M. de Campos; Juan M. Fernández-Luna; Juan F. Huete (2004). Bayesian networks and information retrieval: an introduction to the special issue. Information Processing & Management. Elsevier. 40 (5): 727—733. doi:10.1016/j.ipm.2004.03.001. ISBN . (англ.)
- Christos L. Koumenides and Nigel R. Shadbolt. 2012. Combining link and content-based information in a Bayesian inference model for entity search. [Архівовано 2 травня 2016 у Wayback Machine.] In Proceedings of the 1st Joint International Workshop on Entity-Oriented and Semantic Search (JIWES '12). ACM, New York, NY, USA, Article 3 , 6 pages. DOI:10.1145/2379307.2379310 (англ.)
- F.J. Díez; J. Mira; E. Iturralde; S. Zubillaga (1997). DIAVAL, a Bayesian expert system for echocardiography. Artificial Intelligence in Medicine. 10 (1): 59—73. doi:10.1016/s0933-3657(97)00384-9. PMID 9177816. Архів оригіналу за 16 квітня 2016. Процитовано 9 грудня 2016. (англ.)
- Constantinou, Anthony; Fenton, N.; Neil, M. (2012). pi-football: A Bayesian network model for forecasting Association Football match outcomes. Knowledge-Based Systems. 36: 322—339. doi:10.1016/j.knosys.2012.07.008. (англ.)
- Constantinou, Anthony; Fenton, N.; Neil, M. (2013). Profiting from an inefficient Association Football gambling market: Prediction, Risk and Uncertainty using Bayesian networks. Knowledge-Based Systems. 50: 60—86. doi:10.1016/j.knosys.2013.05.008. (англ.)
- G. A. Davis (2003). Bayesian reconstruction of traffic accidents. Law, Probability and Risk. 2 (2): 69—89. doi:10.1093/lpr/2.2.69. (англ.)
- J. B. Kadane & D. A. Schum (1996). A Probabilistic Analysis of the Sacco and Vanzetti Evidence. New York: Wiley. ISBN . (англ.)
- O. Pourret, P. Naim & B. Marcot (2008). Bayesian Networks: A Practical Guide to Applications. Chichester, UK: Wiley. ISBN . Архів оригіналу за 12 жовтня 2008. Процитовано 9 грудня 2016. (англ.)
- Karvanen, Juha (2014). Study design in causal models. Scandinavian Journal of Statistics. 42: 361—377. doi:10.1111/sjos.12110. (англ.)
- Trucco, P.; Cagno, E.; Ruggeri, F.; Grande, O. (2008). A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation. Reliability Engineering & System Safety. 93 (6): 845—856. doi:10.1016/j.ress.2007.03.035. (англ.)
- Neapolitan, Richard (2009). Probabilistic Methods for Bioinformatics. Burlington, MA: Morgan Kaufmann. с. 406. ISBN . Архів оригіналу за 4 липня 2017. Процитовано 9 грудня 2016. (англ.)
- Grau J.; Ben-Gal I.; Posch S.; Grosse I. (2006). VOMBAT: Prediction of Transcription Factor Binding Sites using Variable Order Bayesian Trees, (PDF). Nucleic Acids Research, vol. 34, issue W529–W533, 2006. Архів оригіналу (PDF) за 30 вересня 2018. Процитовано 9 грудня 2016. [Архівовано 2018-09-30 у Wayback Machine.] (англ.)
- Neapolitan, Richard & Xia Jiang (2007). Probabilistic Methods for Financial and Marketing Informatics. Burlingon, MA: Morgan Kaufmann. с. 432. ISBN . Архів оригіналу за 20 квітня 2016. Процитовано 9 грудня 2016. (англ.)
- Shmilovici A., Kahiri Y., Ben-Gal I., Hauser S.(2009. Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm, (PDF). Computational Economics, Vol. 33 (2), 131-154, 2009. Архів оригіналу (PDF) за 22 жовтня 2016. Процитовано 9 грудня 2016. (англ.)
- Pearl, J. (1985). Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning (PDF). Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine, CA. с. 329—334. Архів оригіналу (UCLA Technical Report CSD-850017) за 15 січня 2017. Процитовано 1 травня 2009. (англ.)
- Bayes, T.; Price, Mr. (1763). [en]. Philosophical Transactions of the Royal Society. 53: 370—418. doi:10.1098/rstl.1763.0053. (англ.)
- Pearl, J. Probabilistic Reasoning in Intelligent Systems. San Francisco CA: Morgan Kaufmann. с. 1988. ISBN . Архів оригіналу за 7 лютого 2017. Процитовано 9 грудня 2016. (англ.)
- Neapolitan, Richard E. (1989). Probabilistic reasoning in expert systems: theory and algorithms. Wiley. ISBN . (англ.)
- Wright, S. (1921). Correlation and Causation (PDF). Journal of Agricultural Research. 20 (7): 557—585. Архів оригіналу (PDF) за 15 січня 2017. Процитовано 9 грудня 2016. (англ.)
- Judea,, Pearl,. The book of why : the new science of cause and effect (вид. First edition). New York, NY. ISBN . OCLC 1003311466.
Джерела
- Ben-Gal, Irad (2007). Bayesian Networks. У Ruggeri, Fabrizio; Kennett, Ron S.; Faltin, Frederick W (ред.). Encyclopedia of Statistics in Quality and Reliability (PDF). Encyclopedia of Statistics in Quality and Reliability. . doi:10.1002/9780470061572.eqr089. ISBN . Архів оригіналу (PDF) за 23 листопада 2016. Процитовано 9 грудня 2016. (англ.)
- Bertsch McGrayne, Sharon. The Theory That Would not Die. Yale. (англ.)
- Borgelt, Christian; (March 2002). Graphical Models: Methods for Data Analysis and Mining. Chichester, UK: . ISBN . Архів оригіналу за 10 червня 2007. Процитовано 13 листопада 2010. (англ.)
- Borsuk, Mark Edward (2008). Ecological informatics: Bayesian networks. У [en]; Fath, Brian (ред.). Encyclopedia of Ecology. Elsevier. ISBN . (англ.)
- Castillo, Enrique; Gutiérrez, José Manuel; Hadi, Ali S. (1997). Learning Bayesian Networks. Expert Systems and Probabilistic Network Models. Monographs in computer science. New York: . с. 481–528. ISBN . (англ.)
- Comley, Joshua W.; Dowe, David L. (June 2003). General Bayesian networks and asymmetric languages. Proceedings of the 2nd Hawaii International Conference on Statistics and Related Fields. Hawaii. Архів оригіналу за 4 серпня 2016. Процитовано 13 листопада 2010. (англ.)
- Comley, Joshua W.; Dowe, David L. (2005). Minimum Message Length and Generalized Bayesian Nets with Asymmetric Languages. У Grünwald, Peter D.; Myung, In Jae; Pitt, Mark A. (ред.). Advances in Minimum Description Length: Theory and Applications. Neural information processing series. Cambridge, Massachusetts: Bradford Books (MIT Press) (опубліковано опубліковано April 2005). с. 265—294. ISBN . Архів оригіналу за 4 серпня 2016. Процитовано 13 листопада 2010. (Ця праця ставить дерева рішень у внутрішніх вузлах баєсових мереж із застосуванням мінімальної довжини повідомлень [Архівовано 9 лютого 2006 у Wayback Machine.] (англ. MML). Готову до друку кінцеву версію було представлено 15 жовтня 2003 року. Раніша версія: Comley and Dowe (2003) [Архівовано 4 серпня 2016 у Wayback Machine.], .pdf [Архівовано 10 лютого 2006 у Wayback Machine.].) (англ.)
- Darwiche, Adnan (2009). Modeling and Reasoning with Bayesian Networks. Cambridge University Press. ISBN . (англ.)
- Dowe, David L. (2010). MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness [Архівовано 14 квітня 2016 у Wayback Machine.], in Handbook of Philosophy of Science (Volume 7: Handbook of Philosophy of Statistics), Elsevier, [2] [Архівовано 25 квітня 2012 у Wayback Machine.] , pp 901–982 [Архівовано 14 квітня 2016 у Wayback Machine.]. (англ.)
- Fenton, Norman; Neil, Martin E. (November 2007). Managing Risk in the Modern World: Applications of Bayesian Networks — A Knowledge Transfer Report from the London Mathematical Society and the Knowledge Transfer Network for Industrial Mathematics. London (England): London Mathematical Society. (англ.)
- Fenton, Norman; Neil, Martin E. (23 липня 2004). Combining evidence in risk analysis using Bayesian Networks (PDF). Safety Critical Systems Club Newsletter. Т. 13, № 4. Newcastle upon Tyne, England. с. 8—13. Архів оригіналу (PDF) за 27 вересня 2007.
{{}}
: Cite має пустий невідомий параметр:|df=
() (англ.) - Andrew Gelman; John B Carlin; Hal S Stern; Donald B Rubin (2003). Part II: Fundamentals of Bayesian Data Analysis: Ch.5 Hierarchical models. Bayesian Data Analysis. CRC Press. с. 120–. ISBN . Архів оригіналу за 7 лютого 2017. Процитовано 9 грудня 2016. (англ.)
- Heckerman, David (1 березня 1995). Tutorial on Learning with Bayesian Networks. У Jordan, Michael Irwin (ред.). Learning in Graphical Models. Adaptive Computation and Machine Learning. Cambridge, Massachusetts: MIT Press (опубліковано опубліковано 1998). с. 301—354. ISBN . Архів оригіналу за 19 липня 2006. Процитовано 13 листопада 2010..
- Також з'являється як Heckerman, David (March 1997). Bayesian Networks for Data Mining. [en]. 1 (1): 79—119. doi:10.1023/A:1009730122752.
- Раніша версія з'являється як, Microsoft Research, March 1, 1995. Ця праця як про параметричне, так і про структурне навчання в баєсових мережах. (англ.)
- Jensen, Finn V; Nielsen, Thomas D. (6 червня 2007). Bayesian Networks and Decision Graphs. Information Science and Statistics series (вид. 2nd). New York: . ISBN . (англ.)
- Karimi, Kamran; Hamilton, Howard J. (2000). Finding temporal relations: Causal bayesian networks vs. C4. 5 (PDF). Twelfth International Symposium on Methodologies for Intelligent Systems. Архів оригіналу (PDF) за 7 травня 2016. Процитовано 9 грудня 2016. (англ.)
- Korb, Kevin B.; Nicholson, Ann E. (December 2010). Bayesian Artificial Intelligence. CRC Computer Science & Data Analysis (вид. 2nd). (CRC Press). doi:10.1007/s10044-004-0214-5. ISBN . (англ.)
- Lunn, David; Spiegelhalter, David; Thomas, Andrew; Best, Nicky та ін. (November 2009). The BUGS project: Evolution, critique and future directions. Statistics in Medicine. 28 (25): 3049—3067. doi:10.1002/sim.3680. PMID 19630097. (англ.)
- Neil, Martin; Fenton, Norman E.; Tailor, Manesh (August 2005). Greenberg, Michael R. (ред.). Using Bayesian Networks to Model Expected and Unexpected Operational Losses (PDF). [en]. 25 (4): 963—972. doi:10.1111/j.1539-6924.2005.00641.x. PMID 16268944. Архів оригіналу (pdf) за 27 вересня 2007. Процитовано 13 листопада 2010. (англ.)
- Pearl, Judea (September 1986). Fusion, propagation, and structuring in belief networks. [en]. 29 (3): 241—288. doi:10.1016/0004-3702(86)90072-X. (англ.)
- Pearl, Judea (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Representation and Reasoning Series (вид. 2nd printing). San Francisco, California: [en]. ISBN . (англ.)
- Pearl, Judea; (November 2002). Bayesian Networks. У (ред.). Handbook of Brain Theory and Neural Networks. Cambridge, Massachusetts: Bradford Books (MIT Press). с. 157—160. ISBN . (англ.)
- ; Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (англ.) (вид. 2nd), Upper Saddle River, New Jersey: Prentice Hall, ISBN
- Zhang, Nevin Lianwen; Poole, David (May 1994). A simple approach to Bayesian network computations. Proceedings of the Tenth Biennial (AI-94). Banff, Alberta: 171—178. This paper presents variable elimination for belief networks. (англ.)
Література
- Computational Intelligence: A Methodological Introduction by Kruse, Borgelt, Klawonn, Moewes, Steinbrecher, Held, 2013, Springer, (англ.)
- Graphical Models — Representations for Learning, Reasoning and Data Mining, 2nd Edition, by Borgelt, Steinbrecher, Kruse, 2009, J. Wiley & Sons, (англ.)
- Bayesian Netwrks and BayesiaLab — A practical introduction for researchers by Stefan Conrady and Lionel Jouffe (англ.)
- Бідюк, П.І.; Кузнєцова, Н.В. (2007). Основні етапи побудови і приклади застосування мереж Байєса (PDF). Системні дослідження та інформаційні технології. Київ: ІПСА. 4. ISSN 1681–6048. Архів оригіналу (PDF) за 2 квітня 2015. Процитовано 30 березня 2015.
{{}}
: Перевірте значення|issn=
()
Посилання
- A tutorial on learning with Bayesian Networks (англ.)
- An Introduction to Bayesian Networks and their Contemporary Applications [Архівовано 21 травня 2017 у Wayback Machine.] (англ.)
- Інтернет-посібник з баєсових мереж та імовірності [Архівовано 4 травня 2009 у Wayback Machine.] (англ.)
- Вебзастосунок для створення баєсових мереж та виконання їх методом Монте-Карло (англ.)
- Continuous Time Bayesian Networks [Архівовано 9 жовтня 2018 у Wayback Machine.] (англ.)
- Баєсові мережі: пояснення та аналогія (англ.)
- Живий урок з навчання баєсовим мережам [Архівовано 15 квітня 2021 у Wayback Machine.] (англ.)
- A hierarchical Bayes Model for handling sample heterogeneity in classification problems [Архівовано 9 січня 2015 у Wayback Machine.], пропонує модель класифікації, яка враховує невизначеність, пов'язану з вимірюванням повторюваних зразків. (англ.)
- Hierarchical Naive Bayes Model for handling sample uncertainty [Архівовано 28 вересня 2007 у Wayback Machine.], показує, як виконувати класифікацію та навчання з неперервними та дискретними змінними з повторюваними вимірюваннями. (англ.)
- Сергей Николенко. Лекции № 8 [Архівовано 29 грудня 2009 у Wayback Machine.], № 9 [Архівовано 1 січня 2015 у Wayback Machine.] и № 10 [Архівовано 1 січня 2015 у Wayback Machine.], посвященные байесовским сетям доверия. Курс «Самообучающиеся системы» (рос.)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Cya stattya mistit perelik posilan ale pohodzhennya okremih tverdzhen zalishayetsya nezrozumilim cherez brak vnutrishnotekstovih dzherel vinosok Bud laska dopomozhit polipshiti cyu stattyu peretvorivshi dzherela z pereliku posilan na dzherela vinoski u samomu teksti statti Zvernitsya na storinku obgovorennya za poyasnennyami ta dopomozhit vipraviti nedoliki gruden 2016 Ba yesova mere zha mere zha Ba yesa mere zha perekona n ba yesova mode l abo jmovi rnisna oriyento vana acikli chna gra fova mode l angl Bayesian network Bayes network belief network Bayes ian model probabilistic directed acyclic graphical model ce jmovirnisna grafova model riznovid statistichnoyi modeli yaka predstavlyaye nabir vipadkovih zminnih ta yihnih umovnih zalezhnostej en za dopomogoyu oriyentovanogo aciklichnogo grafu OAG angl directed acyclic graph DAG Napriklad bayesova merezha mozhe predstavlyati jmovirnisni zv yazki mizh zahvoryuvannyami ta simptomami Taku merezhu mozhna vikoristovuvati dlya obchislennya jmovirnostej nayavnosti riznih zahvoryuvan za nayavnih simptomiv Prosta bayesova merezha Dosh angl Rain vplivaye na te chi vmikayetsya rozbrizkuvach angl Sprinkler i yak dosh tak i rozbrizkuvach vplivayut na te chi ye trava mokroyu angl Grass wet Formalno bayesovi merezhi ye OAG chiyi vershini predstavlyayut vipadkovi zminni u bayesovomu sensi voni mozhut buti sposterezhuvanimi velichinami latentnimi zminnimi nevidomimi parametrami abo gipotezami Rebra predstavlyayut umovni zalezhnosti ne z yednani vershini taki sho v Bayesovij merezhi ne isnuye shlyahu vid odniyeyi zminnoyi do inshoyi predstavlyayut zminni sho ye umovno nezalezhnimi en odna vid odnoyi Kozhnu vershinu pov yazano iz funkciyeyu jmovirnosti sho bere na vhodi pevnij nabir znachen batkivskih vershin i vidaye na vihodi jmovirnist abo rozpodil imovirnosti yaksho zastosovno zminnoyi predstavlenoyi ciyeyu vershinoyu Napriklad yaksho m displaystyle m batkivskih vershin predstavlyayut m displaystyle m bulevih zminnih to funkciyu jmovirnosti mozhe buti predstavleno tabliceyu 2 m displaystyle 2 m zapisiv po odnomu zapisu dlya kozhnoyi z 2 m displaystyle 2 m mozhlivih kombinacij istinnosti abo hibnosti yiyi batkiv Shozhi ideyi mozhut zastosovuvatisya do neoriyentovanih ta mozhlivo ciklichnih grafiv takih yak markovski merezhi Isnuyut efektivni algoritmi sho vikonuyut visnovuvannya ta navchannya v bayesovih merezhah Bayesovi merezhi sho modelyuyut poslidovnosti zminnih napriklad signali movlennya abo poslidovnosti bilkiv nazivayut dinamichnimi bayesovimi merezhami Uzagalnennya bayesovih merezh sho mozhut predstavlyati ta rozv yazuvati zadachi uhvalennya rishen za umov neviznachenosti nazivayut diagramami vplivu en Zmist 1 Priklad 2 Visnovuvannya ta navchannya 2 1 Otrimuvannya visnovkiv pro nesposterezhuvani zminni 2 2 Navchannya parametriv 2 3 Navchannya strukturi 3 Statistichne vvedennya 3 1 Vvidni prikladi 3 2 Obmezhennya na apriorni 4 Viznachennya ta ponyattya 4 1 Mnozhnikove viznachennya 4 2 Lokalna markovska vlastivist 4 3 Rozrobka bayesovih merezh 4 4 Markovske pokrittya 4 4 1 o rozdilenist 4 5 Iyerarhichni modeli 4 6 Prichinni merezhi 5 Skladnist visnovuvannya ta algoritmi nablizhennya 6 Zastosuvannya 6 1 Programne zabezpechennya 7 Istoriya 8 Div takozh 9 Primitki 10 Dzherela 11 Literatura 12 PosilannyaPrikladred nbsp Prosta bayesova merezha z tablicyami umovnoyi jmovirnosti en Pripustimo sho isnuyut dvi podiyi yaki mozhut sprichiniti mokrist travi abo uvimkneno rozbrizkuvach abo jde dosh Takozh pripustimo sho dosh maye pryamij vpliv na vikoristannya rozbrizkuvacha a same koli jde dosh rozbrizkuvach zazvichaj ne uvimkneno Todi cyu situaciyu mozhe buti zmodelovano bayesovoyu merezheyu pokazanoyu pravoruch Vsi tri zminni mayut dva mozhlivi znachennya T istina angl True ta F hiba angl False Funkciyeyu spilnogo rozpodilu jmovirnosti ye Pr G S R Pr G S R Pr S R Pr R displaystyle Pr G S R Pr G S R Pr S R Pr R nbsp de nazvi zminnih ye skorochennyami G trava mokra angl Grass wet tak ni S rozbrizkuvach uvimkneno angl Sprinkler tak ni ta R ide dosh angl Raining tak ni Cya model mozhe vidpovidati na taki pitannya yak Yakoyu ye jmovirnist togo sho jde dosh yaksho trava mokra shlyahom zastosuvannya formuli umovnoyi jmovirnosti ta pidbittya sum za vsima zavadnimi zminnimi en Pr R T G T Pr G T R T Pr G T S T F Pr G T S R T S R T F Pr G T S R displaystyle Pr R T G T frac Pr G T R T Pr G T frac sum S in T F Pr G T S R T sum S R in T F Pr G T S R nbsp Vikoristovuyuchi rozklad spilnoyi funkciyi jmovirnosti Pr G S R displaystyle Pr G S R nbsp ta umovni jmovirnosti z tablic umovnoyi jmovirnosti en zaznachenih u diagrami mozhna ociniti kozhen chlen u sumah chiselnika ta znamennika Napriklad Pr G T S T R T Pr G T S T R T Pr S T R T Pr R T 0 99 0 01 0 2 0 00198 displaystyle begin aligned Pr G T S T R T amp Pr G T S T R T Pr S T R T Pr R T amp 0 99 times 0 01 times 0 2 amp 0 00198 end aligned nbsp Todi chislovimi rezultatami z pov yazanimi znachennyami zminnih v indeksah ye Pr R T G T 0 00198 T T T 0 1584 T F T 0 00198 T T T 0 288 T T F 0 1584 T F T 0 0 T F F 891 2491 35 77 displaystyle Pr R T G T frac 0 00198 TTT 0 1584 TFT 0 00198 TTT 0 288 TTF 0 1584 TFT 0 0 TFF frac 891 2491 approx 35 77 nbsp Z inshogo boku yaksho mi hochemo vidpovisti na vtruchalnicke pitannya Yaka jmovirnist togo sho pide dosh yaksho mi namochimo travu to vidpovid viznachatimetsya pislyavtruchalnoyu funkciyeyu spilnogo rozpodilu Pr S R do G T Pr S R P R displaystyle Pr S R text do G T Pr S R P R nbsp otrimanoyu usunennyam koeficiyentu Pr G S R displaystyle Pr G S R nbsp iz dovtruchalnogo rozpodilu Yak i ochikuvalosya na jmovirnist doshu cya diya ne vplivaye Pr R do G T Pr R displaystyle Pr R text do G T Pr R nbsp Ponad te yaksho mi hochemo peredbachiti vpliv umikannya rozbrizkuvacha to mi mayemo Pr R G do S T Pr R Pr G R S T displaystyle Pr R G text do S T Pr R Pr G R S T nbsp z usunenim chlenom Pr S T R displaystyle Pr S T R nbsp sho pokazuye sho cya diya maye vpliv na travu ale ne na dosh Ci peredbachennya ne mozhut buti zdijsnennimi yaksho yakis zminni ye nesposterezhuvanimi yak u bilshosti zadach ocinki strategij Vpliv diyi do x displaystyle text do x nbsp vse she mozhna peredbachuvati prote lishe yaksho zadovolnyayetsya kriterij chornogo hodu 1 2 Vin zayavlyaye sho yaksho mozhe sposterigatisya mnozhina vuzliv Z yaka o rozdilyuye 3 abo blokuye vsi chorni hodi angl back door paths z X do Y to Pr Y Z do x Pr Y Z X x Pr X x Z displaystyle Pr Y Z text do x Pr Y Z X x Pr X x Z nbsp Chornij hid ye takim sho zakinchuyetsya strilkoyu v X Mnozhini yaki zadovolnyayut kriterij chornogo hodu nazivayut dostatnimi angl sufficient abo prijnyatnimi angl admissible Napriklad mnozhina Z R ye prijnyatnoyu dlya peredbachuvannya vplivu S T na G oskilki R o rozdilyuye yedinij chornij hid S R G Prote yaksho S ne sposterigayetsya to ne isnuye inshoyi mnozhini yaka bi o rozdilyuvala cej shlyah i vpliv umikannya rozbrizkuvacha S T na travu G ne mozhe buti peredbacheno z pasivnih sposterezhen Todi mi kazhemo sho mnozhina P G do S T ye ne piznnanoyu angl not identified Ce viddzerkalyuye toj fakt sho za umovi braku danih vtruchannya mi ne mozhemo viznachiti chi zavdyachuye sposterezhuvana zalezhnist mizh S ta G vipadkovomu zv yazkovi abo ye falshivoyu vidima zalezhnist sho viplivaye zi spilnoyi prichini R div paradoks Simpsona Dlya z yasuvannya togo chi ye prichinnij zv yazok piznannim iz dovilnoyi bayesovoyi merezhi z nesposterezhuvanimi zminnimi mozhna zastosovuvati tri pravila chislennya dij angl do calculus 1 4 i pereviryati chi vsi do chleni mozhe buti usuneno z virazu dlya cogo spivvidnoshennya pidtverdzhuyuchi takim chinom sho bazhana velichina ye ocinkoyu iz chastotnih danih 5 Zastosuvannya bayesovoyi merezhi mozhe zaoshadzhuvati znachni obsyagi pam yati yaksho zalezhnosti v spilnomu rozpodili ye rozridzhenimi Napriklad nayivnij sposib zberigannya umovnih imovirnostej dlya 10 dvoznachnih zminnih yak tablici vimagaye prostoru dlya zberigannya 2 10 1024 displaystyle 2 10 1024 nbsp znachen Yaksho lokalni rozpodili zhodnoyi zi zminnih ne zalezhat bilshe nizh vid troh batkivskih zminnih to predstavlennya yak bayesovoyi merezhi potrebuye zberigannya shonajbilshe 10 2 3 80 displaystyle 10 cdot 2 3 80 nbsp znachen Odniyeyu z perevag bayesovih merezh ye te sho lyudini intuyitivno prostishe rozumiti rozridzheni nabori pryamih zalezhnostej ta lokalni rozpodili nizh povni spilni rozpodili Visnovuvannya ta navchannyared Dlya bayesovih merezh isnuye tri osnovni zavdannya dlya visnovuvannya Otrimuvannya visnovkiv pro nesposterezhuvani zminnired Oskilki bayesova merezha ye povnoyu modellyu zminnih ta yihnih vzayemozv yazkiv yiyi mozhna vikoristovuvati dlya otrimannya vidpovidej na jmovirnisni zapiti stosovno nih Napriklad cyu merezhu mozhna vikoristovuvati dlya z yasovuvannya utochnenogo znannya pro stan yakoyis pidmnozhini zminnih koli sposterigayutsya inshi zminni zminni svidchennya angl evidence Cej proces obchislennya aposteriornogo rozpodilu zminnih dlya zadanogo svidchennya nazivayetsya jmovirnisnim visnovuvannyam angl probabilistic inference Ce aposteriorne daye universalnu dostatnyu statistiku dlya zastosuvan dlya viyavlennya koli potribno pidbirati znachennya pidmnozhini zminnih yaki minimizuyut pevnu funkciyu ochikuvanih vtrat napriklad imovirnist pomilkovosti rishennya Bayesovu merezhu vidtak mozhna rozglyadati yak mehanizm avtomatichnogo zastosuvannya teoremi Bayesa do kompleksnih zadach Najposhirenishimi metodami tochnogo visnovuvannya ye viklyuchennya zminnih en yake viklyuchaye integruvannyam abo pidsumovuvannyam nesposterezhuvani ne zapitovi zminni odnu po odnij shlyahom rozpodilu sumi nad dobutkom poshirennya derevom zluk en yake keshuye obchislennya takim chinom sho odnochasno mozhna robiti zapit do bagatoh zminnih a novi svidchennya mozhut poshiryuvatisya shvidko ta rekursivne obumovlyuvannya j poshuk TA ABO yaki peredbachayut prostorovo chasovij kompromis ta pidbirayut efektivnist viklyuchennya zminnih pri vikoristanni dostatnogo prostoru Vsi ci metodi mayut eksponencijnu skladnist vidnosno derevnoyi shirini merezhi Najposhirenishimi algoritmami nablizhenogo visnovuvannya en ye vibirka za znachimistyu stohastichna imitaciya MKML mini blokove viklyuchennya angl mini bucket elimination petelne poshirennya perekonannya en poshirennya uzagalnenogo perekonannya en ta variacijni metodi en Navchannya parametrivred Shobi povnistyu opisati bayesovu merezhu i vidtak povnistyu predstaviti spilnij rozpodil imovirnosti neobhidno dlya kozhnogo vuzla X vkazati rozpodil imovirnosti X obumovlenij batkami X Cej rozpodil X obumovlenij batkami X mozhe mati bud yakij viglyad Ye zvichnim pracyuvati z diskretnimi abo gausovimi rozpodilami oskilki ce sproshuye obchislennya Inodi vidomi lishe obmezhennya na rozpodil todi mozhna zastosovuvati princip maksimalnoyi entropiyi en dlya viznachennya yedinogo rozpodilu yakij maye najbilshu entropiyu dlya zadanih obmezhen Analogichno v konkretnomu konteksti dinamichnih bayesovih merezh zazvichaj vkazuyut takij umovnij rozpodil rozvitku v chasi prihovanih staniv shobi maksimizuvati entropijnu shvidkist cogo neyavnogo stohastichnogo procesu Ci umovni rozpodili chasto vklyuchayut parametri yaki ye nevidomimi i musyat buti ocineni z danih inodi iz zastosuvannyam pidhodu maksimalnoyi pravdopodibnosti Pryama maksimizaciya pravdopodibnosti abo aposteriornoyi jmovirnosti chasto ye skladnoyu koli ye nesposterezhuvani zminni Klasichnim pidhodom do ciyeyi zadachi ye algoritm ochikuvannya maksimizaciyi yakij chereduye obchislennya ochikuvanih znachen nesposterezhenih zminnih za umovi sposterezhuvanih danih iz maksimizaciyeyu povnoyi pravdopodibnosti abo aposteriornogo vihodyachi z pripushennya pro pravilnist poperedno obchislenih ochikuvanih znachen Za m yakih umov zakonomirnosti cej proces zbigayetsya do znachen parametriv yaki dayut maksimalnu pravdopodibnist abo maksimalne aposteriorne Povnishim bayesovim pidhodom do parametriv ye rozglyad parametriv yak dodatkovih nesposterezhuvanih zminnih i obchislennya povnogo aposteriornogo rozpodilu nad usima vuzlami za umovi sposterezhuvanih danih iz nastupnim vidintegrovuvannyam parametriv Cej pidhid mozhe buti vitratnim i vesti do modelej velikoyi rozmirnosti tomu na praktici poshirenishimi ye klasichni pidhodi vstanovlennya parametriv Navchannya strukturired U najprostishomu vipadku bayesova merezha zadayetsya fahivcem i potim zastosovuyetsya dlya vikonannya visnovuvannya V inshih zastosuvannyah zadacha viznachennya ciyeyi merezhi ye zanadto skladnoyu dlya lyudej V takomu vipadku strukturi merezhi ta parametriv lokalnih rozpodiliv treba navchatisya z danih Avtomatichne navchannya strukturi bayesovoyi merezhi ye problemoyu yakoyu zajmayetsya mashinne navchannya Osnovna ideya shodit do algoritmu viyavlennya rozroblenogo Rebane ta Perlom 1987 roku 6 yakij spirayetsya na rozriznennya mizh troma mozhlivimi tipami sumizhnih trijok dozvolenimi v oriyentovanomu aciklichnomu grafi OAG X Y Z displaystyle X rightarrow Y rightarrow Z nbsp X Y Z displaystyle X leftarrow Y rightarrow Z nbsp X Y Z displaystyle X rightarrow Y leftarrow Z nbsp Tipi 2 ta 3 predstavlyayut odnakovi zalezhnosti X displaystyle X nbsp ta Z displaystyle Z nbsp ye nezalezhnimi za zadanogo Y displaystyle Y nbsp i vidtak ye nerozriznyuvanimi Prote tip 3 mozhe buti unikalno viyavleno oskilki X displaystyle X nbsp ta Z displaystyle Z nbsp ye vidosobleno nezalezhnimi a vsi inshi pari ye zalezhnimi Takim chinom v toj chas yak kistyaki angl skeletons grafi iz zachishenimi strilkami cih troh trijok ye odnakovimi napryamok strilok chastkovo pidlyagaye viyavlennyu Take same rozriznennya zastosovuyetsya j todi koli X displaystyle X nbsp ta Z displaystyle Z nbsp mayut spilnih batkiv tilki spochatku treba zrobiti obumovlennya za cimi batkami Bulo rozrobleno algoritmi dlya sistematichnogo viznachennya kistyaka grafu sho lezhit v osnovi a potim spryamovuvanni vsih strilok chiya spryamovanist diktuyetsya sposterezhuvanimi umovnimi nezalezhnostyami 1 7 8 9 Alternativnij metod navchannya strukturi zastosovuye poshuk na osnovi optimizaciyi Vin potrebuye ocinkovoyi funkciyi en ta strategiyi poshuku Poshirenoyu ocinkovoyu funkciyeyu ye aposteriorna jmovirnist strukturi za zadanih trenuvalnih danih taka yak BIK abo BDeu Chasovi vimogi vicherpnogo poshuku sho povertaye strukturu yaka maksimizuye ocinku ye supereksponencijnimi vidnosno chisla zminnih Strategiya lokalnogo poshuku robit postupovi zmini spryamovani na polipshennya ocinki strukturi Algoritm globalnogo poshuku takij yak metod Monte Karlo markovskih lancyugiv mozhe unikati potraplyannya v pastku lokalnogo minimumu Fridman ta in 10 11 obgovoryuyut zastosuvannya vzayemnoyi informaciyi mizh zminnimi ta poshuku strukturi yaka yiyi maksimizuye Voni roblyat ce shlyahom obmezhennya naboru kandidativ u batki k vuzlami i vicherpnim poshukom sered takih Osoblivo shvidkim metodom tochnogo navchannya BM ye rozglyad ciyeyi zadachi yak zadachi optimizaciyi j rozv yazannya yiyi iz zastosuvannyam cilochiselnogo programuvannya Obmezhennya aciklichnosti dodayutsya cilochiselnij programi pid chas rozv yazannya u viglyadi sichnih ploshin en 12 Takij metod mozhe vporuvatisya iz zadachami sho mayut do 100 zminnih Shobi mati spravu iz zadachami z tisyachami zminnih neobhidno zastosovuvati inshij pidhid Odnim z nih ye spochatku vibirati odne vporyadkuvannya i potim znahoditi optimalnu strukturu BM po vidnoshennyu do cogo vporyadkuvannya Ce oznachaye robotu na prostori poshuku mozhlivih vporyadkuvan sho ye zruchnim oskilki vin menshij za prostir merezhnih struktur Potim vibirayutsya j ocinyuyutsya dekilka vporyadkuvan Bulo dovedeno sho cej metod ye najkrashim iz dostupnih v naukovih pracyah koli chislo zminnih ye velicheznim 13 Inshij metod polyagaye v zoseredzhenni na pidklasah rozkladanih modelej dlya yakih ocinka maksimalnoyi pravdopodibnosti maye zamknenij viglyad Todi mozhlivo viyavlyati cilisnu strukturu dlya soten zminnih 14 Bayesova merezha mozhe dopovnyuvatisya vuzlami ta rebrami iz zastosuvannyam metodik mashinnogo navchannya na osnovi pravil Dlya dobuvannya pravil ta stvorennya novih vuzliv mozhe zastosovuvatisya induktivne logichne programuvannya en 15 Pidhodi statistichnogo navchannya vidnoshen en SNV angl statistical relational learning SRL vikoristovuyut ocinkovu funkciyu en sho gruntuyetsya na strukturi bayesovoyi merezhi dlya spryamovuvannya strukturnogo poshuku ta dopovnennya merezhi 16 Poshirenoyu ocinkovoyu funkciyeyu SNV ye plosha pid krivoyu RHP Yak zaznacheno ranishe navchannya bayesovih merezh iz obmezhenoyu derevnoyu shirinoyu ye neobhidnim dlya umozhlivlennya tochnogo rozv yaznogo visnovuvannya oskilki skladnist visnovuvannya v najgirshomu vipadku ye eksponencijnoyu po vidnoshennyu do derevnoyi shirini k za gipotezi eksponencijnogo chasu Prote buduchi globalnoyu vlastivistyu grafu vona znachno pidvishuye skladnist procesu navchannya V comu konteksti dlya efektivnogo navchannya mozhlivo zastosovuvati ponyattya k dereva 17 Statistichne vvedennyared Dlya zadanih danih x displaystyle x nbsp ta parametru 8 displaystyle theta nbsp prostij bayesiv analiz pochinayetsya z apriornoyi jmovirnosti apriornogo p 8 displaystyle p theta nbsp ta pravdopodibnosti p x 8 displaystyle p x mid theta nbsp dlya obchislennya aposteriornoyi jmovirnosti p 8 x p x 8 p 8 displaystyle p theta mid x propto p x mid theta p theta nbsp Chasto apriorne 8 displaystyle theta nbsp zalezhit u svoyu chergu vid inshih parametriv f displaystyle varphi nbsp yaki ne zgaduyutsya v pravdopodibnosti Otzhe apriorne p 8 displaystyle p theta nbsp musit buti zamineno pravdopodibnistyu p 8 f displaystyle p theta mid varphi nbsp i potribnim apriornim p f displaystyle p varphi nbsp novovvedenih parametriv f displaystyle varphi nbsp sho daye v rezultati aposteriornu jmovirnist p 8 f x p x 8 p 8 f p f displaystyle p theta varphi x propto p x theta p theta varphi p varphi nbsp Ce ye najprostishim prikladom iyerarhichnoyi bayesovoyi modeli angl hierarchical Bayes model proyasniti lt span style border bottom 1px dotted cursor help title Sho robit yiyi iyerarhichnoyu Mi govorimo pro iyerarhiya matematika en chi iyerarhichna struktura Postavte posilannya na vidpovidne gruden 2016 gt kom Cej proces mozhe povtoryuvatisya napriklad parametri f displaystyle varphi nbsp mozhut u svoyu chergu zalezhati vid dodatkovih parametriv ps displaystyle psi nbsp yaki potrebuvatimut svogo vlasnogo apriornogo Zreshtoyu cej proces musit zavershitisya apriornimi yaki ne zalezhat vid zhodnih inshih nezgadanih parametriv Vvidni prikladired Cej rozdil potrebuye dopovnennya gruden 2016 Pripustimo sho mi vimiryali velichini x 1 x n displaystyle x 1 dots x n nbsp kozhna iz normalno rozpodilenoyu pohibkoyu vidomogo standartnogo vidhilennya s displaystyle sigma nbsp x i N 8 i s 2 displaystyle x i sim N theta i sigma 2 nbsp Pripustimo sho nas cikavit ocinka 8 i displaystyle theta i nbsp Pidhodom bude ocinyuvati 8 i displaystyle theta i nbsp iz zastosuvannyam metodu maksimalnoyi pravdopodibnosti oskilki sposterezhennya ye nezalezhnimi pravdopodibnist rozkladayetsya na mnozhniki i ocinkoyu maksimalnoyi pravdopodibnosti ye prosto 8 i x i displaystyle theta i x i nbsp Prote yaksho ci velichini ye vzayemopov yazanimi tak sho napriklad mi mozhemo dumati sho okremi 8 i displaystyle theta i nbsp bulo j sami vibrano z rozpodilu sho lezhav v osnovi to cej vzayemozv yazok rujnuye nezalezhnist i proponuye skladnishu model napriklad x i N 8 i s 2 displaystyle x i sim N theta i sigma 2 nbsp 8 i N f t 2 displaystyle theta i sim N varphi tau 2 nbsp z nekorektnimi apriornimi f displaystyle varphi sim nbsp flat t displaystyle tau sim nbsp flat 0 displaystyle in 0 infty nbsp Pri n 3 displaystyle n geq 3 nbsp ce ye piznannoyu modellyu tobto isnuye unikalnij rozv yazok dlya parametriv modeli a aposteriorni rozpodili okremih 8 i displaystyle theta i nbsp budut shilni ruhatisya abo stiskatisya en angl shrink vid ocinok maksimalnoyi pravdopodibnosti do svogo spilnogo serednogo Ce stiskannya angl shrinkage ye tipovoyu povedinkoyu iyerarhichnih bayesovih modelej Obmezhennya na apriornired Pri vibori apriornih v iyerarhichnij modeli potribna deyaka oberezhnist zokrema na masshtabnih zminnih na vishih rivnyah iyerarhiyi takih yak zminna t displaystyle tau nbsp u comu prikladi Zvichajni apriorni taki yak apriorne Dzheffrisa en chasto ne pracyuyut oskilki aposteriornij rozpodil bude nekorektnim jogo nemozhlivo bude unormuvati a ocinki zrobleni minimizuvannyam ochikuvanih vtrat budut neprijnyatnimi en Viznachennya ta ponyattyared Div takozh Slovnik terminiv teoriyi grafiv Isnuye dekilka rivnoznachnih viznachen bayesovoyi merezhi Dlya vsih nastupnih nehaj G V E ye oriyentovanim aciklichnim grafom abo OAG i nehaj X Xv v V ye mnozhinoyu vipadkovih zminnih proindeksovanoyu za V Mnozhnikove viznachennyared X ye bayesovoyu merezheyu po vidnoshennyu do G yaksho funkciyu yiyi spilnoyi gustini jmovirnosti po vidnoshennyu do dobutkovoyi miri mozhe buti zapisano yak dobutok okremih funkcij gustini obumovlenih yihnimi batkivskimi zminnimi 18 p x v V p x v x pa v displaystyle p x prod v in V p left x v big x operatorname pa v right nbsp de pa v ye mnozhinoyu batkiv v tobto tih vershin yaki vkazuyut bezposeredno na v cherez yedine rebro Dlya bud yakoyi mnozhini vipadkovih zminnih imovirnist bud yakogo chlenu spilnogo rozpodilu mozhe buti obchisleno z umovnih imovirnostej iz zastosuvannyam lancyugovogo pravila dlya zadanogo topologichnogo vporyadkuvannya X nastupnim chinom 18 P X 1 x 1 X n x n v 1 n P X v x v X v 1 x v 1 X n x n displaystyle mathrm P X 1 x 1 ldots X n x n prod v 1 n mathrm P left X v x v mid X v 1 x v 1 ldots X n x n right nbsp Porivnyajte ce iz navedenim vishe viznachennyam sho jogo mozhe buti zapisano nastupnim chinom P X 1 x 1 X n x n v 1 n P X v x v X j x j displaystyle mathrm P X 1 x 1 ldots X n x n prod v 1 n mathrm P X v x v mid X j x j nbsp dlya kozhnogo X j displaystyle X j nbsp sho ye batkom X v displaystyle X v nbsp Rizniceyu mizh cimi dvoma virazami ye umovna nezalezhnist en zminnih vid bud yakogo z yihnih ne nashadkiv za zadanih znachen yihnih batkivskih zminnih Lokalna markovska vlastivistred X ye bayesovoyu merezheyu po vidnoshennyu do G yaksho vona zadovolnyaye lokalnu markovsku vlastivist angl local Markov property kozhna zminna ye umovno nezalezhnoyu en vid svoyih ne nashadkiv za zadanih yiyi batkivskih zminnih 19 X v X V de v X pa v displaystyle X v perp perp X V setminus operatorname de v mid X operatorname pa v quad nbsp dlya vsih v V displaystyle v in V nbsp de de v ye mnozhinoyu nashadkiv a V de v ye mnozhinoyu ne nashadkiv v Ce takozh mozhe buti virazheno v podibnih do pershogo viznachennya terminah yak P X v x v X i x i displaystyle mathrm P X v x v mid X i x i nbsp dlya kozhnogo X i displaystyle X i nbsp sho ne ye nashadkom X v P X v x v X j x j displaystyle X v P X v x v mid X j x j nbsp dlya kozhnogo X j displaystyle X j nbsp sho ye batkivskim dlya X v displaystyle X v nbsp Zauvazhte sho mnozhina batkiv ye pidmnozhinoyu mnozhini ne nashadkiv oskilki graf ye aciklichnim Rozrobka bayesovih merezhred Dlya rozrobki bayesovih merezh mi chasto spochatku rozroblyayemo takij OAG G sho mi perekonani sho X zadovolnyaye lokalnu markovsku vlastivist po vidnoshennyu do G Inodi ce robitsya shlyahom stvorennya prichinnogo en OAG Potim mi z yasovuyemo umovni rozpodili jmovirnosti dlya kozhnoyi zminnoyi za zadanih yiyi batkiv u G V bagatoh vipadkah zokrema v tomu vipadku koli zminni ye diskretnimi yaksho mi viznachayemo spilnij rozpodil X yak dobutok cih umovnih rozpodiliv to X ye bayesovoyu merezheyu po vidnoshennyu do G 20 Markovske pokrittyared Markovske pokrittya vuzla ye mnozhinoyu vuzliv yaka skladayetsya z jogo batkivskih vuzliv jogo dochirnih vuzliv ta vsih inshiyi batkiv jogo dochirnih vuzliv Markovske pokrittya robit vuzol nezalezhnim vid reshti merezhi spilnij rozpodil zminnih u markovskomu pokritti vuzla ye dostatnim znannyam dlya obchislennya rozpodilu cogo vuzla X ye bayesovoyu merezheyu po vidnoshennyu do G yaksho kozhen vuzol ye umovno nezalezhnim vid vsih inshih vuzliv merezhi za zadanogo jogo markovskogo pokrittya 19 o rozdilenistred Ce viznachennya mozhna zrobiti zagalnishim cherez viznachennya o rozdilenosti angl d separation dvoh vuzliv de o znachit oriyentovana angl directional 21 22 Nehaj P ye lancyugom vid vuzla u do v Lancyug ce aciklichnij neoriyentovanij shlyah mizh dvoma vuzlami tobto napryam reber pri pobudovi cogo shlyahu ignoruyetsya v yakomu rebra mozhut mati bud yakij napryam Todi pro P kazhut sho vin o rozdilyuyetsya mnozhinoyu vuzliv Z yaksho vikonuyutsya bud yaki z nastupnih umov P mistit oriyentovanij shlyah u m v displaystyle u ldots leftarrow m leftarrow ldots v nbsp abo u m v displaystyle u ldots rightarrow m rightarrow ldots v nbsp takij sho serednij vuzol m nalezhit Z P mistit rozgaluzhennya u m v displaystyle u ldots leftarrow m rightarrow ldots v nbsp take sho serednij vuzol m nalezhit Z abo P mistit obernene rozgaluzhennya abo kolajder u m v displaystyle u ldots rightarrow m leftarrow ldots v nbsp take sho serednij vuzol m ne nalezhit Z i zhodni z nashadkiv m ne nalezhat Z X ye bayesovoyu merezheyu po vidnoshennyu do G yaksho dlya bud yakih dvoh vuzliv u ta v X u X v X Z displaystyle X u perp perp X v mid X Z nbsp de Z ye mnozhinoyu yaka o rozdilyuye u ta v Markovske pokrittya ye minimalnim naborom vuzliv yaki o viddilyuyut vuzol v vid reshti vuzliv Iyerarhichni modelired Termin iyerarhichna model angl hierarchical model inodi vvazhayetsya okremim tipom basovoyi merezhi ale vin ne maye formalnogo viznachennya Inodi cej termin rezervuyut dlya modelej z troma abo bilshe sharami vipadkovih zminnih v inshih vipadkah jogo rezervuyut dlya modelej iz latentnimi zminnimi Prote v cilomu iyerarhichnoyu zazvichaj nazivayut bud yaku pomirno skladnu bayesovu merezhu Prichinni merezhired Hoch bayesovi merezhi j vikoristovuyut chasto dlya predstavlennya prichinnih vzayemozv yazkiv ce ne obov yazkovo povinno buti tak oriyentovane rebro z u do v ne vimagaye shobi Xv prichinno zalezhalo vid Xu Pro ce svidchit toj fakt sho bayesovi merezhi na grafah a b c displaystyle a rightarrow b rightarrow c qquad nbsp ta a b c displaystyle qquad a leftarrow b leftarrow c nbsp ye rivnoznachnimi tobto voni nakladayut tochno taki zh vimogi umovnoyi nezalezhnosti Prichi nna mere zha angl causal network ce bayesova merezha z yavnoyu vimogoyu togo sho vzayemozv yazki ye prichinnimi Dodatkova semantika prichinnih merezh vkazuye sho yaksho vuzlovi X aktivno sprichineno perebuvannya v zadanomu stani x diya sho zapisuyetsya yak do X x to funkciya gustini jmovirnosti zminyuyetsya na funkciyu gustini jmovirnosti merezhi otrimanoyi vidsikannyam z yednan vid batkiv X do X i vstanovlennyam X u sprichinene znachennya x 1 Zastosovuyuchi ci semantiki mozhna peredbachuvati vpliv zovnishnih vtruchan na osnovi danih otrimanih do vtruchannya Skladnist visnovuvannya ta algoritmi nablizhennyared 1990 roku pid chas praci v Stenfordskomu universiteti nad velikimi zastosunkami v bioinformatici Greg Kuper doviv sho tochne visnovuvannya v bayesovih merezhah ye NP skladnim 23 Cej rezultat sprichiniv splesk doslidzhen algoritmiv nablizhennya z metoyu rozrobki rozv yaznogo nablizhennya jmovirnisnogo visnovuvannya 1993 roku Pol Degam ta Majkl Lyubi doveli dva nespodivani rezultati stosovno skladnosti nablizhennya jmovirnisnogo visnovuvannya v bayesovih merezhah 24 Po pershe voni doveli sho ne isnuye rozv yaznogo determinovanogo algoritmu yakij mig bi nablizhuvati jmovirnisne visnovuvannya v mezhah absolyutnoyi pohibki ɛ lt 1 2 Po druge voni doveli sho ne isnuye rozv yaznogo uvipadkovlenogo algoritmu yakij mig bi nablizhuvati jmovirnisne visnovuvannya v mezhah absolyutnoyi pohibki ɛ lt 1 2 z dovirchoyu jmovirnistyu ponad 1 2 Priblizno v toj zhe chas Den Rot en doviv sho tochne visnovuvannya v bayesovih merezhah faktichno ye P povnim en i vidtak nastilki zh skladnim yak i pidrahunok chisla zadovilnih prisvoyen KNF formuli i sho nablizhene visnovuvannya navit dlya bayesovih merezh iz obmezhenoyu arhitekturoyu ye NP skladnim 25 26 Z praktichnoyi tochki zoru ci rezultati stosovno skladnosti pidkazali sho hocha bayesovi merezhi j buli cinnimi predstavlennyami dlya zastosunkiv ShI ta mashinnogo navchannya yihnye zastosuvannya u velikih realnih zadachah vimagatime pom yakshennya abo topologichnimi strukturnimi obmezhennyami takimi yak nayivni bayesovi merezhi abo obmezhennyami na umovni jmovirnosti Algoritm obmezhenoyi dispersiyi angl bounded variance algorithm 27 buv pershim algoritmom dovidnogo shvidkogo nablizhennya dlya efektivnogo nablizhennya jmovirnisnogo visnovuvannya v bayesovih merezhah z garantiyeyu pohibki nablizhennya Cej potuzhnij algoritm vimagav drugoryadnih obmezhen umovnih imovirnostej bayesovoyi merezhi shobi otrimati vidmezhuvannya vid nulya ta odinici na 1 p n de p n ye bud yakim polinomom vid chisla vuzliv merezhi n Zastosuvannyared Bayesovi merezhi zastosovuyut dlya modelyuvannya perekonan v obchislyuvalnij biologiyi ta bioinformatici analizi gennih regulyatornih merezh struktur bilkiv ekspresiyi geniv 28 navchanni epistaziv iz naboriv danih GWAS en 29 medicini 30 biomonitoringu en 31 klasifikaciyi dokumentiv informacijnomu poshuku 32 semantichnomu poshuku en 33 obrobci zobrazhen zlitti danih sistemah pidtrimki uhvalennya rishen 34 inzheneriyi stavkah na sport 35 36 igrah pravi 37 38 39 rozrobci doslidzhen 40 ta analizi rizikiv 41 Isnuyut praci pro zastosuvannya bayesovih merezh v bioinformatici 42 43 ta finansovij i marketingovij informatici 44 45 Programne zabezpechennyared libDAI Arhivovano 14 chervnya 2017 u Wayback Machine Vilna vidkrita biblioteka C diskretnogo nablizhenogo visnovuvannya angl Discrete Approximate Inference v grafovih modelyah libDAI pidtrimuye taki metodi visnovuvannya yak tochne visnovuvannya pereborom gruboyu siloyu tochne visnovuvannya metodami dereva zluk en oserednenogo polya en petelnogo poshirennya perekonannya en vibirki za Gibbsom en obumovlenogo poshirennya perekonannya angl Conditioned Belief Propagation ta deyaki inshi Mocapy Arhivovano 21 grudnya 2016 u Wayback Machine Instrumentarij dinamichnih bayesovih merezh realizovanij movoyu C Vin pidtrimuye diskretni bagatochlenni gausovi kentovi fon mizesovi ta puassonovi vuzli Visnovuvannya ta navchannya zdijsnyuyutsya vibirkoyu za Gibbsom stohastichnim ochikuvannyam maksimizaciyeyu WinBUGS en Odna z pershih obchislyuvalnih realizacij vibirok MKML Bilshe ne pidtrimuyetsya j ne rekomenduyetsya dlya aktivnogo zastosuvannya OpenBUGS en sajt Arhivovano 9 lipnya 2016 u Wayback Machine podalsha vidkrita rozrobka WinBUGS Just another Gibbs sampler en JAGS sajt Insha vidkrita alternativa WinBUGS Vikoristovuye vibirku za Gibbsom Stan programne zabezpechennya en sajt Arhivovano 3 veresnya 2012 u Wayback Machine Vidkritij paket dlya otrimuvannya bayesovogo visnovuvannya iz zastosuvannyam bezrozvorotnoyi vibirki angl No U Turn sampler odnogo z variantiv gamiltonovogo Monte Karlo en Vin v chomus podibnij do BUGS ale z inshoyu movoyu dlya virazhennya modelej ta inshoyu vibirkoyu dlya vidboru zrazkiv z yihnih aposteriornih RStan ce interfejs R do Stan Jogo pidtrimuyut Andrij Gelman en z kolegami Direct Graphical Models Arhivovano 22 grudnya 2016 u Wayback Machine DGM vidkrita biblioteka C yaka realizuye rizni zavdannya v imovirnisnih grafovih modelyah iz poparnimi zalezhnostyami OpenMarkov Arhivovano 25 listopada 2016 u Wayback Machine vidkrite programne zabezpechennya ta PPI realizovani v Java Graphical Models Toolkit GMTK vidkritij zagalnodostupnij instrumentarij dlya shvidkogo prototipuvannya statistichnih modelej iz zastosuvannyam dinamichnih grafovih modelej DGM angl dynamic graphical models DGM i dinamichnih bayesovih merezh DBM angl dynamic Bayesian networks DBN GMTK mozhlivo zastosovuvati dlya zastosunkiv ta doslidzhen v obrobci movlennya ta movi v bioinformatici rozpiznavanni diyalnosti en ta bud yakih zastosunkah chasovih ryadiv PyMC Arhivovano 4 grudnya 2016 u Wayback Machine modul Python yakij realizuye bayesovi statistichni modeli ta algoritmi dopasovuvannya vklyuchno z Monte Karlo markovskih lancyugiv Jogo gnuchkist ta rozshiryuvanist roblyat jogo zastosovnim dlya velikogo naboru zadach Poryad iz yadrovoyu funkcijnistyu vibirki PyMC vklyuchaye metodi pidsumovuvannya vihodu grafichnogo predstavlennya a takozh diagnostuvannya yakosti dopasovuvannya ta zbizhnosti GeNIe amp Smile Arhivovano 1 kvitnya 2022 u Wayback Machine SMILE ce biblioteka C dlya bayesovih merezh ta diagram vplivu a GeNIe ce GIK dlya neyi SamIam Arhivovano 22 listopada 2016 u Wayback Machine sistema na osnovi Java z GIK ta PPI Java Bayes Server Arhivovano 8 kvitnya 2022 u Wayback Machine koristuvackij interfejs ta PPI dlya bayesovih merezh vklyuchaye pidtrimku chasovih ryadiv ta poslidovnostej Blip vebinterfejs yakij proponuye strukturne navchannya bayesovih merezh bezposeredno z diskretnih danih Vin mozhe obroblyati nabori danih iz tisyachami zminnih i proponuye i proponuye yak neobmezhene tak i obmezhene derevnoyu shirinoyu navchannya strukturi Belief and Decision Networks na AIspace Arhivovano 20 grudnya 2016 u Wayback Machine BayesiaLab Arhivovano 20 grudnya 2016 u Wayback Machine vid Bayesia Hugin Arhivovano 30 travnya 2020 u Wayback Machine AgenaRisk Arhivovano 9 bereznya 2022 u Wayback Machine Netica Arhivovano 4 grudnya 2016 u Wayback Machine vid Norsys Bayesian network application library Arhivovano 11 chervnya 2007 u Wayback Machine dVelox vid Apara Software System Modeler vid Inatas AB UnBBayes Arhivovano 21 grudnya 2016 u Wayback Machine vid GIA UnB Intelligence Artificial Group University of Brasilia 1 Arhivovano 12 zhovtnya 2016 u Wayback Machine iz zastosuvannyam tehnologiyi novitnogo analizu licovoyi dismorfologiyi angl Facial Dysmorphology Novel Analysis FDNA Uninet Arhivovano 4 sichnya 2017 u Wayback Machine neperervni bayesovi merezhi yaki modelyuyut neperervni zminni z shirokim spektrom parametrichnih ta neparametrichnih vidosoblenih rozpodiliv i zalezhnistyu z paruvannyam Takozh pidtrimuyutsya gibridni diskretno neperervni modeli Bezkoshtovne dlya nekomercijnogo vikoristannya Rozrobleno kompaniyeyu LightTwist Software Tetrad Arhivovano 4 sichnya 2017 u Wayback Machine vidkritij proekt napisanij na Java ta rozroblenij Fakultetom filosofiyi universitetu Karnegi Mellon yakij zajmayetsya prichinnimi modelyami ta statistichnimi danimi Dezide Arhivovano 8 bereznya 2022 u Wayback Machine bnlearn Arhivovano 2 travnya 2022 u Wayback Machine paket R RISO Arhivovano 4 bereznya 2007 u Wayback Machine rozpodileni merezhi perekonan BANSY3 Arhivovano 20 lipnya 2011 u Wayback Machine Bezkoshtovne Vid the Non Linear Dynamics Laboratory Mathematics Department Science School UNAM MSBNx Arhivovano 11 zhovtnya 2008 u Wayback Machine komponentno oriyentovanij instrumentarij dlya modelyuvannya ta visnovuvannya z bayesovimi merezhami vid Microsoft Research Bayes Net Toolbox Arhivovano 4 sichnya 2017 u Wayback Machine dlya MatlabIstoriyared Termin bayesovi merezhi angl Bayesian networks bulo zaprovadzheno Judoyu Perlom 1985 roku dlya pidkreslennya troh aspektiv 46 Chasto sub yektivnoyi prirodi vhidnoyi informaciyi Pokladannya na bayesove obumovlyuvannya yak osnovu dlya utochnennya informaciyi Vidminnosti prichinnoyi ta dokazovoyi modelej mirkuvannya yaka pidkreslyuye pracyu Tomasa Bayesa opublikovanu posmertno 1763 roku 47 Naprikinci 1980 h rokiv praci Judi Perla Imovirnisne mirkuvannya v intelektualnih sistemah 48 ta Richarda Neapolitana Imovirnisne mirkuvannya v ekspertnih sistemah 49 pidsumuvali vlastivosti bayesovih merezh ta utverdili bayesovi merezhi yak oblast doslidzhennya Neoficijni varianti takih merezh bulo vpershe zastosovano 1913 roku yuristom Dzhonom Genri Vigmorom u viglyadi diagram Vigmora en dlya analizu procesualnih dokaziv 38 66 76 Inshij variant sho nazivayetsya diagramami shlyahiv en bulo rozrobleno genetikom Syuelom Rajtom 50 i zastosovano v suspilnij ta povedinkovij nauci perevazhno v linijnih parametrichnih modelyah V svoyij knizi 2018 roku Kniga pro Chomu Perl ziznavsya sho hoch i priznaye yih uspishnist v cilomu bayesovi merezhi ne vipravdali jogo spodivan nabliziti mashinnij intelekt do lyudskogo Vin takozh poyasniv chomu merezhi vivodili visnovki cherez sposterezheni jmovirnosti ale ne vrahovuvali prichinnist Dumka pro jmovirnu pomilkovist konstrukciyi bayesovih merezh vinikla u nogo odrazu zh pislya publikaciyi knigi Imovirnisne mirkuvannya v intelektualnih sistemah 51 sho i prizvelo do poyavi prichinnih merezh 1 Div takozhred Algoritm ochikuvannya maksimizaciyi Analiz shlyahiv en Bayesova jmovirnist Bayesova merezha zminnogo poryadku en Bayesove visnovuvannya Bayesove programuvannya Virivnyuvannya poslidovnostej Gliboka merezha perekonan Graf rozkladu en Grafova model Derevo Chou Lyu en Dinamichna bayesova merezha Diagrama Vigmora en Diagrama vplivu en Iyerarhichna chasova pam yat Dzhuda Perl Zlittya davachiv Mashinne navchannya Modelyuvannya strukturnimi rivnyannyami en Nayivnij bayesiv klasifikator Obchislyuvalna filogenetika en Obchislyuvalnij intelekt Poliderevo en Poshirennya perekonannya en Prichinno petlova diagrama en Rozpiznavannya movlennya Svitoglyad Sistema pam yati peredbachuvannya Sub yektivna logika en Sumisheva model en Sumishevij rozpodil Teorema Bayesa Teoriya Dempstera Shafera en uzagalnennya teoremi Bayesa Filtr Kalmana Shtuchnij intelektPrimitkired a b v g d Pearl Judea 2000 Causality Models Reasoning and Inference Cambridge University Press ISBN 0 521 77362 8 OCLC 42291253 angl The Back Door Criterion PDF Arhiv originalu PDF za 27 grudnya 2013 Procitovano 18 veresnya 2014 angl d Separation without Tears PDF Arhiv originalu PDF za 4 bereznya 2016 Procitovano 18 veresnya 2014 angl J Pearl 1994 A Probabilistic Calculus of Actions U Lopez de Mantaras R Poole D red UAI 94 Proceedings of the Tenth international conference on Uncertainty in artificial intelligence San Mateo CA Morgan Kaufman s 454 462 arXiv 1302 6835 ISBN 1 55860 332 8 angl I Shpitser J Pearl Identification of Conditional Interventional Distributions In R Dechter and T S Richardson Eds Proceedings of the Twenty Second Conference on Uncertainty in Artificial Intelligence 437 444 Corvallis OR AUAI Press 2006 angl Rebane G and Pearl J The Recovery of Causal Poly trees from Statistical Data Proceedings 3rd Workshop on Uncertainty in AI Seattle WA pages 222 228 1987 angl Spirtes P Glymour C 1991 An algorithm for fast recovery of sparse causal graphs Social Science Computer Review 9 1 62 72 doi 10 1177 089443939100900106 Arhiv originalu PDF za 16 kvitnya 2016 Procitovano 9 grudnya 2016 angl Spirtes Peter Glymour Clark N Scheines Richard 1993 Causation Prediction and Search vid 1st Springer Verlag ISBN 978 0 387 97979 3 Arhiv originalu za 7 lyutogo 2017 Procitovano 9 grudnya 2016 angl Verma Thomas Pearl Judea 1991 Equivalence and synthesis of causal models U Bonissone P Henrion M Kanal L N Lemmer J F red UAI 90 Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence Elsevier s 255 270 ISBN 0 444 89264 8 angl Friedman Nir Geiger Dan Goldszmidt Moises November 1997 Bayesian Network Classifiers Machine Learning 29 2 3 131 163 doi 10 1023 A 1007465528199 Arhiv originalu za 23 lyutogo 2015 Procitovano 24 lyutogo 2015 angl Friedman Nir Linial Michal Nachman Iftach Pe er Dana August 2000 Using Bayesian Networks to Analyze Expression Data Journal of Computational Biology 7 3 4 601 620 doi 10 1089 106652700750050961 PMID 11108481 Procitovano 24 lyutogo 2015 angl Cussens James 2011 Bayesian network learning with cutting planes PDF Proceedings of the 27th Conference Annual Conference on Uncertainty in Artificial Intelligence 153 160 Arhiv originalu PDF za 27 bereznya 2022 Procitovano 9 grudnya 2016 angl M Scanagatta C P de Campos G Corani and M Zaffalon Learning Bayesian Networks with Thousands of Variables Arhivovano 2 travnya 2018 u Wayback Machine In NIPS 15 Advances in Neural Information Processing Systems 28 pages 1855 1863 2015 angl Petitjean F Webb G I Nicholson A E 2013 Scaling log linear analysis to high dimensional data PDF International Conference on Data Mining Dallas TX USA IEEE Arhiv originalu PDF za 2 chervnya 2014 Procitovano 9 grudnya 2016 angl Nassif Houssam Wu Yirong Page David Burnside Elizabeth 2012 Logical Differential Prediction Bayes Net Improving Breast Cancer Diagnosis for Older Women PDF American Medical Informatics Association Symposium AMIA 12 Chicago 1330 1339 Arhiv originalu PDF za 6 travnya 2015 Procitovano 18 lipnya 2014 angl Nassif Houssam Kuusisto Finn Burnside Elizabeth S Page David Shavlik Jude Santos Costa Vitor 2013 Score As You Lift SAYL A Statistical Relational Learning Approach to Uplift Modeling PDF European Conference on Machine Learning ECML 13 Prague 595 611 Arhiv originalu PDF za 14 kvitnya 2016 Procitovano 9 grudnya 2016 angl M Scanagatta G Corani C P de Campos and M Zaffalon Learning Treewidth Bounded Bayesian Networks with Thousands of Variables Arhivovano 26 listopada 2016 u Wayback Machine In NIPS 16 Advances in Neural Information Processing Systems 29 2016 angl a b Russell ta Norvig 2003 s 496 a b Russell ta Norvig 2003 s 499 Neapolitan Richard E 2004 Learning Bayesian networks Prentice Hall ISBN 978 0 13 012534 7 Arhiv originalu za 7 lyutogo 2017 Procitovano 9 grudnya 2016 angl Geiger Dan Verma Thomas Pearl Judea 1990 Identifying independence in Bayesian Networks PDF Networks 20 507 534 doi 10 1177 089443939100900106 angl Richard Scheines D separation arhiv originalu za 22 listopada 2016 procitovano 9 grudnya 2016 angl Gregory F Cooper 1990 The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks PDF Artificial Intelligence 42 393 405 doi 10 1016 0004 3702 90 90060 d Arhiv originalu PDF za 29 bereznya 2017 Procitovano 9 grudnya 2016 angl Paul Dagum Michael Luby 1993 Approximating probabilistic inference in Bayesian belief networks is NP hard Artificial Intelligence 60 1 141 153 doi 10 1016 0004 3702 93 90036 b Arhiv originalu za 24 veresnya 2015 Procitovano 9 grudnya 2016 angl D Roth On the hardness of approximate reasoning Arhivovano 27 sichnya 2016 u Wayback Machine IJCAI 1993 angl D Roth On the hardness of approximate reasoning Arhivovano 27 sichnya 2016 u Wayback Machine Artificial Intelligence 1996 angl Paul Dagum Michael Luby 1997 An optimal approximation algorithm for Bayesian inference Artificial Intelligence 93 1 2 1 27 doi 10 1016 s0004 3702 97 00013 1 Arhiv originalu za 6 lipnya 2017 Procitovano 9 grudnya 2016 angl Friedman N Linial M Nachman I Pe er D 2000 Using Bayesian Networks to Analyze Expression Data Journal of Computational Biology 7 3 4 601 620 doi 10 1089 106652700750050961 PMID 11108481 angl Jiang X Neapolitan R E Barmada M M Visweswaran S 2011 Learning Genetic Epistasis using Bayesian Network Scoring Criteria BMC Bioinformatics 12 89 doi 10 1186 1471 2105 12 89 PMC 3080825 PMID 21453508 Arhiv originalu za 23 veresnya 2015 Procitovano 9 grudnya 2016 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite journal title Shablon Cite journal cite journal a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya angl J Uebersax 2004 Genetic Counseling and Cancer Risk Modeling An Application of Bayes Nets Marbella Spain Ravenpack International Arhiv originalu za 17 kvitnya 2016 Procitovano 9 grudnya 2016 angl Jiang X Cooper GF July August 2010 A Bayesian spatio temporal method for disease outbreak detection J Am Med Inform Assoc 17 4 462 71 doi 10 1136 jamia 2009 000356 PMC 2995651 PMID 20595315 angl Luis M de Campos Juan M Fernandez Luna Juan F Huete 2004 Bayesian networks and information retrieval an introduction to the special issue Information Processing amp Management Elsevier 40 5 727 733 doi 10 1016 j ipm 2004 03 001 ISBN 0 471 14182 8 angl Christos L Koumenides and Nigel R Shadbolt 2012 Combining link and content based information in a Bayesian inference model for entity search Arhivovano 2 travnya 2016 u Wayback Machine In Proceedings of the 1st Joint International Workshop on Entity Oriented and Semantic Search JIWES 12 ACM New York NY USA Article 3 6 pages DOI 10 1145 2379307 2379310 angl F J Diez J Mira E Iturralde S Zubillaga 1997 DIAVAL a Bayesian expert system for echocardiography Artificial Intelligence in Medicine 10 1 59 73 doi 10 1016 s0933 3657 97 00384 9 PMID 9177816 Arhiv originalu za 16 kvitnya 2016 Procitovano 9 grudnya 2016 angl Constantinou Anthony Fenton N Neil M 2012 pi football A Bayesian network model for forecasting Association Football match outcomes Knowledge Based Systems 36 322 339 doi 10 1016 j knosys 2012 07 008 angl Constantinou Anthony Fenton N Neil M 2013 Profiting from an inefficient Association Football gambling market Prediction Risk and Uncertainty using Bayesian networks Knowledge Based Systems 50 60 86 doi 10 1016 j knosys 2013 05 008 angl G A Davis 2003 Bayesian reconstruction of traffic accidents Law Probability and Risk 2 2 69 89 doi 10 1093 lpr 2 2 69 angl a b J B Kadane amp D A Schum 1996 A Probabilistic Analysis of the Sacco and Vanzetti Evidence New York Wiley ISBN 0 471 14182 8 angl O Pourret P Naim amp B Marcot 2008 Bayesian Networks A Practical Guide to Applications Chichester UK Wiley ISBN 978 0 470 06030 8 Arhiv originalu za 12 zhovtnya 2008 Procitovano 9 grudnya 2016 angl Karvanen Juha 2014 Study design in causal models Scandinavian Journal of Statistics 42 361 377 doi 10 1111 sjos 12110 angl Trucco P Cagno E Ruggeri F Grande O 2008 A Bayesian Belief Network modelling of organisational factors in risk analysis A case study in maritime transportation Reliability Engineering amp System Safety 93 6 845 856 doi 10 1016 j ress 2007 03 035 angl Neapolitan Richard 2009 Probabilistic Methods for Bioinformatics Burlington MA Morgan Kaufmann s 406 ISBN 9780123704764 Arhiv originalu za 4 lipnya 2017 Procitovano 9 grudnya 2016 angl Grau J Ben Gal I Posch S Grosse I 2006 VOMBAT Prediction of Transcription Factor Binding Sites using Variable Order Bayesian Trees PDF Nucleic Acids Research vol 34 issue W529 W533 2006 Arhiv originalu PDF za 30 veresnya 2018 Procitovano 9 grudnya 2016 Arhivovano 2018 09 30 u Wayback Machine angl Neapolitan Richard amp Xia Jiang 2007 Probabilistic Methods for Financial and Marketing Informatics Burlingon MA Morgan Kaufmann s 432 ISBN 0123704774 Arhiv originalu za 20 kvitnya 2016 Procitovano 9 grudnya 2016 angl Shmilovici A Kahiri Y Ben Gal I Hauser S 2009 Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm PDF Computational Economics Vol 33 2 131 154 2009 Arhiv originalu PDF za 22 zhovtnya 2016 Procitovano 9 grudnya 2016 angl Pearl J 1985 Bayesian Networks A Model of Self Activated Memory for Evidential Reasoning PDF Proceedings of the 7th Conference of the Cognitive Science Society University of California Irvine CA s 329 334 Arhiv originalu UCLA Technical Report CSD 850017 za 15 sichnya 2017 Procitovano 1 travnya 2009 angl Bayes T Price Mr 1763 Ese shodo rozv yazannya zadachi u Doktrini shansiv en Philosophical Transactions of the Royal Society 53 370 418 doi 10 1098 rstl 1763 0053 angl Pearl J Probabilistic Reasoning in Intelligent Systems San Francisco CA Morgan Kaufmann s 1988 ISBN 1558604790 Arhiv originalu za 7 lyutogo 2017 Procitovano 9 grudnya 2016 angl Neapolitan Richard E 1989 Probabilistic reasoning in expert systems theory and algorithms Wiley ISBN 978 0 471 61840 9 angl Wright S 1921 Correlation and Causation PDF Journal of Agricultural Research 20 7 557 585 Arhiv originalu PDF za 15 sichnya 2017 Procitovano 9 grudnya 2016 angl Judea Pearl The book of why the new science of cause and effect vid First edition New York NY ISBN 9780465097609 OCLC 1003311466 Dzherelared Ben Gal Irad 2007 Bayesian Networks U Ruggeri Fabrizio Kennett Ron S Faltin Frederick W red Encyclopedia of Statistics in Quality and Reliability PDF Encyclopedia of Statistics in Quality and Reliability John Wiley amp Sons doi 10 1002 9780470061572 eqr089 ISBN 978 0 470 01861 3 Arhiv originalu PDF za 23 listopada 2016 Procitovano 9 grudnya 2016 angl Bertsch McGrayne Sharon The Theory That Would not Die Yale angl Borgelt Christian Kruse Rudolf March 2002 Graphical Models Methods for Data Analysis and Mining Chichester UK Wiley ISBN 0 470 84337 3 Arhiv originalu za 10 chervnya 2007 Procitovano 13 listopada 2010 angl Borsuk Mark Edward 2008 Ecological informatics Bayesian networks U Jorgensen Sven Erik en Fath Brian red Encyclopedia of Ecology Elsevier ISBN 978 0 444 52033 3 angl Castillo Enrique Gutierrez Jose Manuel Hadi Ali S 1997 Learning Bayesian Networks Expert Systems and Probabilistic Network Models Monographs in computer science New York Springer Verlag s 481 528 ISBN 0 387 94858 9 angl Comley Joshua W Dowe David L June 2003 General Bayesian networks and asymmetric languages Proceedings of the 2nd Hawaii International Conference on Statistics and Related Fields Hawaii Arhiv originalu za 4 serpnya 2016 Procitovano 13 listopada 2010 angl Comley Joshua W Dowe David L 2005 Minimum Message Length and Generalized Bayesian Nets with Asymmetric Languages U Grunwald Peter D Myung In Jae Pitt Mark A red Advances in Minimum Description Length Theory and Applications Neural information processing series Cambridge Massachusetts Bradford Books MIT Press opublikovano opublikovano April 2005 s 265 294 ISBN 0 262 07262 9 Arhiv originalu za 4 serpnya 2016 Procitovano 13 listopada 2010 Cya pracya stavit dereva rishen u vnutrishnih vuzlah bayesovih merezh iz zastosuvannyam minimalnoyi dovzhini povidomlen Arhivovano 9 lyutogo 2006 u Wayback Machine angl MML Gotovu do druku kincevu versiyu bulo predstavleno 15 zhovtnya 2003 roku Ranisha versiya Comley and Dowe 2003 Arhivovano 4 serpnya 2016 u Wayback Machine pdf Arhivovano 10 lyutogo 2006 u Wayback Machine angl Darwiche Adnan 2009 Modeling and Reasoning with Bayesian Networks Cambridge University Press ISBN 978 0521884389 angl Dowe David L 2010 MML hybrid Bayesian network graphical models statistical consistency invariance and uniqueness Arhivovano 14 kvitnya 2016 u Wayback Machine in Handbook of Philosophy of Science Volume 7 Handbook of Philosophy of Statistics Elsevier 2 Arhivovano 25 kvitnya 2012 u Wayback Machine ISBN 978 0 444 51862 0 pp 901 982 Arhivovano 14 kvitnya 2016 u Wayback Machine angl Fenton Norman Neil Martin E November 2007 Managing Risk in the Modern World Applications of Bayesian Networks A Knowledge Transfer Report from the London Mathematical Society and the Knowledge Transfer Network for Industrial Mathematics London England London Mathematical Society angl Fenton Norman Neil Martin E 23 lipnya 2004 Combining evidence in risk analysis using Bayesian Networks PDF Safety Critical Systems Club Newsletter T 13 4 Newcastle upon Tyne England s 8 13 Arhiv originalu PDF za 27 veresnya 2007 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Cite maye pustij nevidomij parametr df dovidka angl Andrew Gelman John B Carlin Hal S Stern Donald B Rubin 2003 Part II Fundamentals of Bayesian Data Analysis Ch 5 Hierarchical models Bayesian Data Analysis CRC Press s 120 ISBN 978 1 58488 388 3 Arhiv originalu za 7 lyutogo 2017 Procitovano 9 grudnya 2016 angl Heckerman David 1 bereznya 1995 Tutorial on Learning with Bayesian Networks U Jordan Michael Irwin red Learning in Graphical Models Adaptive Computation and Machine Learning Cambridge Massachusetts MIT Press opublikovano opublikovano 1998 s 301 354 ISBN 0 262 60032 3 Arhiv originalu za 19 lipnya 2006 Procitovano 13 listopada 2010 Takozh z yavlyayetsya yak Heckerman David March 1997 Bayesian Networks for Data Mining Data Mining and Knowledge Discovery en 1 1 79 119 doi 10 1023 A 1009730122752 Ranisha versiya z yavlyayetsya yak Microsoft Research March 1 1995 Cya pracya yak pro parametrichne tak i pro strukturne navchannya v bayesovih merezhah angl Jensen Finn V Nielsen Thomas D 6 chervnya 2007 Bayesian Networks and Decision Graphs Information Science and Statistics series vid 2nd New York Springer Verlag ISBN 978 0 387 68281 5 angl Karimi Kamran Hamilton Howard J 2000 Finding temporal relations Causal bayesian networks vs C4 5 PDF Twelfth International Symposium on Methodologies for Intelligent Systems Arhiv originalu PDF za 7 travnya 2016 Procitovano 9 grudnya 2016 angl Korb Kevin B Nicholson Ann E December 2010 Bayesian Artificial Intelligence CRC Computer Science amp Data Analysis vid 2nd Chapman amp Hall CRC Press doi 10 1007 s10044 004 0214 5 ISBN 1 58488 387 1 angl Lunn David Spiegelhalter David Thomas Andrew Best Nicky ta in November 2009 The BUGS project Evolution critique and future directions Statistics in Medicine 28 25 3049 3067 doi 10 1002 sim 3680 PMID 19630097 angl Neil Martin Fenton Norman E Tailor Manesh August 2005 Greenberg Michael R red Using Bayesian Networks to Model Expected and Unexpected Operational Losses PDF Risk Analysis en 25 4 963 972 doi 10 1111 j 1539 6924 2005 00641 x PMID 16268944 Arhiv originalu pdf za 27 veresnya 2007 Procitovano 13 listopada 2010 angl Pearl Judea September 1986 Fusion propagation and structuring in belief networks Artificial Intelligence en 29 3 241 288 doi 10 1016 0004 3702 86 90072 X angl Pearl Judea 1988 Probabilistic Reasoning in Intelligent Systems Networks of Plausible Inference Representation and Reasoning Series vid 2nd printing San Francisco California Morgan Kaufmann en ISBN 0 934613 73 7 angl Pearl Judea Russell Stuart November 2002 Bayesian Networks U Arbib Michael A red Handbook of Brain Theory and Neural Networks Cambridge Massachusetts Bradford Books MIT Press s 157 160 ISBN 0 262 01197 2 angl Russell Stuart J Norvig Peter 2003 Artificial Intelligence A Modern Approach angl vid 2nd Upper Saddle River New Jersey Prentice Hall ISBN 0 13 790395 2 Zhang Nevin Lianwen Poole David May 1994 A simple approach to Bayesian network computations Proceedings of the Tenth Biennial Canadian Artificial Intelligence Conference AI 94 Banff Alberta 171 178 This paper presents variable elimination for belief networks angl Literaturared Computational Intelligence A Methodological Introduction by Kruse Borgelt Klawonn Moewes Steinbrecher Held 2013 Springer ISBN 9781447150121 angl Graphical Models Representations for Learning Reasoning and Data Mining 2nd Edition by Borgelt Steinbrecher Kruse 2009 J Wiley amp Sons ISBN 9780470749562 angl Bayesian Netwrks and BayesiaLab A practical introduction for researchers by Stefan Conrady and Lionel Jouffe angl Bidyuk P I Kuznyecova N V 2007 Osnovni etapi pobudovi i prikladi zastosuvannya merezh Bajyesa PDF Sistemni doslidzhennya ta informacijni tehnologiyi Kiyiv IPSA 4 ISSN 1681 6048 Arhiv originalu PDF za 2 kvitnya 2015 Procitovano 30 bereznya 2015 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite journal title Shablon Cite journal cite journal a Perevirte znachennya issn dovidka Posilannyared A tutorial on learning with Bayesian Networks angl An Introduction to Bayesian Networks and their Contemporary Applications Arhivovano 21 travnya 2017 u Wayback Machine angl Internet posibnik z bayesovih merezh ta imovirnosti Arhivovano 4 travnya 2009 u Wayback Machine angl Vebzastosunok dlya stvorennya bayesovih merezh ta vikonannya yih metodom Monte Karlo angl Continuous Time Bayesian Networks Arhivovano 9 zhovtnya 2018 u Wayback Machine angl Bayesovi merezhi poyasnennya ta analogiya angl Zhivij urok z navchannya bayesovim merezham Arhivovano 15 kvitnya 2021 u Wayback Machine angl A hierarchical Bayes Model for handling sample heterogeneity in classification problems Arhivovano 9 sichnya 2015 u Wayback Machine proponuye model klasifikaciyi yaka vrahovuye neviznachenist pov yazanu z vimiryuvannyam povtoryuvanih zrazkiv angl Hierarchical Naive Bayes Model for handling sample uncertainty Arhivovano 28 veresnya 2007 u Wayback Machine pokazuye yak vikonuvati klasifikaciyu ta navchannya z neperervnimi ta diskretnimi zminnimi z povtoryuvanimi vimiryuvannyami angl Sergej Nikolenko Lekcii 8 Arhivovano 29 grudnya 2009 u Wayback Machine 9 Arhivovano 1 sichnya 2015 u Wayback Machine i 10 Arhivovano 1 sichnya 2015 u Wayback Machine posvyashennye bajesovskim setyam doveriya Kurs Samoobuchayushiesya sistemy ros Otrimano z https uk wikipedia org w index php title Bayesova merezha amp oldid 44083730