Хронологія класичної механіки:
Рання механіка
- IV століття до н. е. — Арістотель винайшов систему Аристотелівської фізики, яку згодом значною мірою спростували
- IV століття до н. е. — вавилонські астрономи обчислили положення Юпітера за допомогою [en]
- 260 р. до н. е. — Архімед сформулював принцип важеля і поєднав плавучість з вагою
- 60 р. — Герон Александрійський написав свідоцтво з механіки (для засобів з підняття важких предметів) і пневматики (для машин, що працюють під тиском)
- 350 р. — Фемістій підтвердив, що статичне тертя більше, ніж кінетичне тертя (тертя ковзання)
- VI століття — Іоанн Філопон, спостерігаючи за двома кулями різної ваги, сказав, що вони впадуть майже з однаковою швидкістю. Тому він протестував принцип еквівалентності
- 1021 р. — Аль-Біруні використав три ортогональні координати для опису точки в просторі
- 1000—1030 рр. — Ібн аль-Хайсан і Авіценна розробили концепції інерції та імпульсу
- 1100—1138 рр. — Ібн Баджа розробив концепцію сили реакції
- 1100—1165 рр. — [en] виявив, що сила пропорційна прискоренню, а не швидкості — основний закон класичної механіки
- 1121 р. — Аль-Хазіні видає «Книгу балансу мудрості», в якій він розкрив поняття сили тяжіння на відстані. Він вважав, що гравітація змінюється залежно від її відстані від центру Всесвіту, а саме Землі
- 1340—1358 рр. — Жан Буридан вивів теорію імпульсу
- XIV століття — [en] та французькі співробітники довели теорему середньої швидкості
- XIV століття — Ніколь Орезмський вивів закон квадрату часу для рівномірно прискорених тіл. Орезмський, однак, розцінив це відкриття як суто інтелектуальну вправу, яка не стосується опису будь-яких природних явищ, а отже, не зміг розпізнати будь-який зв'язок руху з прискоренням тіл
- 1500—1528 рр. — Аль-Бірханді розробив теорію "обертальної інерції " для пояснення обертання Землі
- XVI століття — і Лука Гіні експериментально заперечили аристотелівський погляд на вільне падіння.
- XVI століття — [en] припускає, що тіла, які потрапляють через однорідне середовище, рівномірно прискорюються. Однак Сото не передбачив багатьох категорій та вдосконалень, що містяться в теорії падіння тіл Галілея. Наприклад, він не визнав, як це робив Галілей, що тіло падає з однаковим рівномірним прискоренням лише у вакуумі, а в іншому випадку воно досягне рівномірної кінцевої швидкості
- 1581 р. — Галілео Галілей виявив можливість вимірювати час за допомогою маятника
- 1589 р. — Галілео Галілей використав кулі, які котяться по похилих площинах і показав, що тіла різної ваги падають з однаковим прискоренням
- 1638 р. — Галілео Галілей публікує « Діалоги, що стосуються двох нових наук» (які були матеріалознавством та кінематикою), де він розкрив, серед іншого, Галілейську трансформацію
- 1645 р. — Ісмаел Буйо стверджував, що «сила тяжіння» слабшає у міру зворотного квадрата відстані
- 1651 р. — Джованні Баттіста Річчолі та Франческо Марія Грімальді відкрили ефект Коріоліса
- 1658 р. — Християн Гюйгенс експериментально відкрив, що кульки, розміщені де-небудь всередині перевернутої циклоїди, досягають найнижчої точки циклоїди за той самий час і тим самим експериментально показав, що циклоїда є таутохронною кривою
- 1668 р. — Джон Валліс запропонував закон збереження імпульсу
- 1676—1689 рр. — Готфрід Ляйбніц розробив концепцію жива сила, обмежену теорією збереження енергії
Формування класичної механіки (іноді її називають механікою Ньютона)
- 1687 р. — Ісаак Ньютон публікує свої [[Математичні начала натуральної філософії|Математичні начала натуральної філософії (англ. Philosophiae Naturalis Principia Mathematica)]], в яких формулює закони руху Ньютона та закон всесвітнього тяжіння Ньютона
- 1690 р. — Якоб Бернуллі показує, що циклоїда є вирішенням проблеми таутохрону
- 1691 р. — Йоганн Бернуллі показує, що дріт, вільно підвішений до двох точок, утворить катенарію
- 1691 р. — Джеймс Бернуллі показує, що крива катенарії має найнижчий центр ваги будь-якого ланцюга, висячого з двох нерухомих точок
- 1696 р. — Йоганн Бернуллі показує, що циклоїд — це рішення проблеми брахістохрону
- 1707 р. — Готфрід Ляйбніц, ймовірно, розвиває принцип найменших дій
- 1710 р. — Якоб Герман показує, що вектор Лапласа — Рунге — Ленца зберігається для спеціального випадку центральної сили, яка залежить обернено пропорційно від квадрату відстані
- 1714 р. — Брук Тейлор отримав основну частоту натягнутої вібраційної струни з точки зору її натягу та маси на одиницю довжини шляхом вирішення звичайного диференціального рівняння
- 1733 р. — Даніель Бернуллі відкрив основні частоти і гармоніки висячого ланцюга, розв'язуючи звичайне диференціальне рівняння
- 1734 р. — Даніель Бернуллі розв'язав звичайне диференціальне рівняння для коливань пружного тіла, затиснутого на одному кінці
- 1739 р. — Леонгард Ейлер вирішив звичайне диференціальне рівняння для вимушених коливань гармонічного осцилятора і помітив резонанс
- 1742 р. — Колін Маклорен відкрив свої рівномірно обертові самогравітаційні сфероїди
- 1743 р. — Жан ле Рон д'Аламберт опублікував свою найвідомішу працю "Трактат про динаміку ", в якій він вперше сформулював загальні правила складання диференціальних рівнянь руху будь-яких матеріальних систем, виводить концепцію [en] та принцип д'Аламберта
- 1747 р. — д'Аламбер і Алексі Клеро опублікували перші приблизні рішення задачі з трьома тілами
- 1749 р. — Леонард Ейлер вивів рівняння для прискорення Коріоліса
- 1759 р. — Леонард Ейлер вирішує частково диференціальне рівняння для вібрацій прямокутного барабана
- 1764 р. — Леонард Ейлер вивчає частково диференціальне рівняння вібрацій кругового барабана і знаходить одне з розв'язань функції Бесселя
- 1776 р. — Джон Смітон публікує доповідь про експерименти, які пов'язані з потужністю, роботою, імпульсом і кінетичною енергією та підтримує збереження енергії
- 1788 р. — Жозеф-Луї Лагранж представляє рівняння руху Лагранжа в праці «Аналітична механіка»
- 1789 р. — Антуан Лавуазьє підтверджує закон збереження маси
- 1803 р. — Луї Пуансо розробляє ідею про збереження імпульсу кута (цей результат був відомий лише у випадку збереження [en])
- 1813 р. — Пітер Еварт опублікував роботу «Про міру рухомої сили» в якій підтримує ідею збереження енергії
- 1821 р. — Вільям Гамільтон починає аналіз характерної функції Гамільтона та рівняння Гамільтона — Якобі
- 1829 р. — Карл Фрідріх Гаусс вводить принцип Гаусса найменшого обмеження
- 1834 р. — Карл Якобі виявляє свої рівномірно обертові самогравітаційні еліпсоїди
- 1834 р. — Луї Пуансо звертає увагу на приклад теореми проміжної осі
- 1835 р. — Вільям Гамільтон обґрунтовує канонічні рівняння руху Гамільтона щодо руху
- 1838 р. — Ліувіль починає роботу над теоремою Ліувілля
- 1841 р. — Юліус Роберт фон Меєр, вчений- аматор, пише доповідь про збереження енергії, але відсутність в нього академічної підготовки призводить до її відмови
- 1847 р. — Герман фон Гельмгольц обґрунтував закон збереження енергії
- Перша половина XIX століття — Коші розробляє рівняння імпульсу та свій тензор напружень
- 1851 р. — Леон Фуко показує обертання Землі величезним маятником (маятник Фуко)
- 1870 р. — Рудольф Клаузіус виводить теорію про віруси
- 1902 р. — Джеймс Джинс знаходить шкалу довжини, необхідну для зростання гравітаційних збурень у статичному майже однорідному середовищі
- 1915 р. — Еммі Нетер доводить теорему Нетера, з якої виведено закони збереження
- 1952 р. — Паркер вивів тензорну форму теореми про віруси
- 1978 р. — Володимир Арнольд одержавав точну форму [en]
- 1983 р. — Мордехай Мілгром пропонує модифіковану ньютонівську динаміку
- 1992 р. — Удвадія і Калаба створюють [en]
Примітки
- Ossendrijver, Mathieu (29 січня 2016). . Science. 351 (6272): 482—484. Bibcode:2016Sci...351..482O. doi:10.1126/science.aad8085. PMID 26823423. Архів оригіналу за 28 листопада 2020. Процитовано 29 січня 2016.
- Sambursky, Samuel (2014). . Princeton University Press. с. 65—66. ISBN . Архів оригіналу за 12 червня 2020. Процитовано 16 грудня 2019.
- (1964), «La dynamique d'Ibn Bajja», in Mélanges Alexandre Koyré, I, 442—468 [462, 468], Paris.
(cf. Abel B. Franco (October 2003). «Avempace, Projectile Motion, and Impetus Theory», Journal of the History of Ideas 64 (4), p. 521—546 [543]: «Pines has also seen Avempace's idea of fatigue as a precursor to the Leibnizian idea of force which, according to him, underlies Newton's third law of motion and the concept of the „reaction“ of forces.») - . ISBN .
{{}}
: Пропущений або порожній|title=
():
(cf. Abel B. Franco (October 2003). «Avempace, Projectile Motion, and Impetus Theory», Journal of the History of Ideas 64 (4), p. 521—546 [528]: Hibat Allah Abu'l-Barakat al-Bagdadi (c.1080- after 1164/65) extrapolated the theory for the case of falling bodies in an original way in his Kitab al-Mu'tabar (The Book of that Which is Established through Personal Reflection). […] This idea is, according to Pines, "the oldest negation of Aristotle's fundamental dynamic law [namely, that a constant force produces a uniform motion], " and is thus an «anticipation in a vague fashion of the fundamental law of classical mechanics [namely, that a force applied continuously produces acceleration].») - Mariam Rozhanskaya and I. S. Levinova (1996), «Statics», in Roshdi Rashed, ed., , Vol. 2, p. 614—642 [621], Routledge, London and New York
- Clagett (1968, p. 561), Nicole Oresme and the Medieval Geometry of Qualities and Motions; a treatise on the uniformity and difformity of intensities known as Tractatus de configurationibus qualitatum et motuum. Madison, WI: University of Wisconsin Press. .
- Grant, 1996, p.103 [ 14 червня 2021 у Wayback Machine.]).
- F. Jamil Ragep (2001), «Tusi and Copernicus: The Earth's Motion in Context», Science in Context 14 (1-2), p. 145—163. Cambridge University Press.
- . www.scientus.org. Архів оригіналу за 28 грудня 2019. Процитовано 26 січня 2019.
- Sharratt, Michael (1994). Galileo: Decisive Innovator. Cambridge: Cambridge University Press. , p. 198
- Wallace, William A. (2004). Domingo de Soto and the Early Galileo. Aldershot: Ashgate Publishing. (pp.II 384, II 400, III 272)
- Ismail Bullialdus, Astronomia Philolaica … (Paris, France: Piget, 1645), page 23. [ 9 листопада 2013 у Wayback Machine.]
- (1710). Unknown title. Giornale de Letterati d'Italia. 2: 447—467.
(1710). Extrait d'une lettre de M. Herman à M. Bernoulli datée de Padoüe le 12. Juillet 1710. Histoire de l'Academie Royale des Sciences (Paris). 1732: 519—521. - Poinsot (1834) Theorie Nouvelle de la Rotation des Corps, Bachelier, Paris
- Parker, E.N. (1954). Tensor Virial Equations. Physical Review. 96 (6): 1686—1689. Bibcode:1954PhRv...96.1686P. doi:10.1103/PhysRev.96.1686.
- V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (Springer, New York, 1978), Vol. 60.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Hronologiya klasichnoyi mehaniki Rannya mehanikaIV stolittya do n e Aristotel vinajshov sistemu Aristotelivskoyi fiziki yaku zgodom znachnoyu miroyu sprostuvali IV stolittya do n e vavilonski astronomi obchislili polozhennya Yupitera za dopomogoyu en 260 r do n e Arhimed sformulyuvav princip vazhelya i poyednav plavuchist z vagoyu 60 r Geron Aleksandrijskij napisav svidoctvo z mehaniki dlya zasobiv z pidnyattya vazhkih predmetiv i pnevmatiki dlya mashin sho pracyuyut pid tiskom 350 r Femistij pidtverdiv sho statichne tertya bilshe nizh kinetichne tertya tertya kovzannya VI stolittya Ioann Filopon sposterigayuchi za dvoma kulyami riznoyi vagi skazav sho voni vpadut majzhe z odnakovoyu shvidkistyu Tomu vin protestuvav princip ekvivalentnosti 1021 r Al Biruni vikoristav tri ortogonalni koordinati dlya opisu tochki v prostori 1000 1030 rr Ibn al Hajsan i Avicenna rozrobili koncepciyi inerciyi ta impulsu 1100 1138 rr Ibn Badzha rozrobiv koncepciyu sili reakciyi 1100 1165 rr en viyaviv sho sila proporcijna priskorennyu a ne shvidkosti osnovnij zakon klasichnoyi mehaniki 1121 r Al Hazini vidaye Knigu balansu mudrosti v yakij vin rozkriv ponyattya sili tyazhinnya na vidstani Vin vvazhav sho gravitaciya zminyuyetsya zalezhno vid yiyi vidstani vid centru Vsesvitu a same Zemli 1340 1358 rr Zhan Buridan viviv teoriyu impulsu XIV stolittya en ta francuzki spivrobitniki doveli teoremu serednoyi shvidkosti XIV stolittya Nikol Orezmskij viviv zakon kvadratu chasu dlya rivnomirno priskorenih til Orezmskij odnak rozciniv ce vidkrittya yak suto intelektualnu vpravu yaka ne stosuyetsya opisu bud yakih prirodnih yavish a otzhe ne zmig rozpiznati bud yakij zv yazok ruhu z priskorennyam til 1500 1528 rr Al Birhandi rozrobiv teoriyu obertalnoyi inerciyi dlya poyasnennya obertannya Zemli XVI stolittya i Luka Gini eksperimentalno zaperechili aristotelivskij poglyad na vilne padinnya XVI stolittya en pripuskaye sho tila yaki potraplyayut cherez odnoridne seredovishe rivnomirno priskoryuyutsya Odnak Soto ne peredbachiv bagatoh kategorij ta vdoskonalen sho mistyatsya v teoriyi padinnya til Galileya Napriklad vin ne viznav yak ce robiv Galilej sho tilo padaye z odnakovim rivnomirnim priskorennyam lishe u vakuumi a v inshomu vipadku vono dosyagne rivnomirnoyi kincevoyi shvidkosti 1581 r Galileo Galilej viyaviv mozhlivist vimiryuvati chas za dopomogoyu mayatnika 1589 r Galileo Galilej vikoristav kuli yaki kotyatsya po pohilih ploshinah i pokazav sho tila riznoyi vagi padayut z odnakovim priskorennyam 1638 r Galileo Galilej publikuye Dialogi sho stosuyutsya dvoh novih nauk yaki buli materialoznavstvom ta kinematikoyu de vin rozkriv sered inshogo Galilejsku transformaciyu 1645 r Ismael Bujo stverdzhuvav sho sila tyazhinnya slabshaye u miru zvorotnogo kvadrata vidstani 1651 r Dzhovanni Battista Richcholi ta Franchesko Mariya Grimaldi vidkrili efekt Koriolisa 1658 r Hristiyan Gyujgens eksperimentalno vidkriv sho kulki rozmisheni de nebud vseredini perevernutoyi cikloyidi dosyagayut najnizhchoyi tochki cikloyidi za toj samij chas i tim samim eksperimentalno pokazav sho cikloyida ye tautohronnoyu krivoyu 1668 r Dzhon Vallis zaproponuvav zakon zberezhennya impulsu 1676 1689 rr Gotfrid Lyajbnic rozrobiv koncepciyu zhiva sila obmezhenu teoriyeyu zberezhennya energiyiFormuvannya klasichnoyi mehaniki inodi yiyi nazivayut mehanikoyu Nyutona 1687 r Isaak Nyuton publikuye svoyi Matematichni nachala naturalnoyi filosofiyi Matematichni nachala naturalnoyi filosofiyi angl Philosophiae Naturalis Principia Mathematica v yakih formulyuye zakoni ruhu Nyutona ta zakon vsesvitnogo tyazhinnya Nyutona 1690 r Yakob Bernulli pokazuye sho cikloyida ye virishennyam problemi tautohronu 1691 r Jogann Bernulli pokazuye sho drit vilno pidvishenij do dvoh tochok utvorit katenariyu 1691 r Dzhejms Bernulli pokazuye sho kriva katenariyi maye najnizhchij centr vagi bud yakogo lancyuga visyachogo z dvoh neruhomih tochok 1696 r Jogann Bernulli pokazuye sho cikloyid ce rishennya problemi brahistohronu 1707 r Gotfrid Lyajbnic jmovirno rozvivaye princip najmenshih dij 1710 r Yakob German pokazuye sho vektor Laplasa Runge Lenca zberigayetsya dlya specialnogo vipadku centralnoyi sili yaka zalezhit oberneno proporcijno vid kvadratu vidstani 1714 r Bruk Tejlor otrimav osnovnu chastotu natyagnutoyi vibracijnoyi struni z tochki zoru yiyi natyagu ta masi na odinicyu dovzhini shlyahom virishennya zvichajnogo diferencialnogo rivnyannya 1733 r Daniel Bernulli vidkriv osnovni chastoti i garmoniki visyachogo lancyuga rozv yazuyuchi zvichajne diferencialne rivnyannya 1734 r Daniel Bernulli rozv yazav zvichajne diferencialne rivnyannya dlya kolivan pruzhnogo tila zatisnutogo na odnomu kinci 1739 r Leongard Ejler virishiv zvichajne diferencialne rivnyannya dlya vimushenih kolivan garmonichnogo oscilyatora i pomitiv rezonans 1742 r Kolin Makloren vidkriv svoyi rivnomirno obertovi samogravitacijni sferoyidi 1743 r Zhan le Ron d Alambert opublikuvav svoyu najvidomishu pracyu Traktat pro dinamiku v yakij vin vpershe sformulyuvav zagalni pravila skladannya diferencialnih rivnyan ruhu bud yakih materialnih sistem vivodit koncepciyu en ta princip d Alamberta 1747 r d Alamber i Aleksi Klero opublikuvali pershi priblizni rishennya zadachi z troma tilami 1749 r Leonard Ejler viviv rivnyannya dlya priskorennya Koriolisa 1759 r Leonard Ejler virishuye chastkovo diferencialne rivnyannya dlya vibracij pryamokutnogo barabana 1764 r Leonard Ejler vivchaye chastkovo diferencialne rivnyannya vibracij krugovogo barabana i znahodit odne z rozv yazan funkciyi Besselya 1776 r Dzhon Smiton publikuye dopovid pro eksperimenti yaki pov yazani z potuzhnistyu robotoyu impulsom i kinetichnoyu energiyeyu ta pidtrimuye zberezhennya energiyi 1788 r Zhozef Luyi Lagranzh predstavlyaye rivnyannya ruhu Lagranzha v praci Analitichna mehanika 1789 r Antuan Lavuazye pidtverdzhuye zakon zberezhennya masi 1803 r Luyi Puanso rozroblyaye ideyu pro zberezhennya impulsu kuta cej rezultat buv vidomij lishe u vipadku zberezhennya en 1813 r Piter Evart opublikuvav robotu Pro miru ruhomoyi sili v yakij pidtrimuye ideyu zberezhennya energiyi 1821 r Vilyam Gamilton pochinaye analiz harakternoyi funkciyi Gamiltona ta rivnyannya Gamiltona Yakobi 1829 r Karl Fridrih Gauss vvodit princip Gaussa najmenshogo obmezhennya 1834 r Karl Yakobi viyavlyaye svoyi rivnomirno obertovi samogravitacijni elipsoyidi 1834 r Luyi Puanso zvertaye uvagu na priklad teoremi promizhnoyi osi 1835 r Vilyam Gamilton obgruntovuye kanonichni rivnyannya ruhu Gamiltona shodo ruhu 1838 r Liuvil pochinaye robotu nad teoremoyu Liuvillya 1841 r Yulius Robert fon Meyer vchenij amator pishe dopovid pro zberezhennya energiyi ale vidsutnist v nogo akademichnoyi pidgotovki prizvodit do yiyi vidmovi 1847 r German fon Gelmgolc obgruntuvav zakon zberezhennya energiyi Persha polovina XIX stolittya Koshi rozroblyaye rivnyannya impulsu ta svij tenzor napruzhen 1851 r Leon Fuko pokazuye obertannya Zemli velicheznim mayatnikom mayatnik Fuko 1870 r Rudolf Klauzius vivodit teoriyu pro virusi 1902 r Dzhejms Dzhins znahodit shkalu dovzhini neobhidnu dlya zrostannya gravitacijnih zburen u statichnomu majzhe odnoridnomu seredovishi 1915 r Emmi Neter dovodit teoremu Netera z yakoyi vivedeno zakoni zberezhennya 1952 r Parker viviv tenzornu formu teoremi pro virusi 1978 r Volodimir Arnold oderzhavav tochnu formu en 1983 r Mordehaj Milgrom proponuye modifikovanu nyutonivsku dinamiku 1992 r Udvadiya i Kalaba stvoryuyut en PrimitkiOssendrijver Mathieu 29 sichnya 2016 Science 351 6272 482 484 Bibcode 2016Sci 351 482O doi 10 1126 science aad8085 PMID 26823423 Arhiv originalu za 28 listopada 2020 Procitovano 29 sichnya 2016 Sambursky Samuel 2014 Princeton University Press s 65 66 ISBN 9781400858989 Arhiv originalu za 12 chervnya 2020 Procitovano 16 grudnya 2019 1964 La dynamique d Ibn Bajja in Melanges Alexandre Koyre I 442 468 462 468 Paris cf Abel B Franco October 2003 Avempace Projectile Motion and Impetus Theory Journal of the History of Ideas 64 4 p 521 546 543 Pines has also seen Avempace s idea of fatigue as a precursor to the Leibnizian idea of force which according to him underlies Newton s third law of motion and the concept of the reaction of forces ISBN 0 684 10114 9 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite encyclopedia title Shablon Cite encyclopedia cite encyclopedia a Propushenij abo porozhnij title dovidka cf Abel B Franco October 2003 Avempace Projectile Motion and Impetus Theory Journal of the History of Ideas 64 4 p 521 546 528 Hibat Allah Abu l Barakat al Bagdadi c 1080 after 1164 65 extrapolated the theory for the case of falling bodies in an original way in his Kitab al Mu tabar The Book of that Which is Established through Personal Reflection This idea is according to Pines the oldest negation of Aristotle s fundamental dynamic law namely that a constant force produces a uniform motion and is thus an anticipation in a vague fashion of the fundamental law of classical mechanics namely that a force applied continuously produces acceleration Mariam Rozhanskaya and I S Levinova 1996 Statics in Roshdi Rashed ed Vol 2 p 614 642 621 Routledge London and New York Clagett 1968 p 561 Nicole Oresme and the Medieval Geometry of Qualities and Motions a treatise on the uniformity and difformity of intensities known as Tractatus de configurationibus qualitatum et motuum Madison WI University of Wisconsin Press ISBN 0 299 04880 2 Grant 1996 p 103 14 chervnya 2021 u Wayback Machine F Jamil Ragep 2001 Tusi and Copernicus The Earth s Motion in Context Science in Context 14 1 2 p 145 163 Cambridge University Press www scientus org Arhiv originalu za 28 grudnya 2019 Procitovano 26 sichnya 2019 Sharratt Michael 1994 Galileo Decisive Innovator Cambridge Cambridge University Press ISBN 0 521 56671 1 p 198 Wallace William A 2004 Domingo de Soto and the Early Galileo Aldershot Ashgate Publishing ISBN 0 86078 964 0 pp II 384 II 400 III 272 Ismail Bullialdus Astronomia Philolaica Paris France Piget 1645 page 23 9 listopada 2013 u Wayback Machine 1710 Unknown title Giornale de Letterati d Italia 2 447 467 1710 Extrait d une lettre de M Herman a M Bernoulli datee de Padoue le 12 Juillet 1710 Histoire de l Academie Royale des Sciences Paris 1732 519 521 Poinsot 1834 Theorie Nouvelle de la Rotation des Corps Bachelier Paris Parker E N 1954 Tensor Virial Equations Physical Review 96 6 1686 1689 Bibcode 1954PhRv 96 1686P doi 10 1103 PhysRev 96 1686 V I Arnold Mathematical Methods of Classical Mechanics Graduate Texts in Mathematics Springer New York 1978 Vol 60