Ста́ла Апері́ (англ. Apéry's constant, фр. Constante d'Apéry) — дійсне число, що позначається (іноді ), яке дорівнює сумі обернених до кубів цілих додатних чисел і, отже, є частковим значенням дзета-функції Рімана:
Стала Апері | |
Названо на честь | Роже Апері |
---|---|
Позначення величини | ζ(3) |
Числове значення | 1,20205690316 |
Формула | |
Позначення у формулі | , , і |
Підтримується Вікіпроєктом |
- .
Чисельне значення сталої виражається нескінченним неперіодичним десятковим дробом:
- 1,202 056 903 159 594 285 399 738 161 511 449 990 764 986 292 340 498 881 792 271 555 3…
Названа на честь Роже Апері, який довів 1978 року, що є ірраціональним числом ([en]). Початкове доведення мало складний технічний характер, пізніше знайдено простий варіант доведення з використанням многочленів Лежандра. Невідомо, чи є стала Апері трансцендентним числом.
Ця стала давно приваблювала математиків — ще 1735 році Леонард Ейлер обчислив її з точністю до 16 значущих цифр (+1,202056903159594).
Застосування в математиці і фізиці
У математиці стала Апері зустрічається у багатьох застосуваннях. Зокрема, величина, обернена до , дає ймовірність того, що будь-які три випадковим чином вибраних додатних цілих числа будуть взаємно простими — в тому сенсі, що при ймовірність того, що три додатних цілих числа, менших, ніж (і вибраних випадковим чином) будуть взаємно простими, прямує до .
Стала Апері природним чином виникає в низці задач фізики, зокрема в поправках другого (і вище) порядків до аномального магнітного моменту електрона в квантовій електродинаміці. Наприклад, результат для двопетльової діаграми Фейнмана, зображеної на малюнку, дає (тут мається на увазі 4-вимірне інтегрування за імпульсами внутрішніх петель, що містять тільки безмасові віртуальні частинки, а також відповідне нормування, включно зі степенем імпульсу зовнішньої частки ). Інший приклад — двовимірна модель Дебая.
Зв'язок з іншими функціями
Стала Апері пов'язана з частковим значенням полігамма-функції другого порядку:
і з'являється в розкладі гамма-функції в ряд Тейлора:
- ,
де у вигляді факторизуються внески, що містять сталу Ейлера — Маскероні .
Стала Апері також пов'язана зі значеннями (частковий випадок полілогарифма ):
- ,
- .
Подання у вигляді рядів
Деякі інші ряди, члени яких обернені кубів натуральних чисел, також виражаються через сталу Апері:
- ,
- .
Інші відомі результати — сума ряду, що містить гармонічні числа :
- ,
а також подвійна сума:
- .
Для доведення ірраціональності Роже Апері користувався поданням:
- ,
де — біноміальний коефіцієнт.
1773 року Леонард Ейлер навів подання у вигляді ряду (яке згодом було кілька разів заново відкрито в інших роботах):
- ,
у якому значення дзета-функції Рімана парних аргументів можна подати як , де — числа Бернуллі.
Рамануджан дав кілька подань у вигляді рядів, які чудові тим, що вони забезпечують кілька нових значущих цифр на кожній ітерації. Серед них:
[en] отримав ряди іншого типу:
а також аналогічні подання для інших сталих .
Отримано й інші подання у вигляді рядів, зокрема:
Деякі з цих подань використано для обчислення сталої Апері з багатьма мільйонами значущих цифр.
1998 року отримано подання у вигляді ряду, яке дає можливість обчислити довільний біт сталої Апері.
Подання у вигляді інтегралів
Існує також багато різних інтегральних подань для сталої Апері, починаючи від тривіальних формул на зразок
або
- ,
які випливають із найпростіших інтегральних визначень дзета-функції Рімана, до досить складних, таких, як
- ([ru]),
- ([en]),
- (Ярослав Благушин).
Ланцюгові дроби
Ланцюговий дріб для сталої Апері (послідовність A013631 з Онлайн енциклопедії послідовностей цілих чисел, OEIS) має такий вигляд:
Перший узагальнений ланцюговий дріб для сталої Апері, що має закономірність, відкрили незалежно Стілтьєс і Рамануджан:
Його можна перетворити до вигляду:
Апері зміг прискорити збіжність ланцюгового дробу для сталої:
Обчислення десяткових цифр
Число відомих значущих цифр сталої Апері значно зросло за останні десятиліття завдяки як збільшенню комп'ютерних потужностей, так і поліпшенню алгоритмів.
Дата | Кількість значущих цифр | Автори обчислення |
---|---|---|
1735 | 16 | Леонард Ейлер |
1887 | 32 | Томас Йоанес Стілтьєс |
1996 | 520,000 | Greg J. Fee & Simon Plouffe |
1997 | 1,000,000 | Bruno Haible & Thomas Papanikolaou |
1997, травень | 10,536,006 | Patrick Demichel |
1998, лютий | 14,000,074 | Sebastian Wedeniwski |
1998, березень | 32,000,213 | Sebastian Wedeniwski |
1998, липень | 64,000,091 | Sebastian Wedeniwski |
1998, грудень | 128,000,026 | Sebastian Wedeniwski |
2001, вересень | 200,001,000 | Shigeru Kondo & Xavier Gourdon |
2002, лютий | 600,001,000 | Shigeru Kondo & Xavier Gourdon |
2003, лютий | 1,000,000,000 | Patrick Demichel & Xavier Gourdon |
2006, квітень | 10,000,000,000 | Shigeru Kondo & Steve Pagliarulo |
2009, січень | 15,510,000,000 | Alexander J. Yee & Raymond Chan |
2009, березень | 31,026,000,000 | Alexander J. Yee & Raymond Chan |
2010, вересень | 100,000,001,000 | Alexander J. Yee |
2013, вересень | 200 000 001 000 | Robert J. Setti |
2015, серпень | 250 000 000 000 | Ron Watkins |
2015, грудень | 400 000 000 000 | Dipanjan Nag |
2017, серпень | 500 000 000 000 | Ron Watkins |
2019, травень | 1 000 000 000 000 | Ian Cutress |
2020, липень | 1 200 000 000 000 | Seungmin Kim |
Інші значення дзета-функції в непарних точках
Існує багато досліджень, присвячених іншим значенням дзета-функції Рімана в непарних точках при . Зокрема, в роботах [en] і Тангая Рівоаля показано, що ірраціональними є нескінченна множина чисел , а також що принаймні одне з чисел , , , або є ірраціональним.
Примітки
- Simon Plouffe, (English) , архів оригіналу (HTML) за 5 лютого 2008, процитовано 8 лютого 2011
- Roger Apéry (1979), Irrationalité de ζ(2) et ζ(3), Astérisque (French) , 61: 11—13
- A. van der Poorten (1979), (PDF), The Mathematical Intelligencer (English) , 1: 195—203, doi:10.1007/BF03028234, архів оригіналу (PDF) за 6 липня 2011, процитовано 8 лютого 2011
- Leonhard Euler (1741), Inventio summae cuiusque seriei ex dato termino generali (13 октября 1735) (PDF), Commentarii academiae scientiarum Petropolitanae (Latin) , 8: 173—204, процитовано 9 лютого 2011
- Leonhard Euler (translation by Jordan Bell, 2008), Finding the sum of any series from a given general term (PDF), arXiv:0806.4096 (English) , процитовано 9 лютого 2011
- Leonhard Euler (1773), Exercitationes analyticae (PDF), Novi Commentarii academiae scientiarum Petropolitanae (Latin) , 17: 173—204, процитовано 8 лютого 2011
- Bruce C. Berndt (1989), Ramanujan's notebooks, Part II, Springer-Verlag, ISBN , процитовано 8 лютого 2011
- D. J. Broadhurst (1998), Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ζ(3) and ζ(5) (PDF), arXiv (math.CA/9803067), процитовано 8 лютого 2011
- Г. М. Фихтенгольц. Курс дифференциального и интегрального исчисления (7-ое изд.), с. 769. Наука, Москва, 1969
- Johan Ludwig William Valdemar Jensen. Note numéro 245. Deuxième réponse. Remarques relatives aux réponses du MM. Franel et Kluyver. L'Intermédiaire des mathématiciens, tome II, pp. 346—347, 1895.
- F. Beukers A Note on the Irrationality of ζ(2) and ζ(3). Bull. London Math. Soc. 11, pp. 268—272, 1979.
- Iaroslav V. Blagouchine Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results. The Ramanujan Journal, vol. 35, no. 1, pp. 21-110, 2014. PDF
- Steven R. Finch Mathematical Constants 1.6.6
- (1979), (PDF), The Mathematical Intelligencer, 1 (4): 195—203, doi:10.1007/BF03028234, архів оригіналу (PDF) за 6 липня 2011, процитовано 22 червня 2021
- X. Gourdon & P. Sebah, Constants and Records of Computation (HTML), numbers.computation.free.fr, процитовано 8 лютого 2011
- Sebastian Wedeniwski (2001), The Value of Zeta(3) to 1,000,000 places, Project Gutenberg
{{}}
:|access-date=
вимагає|url=
() - Xavier Gourdon & Pascal Sebah (2003), The Apéry's constant: ζ(3) (HTML), процитовано 8 лютого 2011
- Alexander J. Yee & Raymond Chan (2009), Large Computations (HTML), процитовано 8 лютого 2011
- Alexander J. Yee (2015), Zeta(3) — Apery's Constant (HTML), процитовано 24 листопада 2018
- Apéry's Constant | Polymath Collector
- T. Rivoal (2000), La fonction zeta de Riemann prend une infnité de valuers irrationnelles aux entiers impairs, Comptes Rendus Acad. Sci. Paris Sér. I Math., 331: 267—270
- В. В. Зудилин. Одно из чисел ζ(5), ζ(7), ζ(9), ζ(11) иррационально // УМН. — 2001. — Т. 56, вип. 4(340) (29 червня). — С. 149–150.
Посилання
- Ю. И. Манин, А. А. Панчишкин. I.2.4. Диофантовы приближения и иррациональность ζ(3) // Введение в теорию чисел. — ВИНИТИ, 1990. — Т. 49. — С. 83—89. — (Итоги науки и техники. Серия «Современные проблемы математики. Фундаментальные направления».)
- V. Ramaswami (1934), Notes on Riemann's ζ-function (PDF), J. London Math. Soc., 9: 165—169, doi:10.1112/jlms/s1-9.3.165
- Weisstein, Eric W. Стала Апері(англ.) на сайті Wolfram MathWorld.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Sta la Aperi angl Apery s constant fr Constante d Apery dijsne chislo sho poznachayetsya z 3 displaystyle zeta 3 inodi z 3 displaystyle zeta 3 yake dorivnyuye sumi obernenih do kubiv cilih dodatnih chisel i otzhe ye chastkovim znachennyam dzeta funkciyi Rimana Stala Aperi Nazvano na chestRozhe Aperi Poznachennya velichiniz 3 Chislove znachennya1 20205690316 Formulaz 3 n 1 1 n 3 displaystyle zeta 3 sum limits n 1 infty frac 1 n 3 Poznachennya u formuliz 3 displaystyle zeta 3 z displaystyle zeta 3 displaystyle 3 i n displaystyle n Pidtrimuyetsya VikiproyektomVikipediya Proyekt Matematikaz 3 k 1 1 k 3 1 1 3 1 2 3 1 3 3 1 4 3 displaystyle zeta 3 sum k 1 infty frac 1 k 3 frac 1 1 3 frac 1 2 3 frac 1 3 3 frac 1 4 3 dots Chiselne znachennya staloyi virazhayetsya neskinchennim neperiodichnim desyatkovim drobom z 3 displaystyle displaystyle zeta 3 1 202 056 903 159 594 285 399 738 161 511 449 990 764 986 292 340 498 881 792 271 555 3 Nazvana na chest Rozhe Aperi yakij doviv 1978 roku sho z 3 displaystyle zeta 3 ye irracionalnim chislom en Pochatkove dovedennya malo skladnij tehnichnij harakter piznishe znajdeno prostij variant dovedennya z vikoristannyam mnogochleniv Lezhandra Nevidomo chi ye stala Aperi transcendentnim chislom Cya stala davno privablyuvala matematikiv she 1735 roci Leonard Ejler obchisliv yiyi z tochnistyu do 16 znachushih cifr 1 202056903159594 Zastosuvannya v matematici i fiziciDvopetlova diagrama Fejnmana rezultat dlya yakoyi mistit z 3 displaystyle zeta 3 U matematici stala Aperi zustrichayetsya u bagatoh zastosuvannyah Zokrema velichina obernena do z 3 displaystyle zeta 3 daye jmovirnist togo sho bud yaki tri vipadkovim chinom vibranih dodatnih cilih chisla budut vzayemno prostimi v tomu sensi sho pri N displaystyle N to infty jmovirnist togo sho tri dodatnih cilih chisla menshih nizh N displaystyle textstyle N i vibranih vipadkovim chinom budut vzayemno prostimi pryamuye do 1 z 3 displaystyle 1 zeta 3 Stala Aperi prirodnim chinom vinikaye v nizci zadach fiziki zokrema v popravkah drugogo i vishe poryadkiv do anomalnogo magnitnogo momentu elektrona v kvantovij elektrodinamici Napriklad rezultat dlya dvopetlovoyi diagrami Fejnmana zobrazhenoyi na malyunku daye 6 z 3 displaystyle 6 zeta 3 tut mayetsya na uvazi 4 vimirne integruvannya za impulsami vnutrishnih petel sho mistyat tilki bezmasovi virtualni chastinki a takozh vidpovidne normuvannya vklyuchno zi stepenem impulsu zovnishnoyi chastki k displaystyle k Inshij priklad dvovimirna model Debaya Zv yazok z inshimi funkciyamiStala Aperi pov yazana z chastkovim znachennyam poligamma funkciyi drugogo poryadku z 3 1 2 ps 2 1 displaystyle zeta 3 tfrac 1 2 psi 2 1 i z yavlyayetsya v rozkladi gamma funkciyi v ryad Tejlora G 1 e e g e 1 1 12 p 2 e 2 1 3 z 3 e 3 O e 4 displaystyle Gamma 1 varepsilon e gamma varepsilon left 1 tfrac 1 12 pi 2 varepsilon 2 tfrac 1 3 zeta 3 varepsilon 3 O varepsilon 4 right de u viglyadi e g e displaystyle e gamma varepsilon faktorizuyutsya vneski sho mistyat stalu Ejlera Maskeroni g displaystyle textstyle gamma Stala Aperi takozh pov yazana zi znachennyami L i 3 z displaystyle mathrm Li 3 z chastkovij vipadok polilogarifma L i n z displaystyle mathrm Li n z L i 3 1 z 3 displaystyle mathrm Li 3 1 zeta 3 L i 3 1 2 1 6 ln 2 3 1 12 p 2 ln 2 7 8 z 3 displaystyle mathrm Li 3 left tfrac 1 2 right tfrac 1 6 ln 2 3 tfrac 1 12 pi 2 ln 2 tfrac 7 8 zeta 3 Podannya u viglyadi ryadivDeyaki inshi ryadi chleni yakih oberneni kubiv naturalnih chisel takozh virazhayutsya cherez stalu Aperi z 3 4 3 k 1 1 k 1 k 3 4 3 1 1 2 3 1 3 3 1 4 3 displaystyle zeta 3 tfrac 4 3 sum k 1 infty frac 1 k 1 k 3 tfrac 4 3 left 1 frac 1 2 3 frac 1 3 3 frac 1 4 3 cdots right z 3 8 7 k 0 1 2 k 1 3 8 7 1 1 3 3 1 5 3 1 7 3 displaystyle zeta 3 tfrac 8 7 sum k 0 infty frac 1 2k 1 3 tfrac 8 7 left 1 frac 1 3 3 frac 1 5 3 frac 1 7 3 cdots right Inshi vidomi rezultati suma ryadu sho mistit garmonichni chisla H k displaystyle textstyle H k z 3 1 2 k 1 H k k 2 displaystyle zeta 3 tfrac 1 2 sum k 1 infty frac H k k 2 a takozh podvijna suma z 3 1 2 j 1 k 1 1 j k j k displaystyle zeta 3 tfrac 1 2 sum j 1 infty sum k 1 infty frac 1 jk j k Dlya dovedennya irracionalnosti z 3 displaystyle zeta 3 Rozhe Aperi koristuvavsya podannyam z 3 5 2 k 1 1 k 1 k 2 k 3 2 k 5 2 k 1 1 k 1 k 3 2 k k displaystyle zeta 3 tfrac 5 2 sum k 1 infty 1 k 1 frac k 2 k 3 2k tfrac 5 2 sum k 1 infty frac 1 k 1 k 3 binom 2k k de 2 k k 2 k k 2 displaystyle textstyle binom 2k k frac 2k k 2 binomialnij koeficiyent 1773 roku Leonard Ejler naviv podannya u viglyadi ryadu yake zgodom bulo kilka raziv zanovo vidkrito v inshih robotah z 3 1 7 p 2 1 4 k 1 z 2 k 2 k 1 2 k 2 2 2 k displaystyle zeta 3 tfrac 1 7 pi 2 left 1 4 sum k 1 infty frac zeta 2k 2k 1 2k 2 2 2k right u yakomu znachennya dzeta funkciyi Rimana parnih argumentiv mozhna podati yak z 2 k 1 k 1 2 p 2 k B 2 k 2 2 k displaystyle textstyle zeta 2k 1 k 1 2 pi 2k B 2k 2 2k de B 2 k displaystyle textstyle B 2k chisla Bernulli Ramanudzhan dav kilka podan u viglyadi ryadiv yaki chudovi tim sho voni zabezpechuyut kilka novih znachushih cifr na kozhnij iteraciyi Sered nih z 3 7 180 p 3 2 k 1 1 k 3 e 2 p k 1 displaystyle zeta 3 tfrac 7 180 pi 3 2 sum k 1 infty frac 1 k 3 e 2 pi k 1 en otrimav ryadi inshogo tipu z 3 14 k 1 1 k 3 sinh p k 11 2 k 1 1 k 3 e 2 p k 1 7 2 k 1 1 k 3 e 2 p k 1 displaystyle zeta 3 14 sum k 1 infty frac 1 k 3 sinh pi k tfrac 11 2 sum k 1 infty frac 1 k 3 e 2 pi k 1 tfrac 7 2 sum k 1 infty frac 1 k 3 e 2 pi k 1 a takozh analogichni podannya dlya inshih stalih z 2 n 1 displaystyle zeta 2n 1 Otrimano j inshi podannya u viglyadi ryadiv zokrema z 3 1 4 k 1 1 k 1 56 k 2 32 k 5 k 1 3 2 k 1 2 3 k displaystyle zeta 3 tfrac 1 4 sum k 1 infty 1 k 1 frac 56k 2 32k 5 k 1 3 2k 1 2 3k z 3 8 7 8 7 k 1 1 k 2 5 12 k k 3 9 k 148 k 2 432 k 3 2688 k 4 7168 k 5 k 3 1 2 k 6 1 2 k 3 3 k 1 4 k 3 displaystyle zeta 3 tfrac 8 7 tfrac 8 7 sum k 1 infty frac left 1 right k 2 5 12 k k left 3 9 k 148 k 2 432 k 3 2688 k 4 7168 k 5 right k 3 left 1 2 k right 6 left 1 2 k right 3 left 3 k right left 1 4 k right 3 z 3 1 64 k 0 1 k 205 k 2 250 k 77 k 10 2 k 1 5 displaystyle zeta 3 tfrac 1 64 sum k 0 infty 1 k frac 205k 2 250k 77 cdot k 10 2k 1 5 z 3 1 24 k 0 1 k 2 k 1 2 k k 3 126392 k 5 412708 k 4 531578 k 3 336367 k 2 104000 k 12463 3 k 2 4 k 3 3 displaystyle zeta 3 tfrac 1 24 sum k 0 infty 1 k frac 2k 1 2k k 3 126392k 5 412708k 4 531578k 3 336367k 2 104000k 12463 3k 2 cdot 4k 3 3 Deyaki z cih podan vikoristano dlya obchislennya staloyi Aperi z bagatma miljonami znachushih cifr 1998 roku otrimano podannya u viglyadi ryadu yake daye mozhlivist obchisliti dovilnij bit staloyi Aperi Podannya u viglyadi integralivIsnuye takozh bagato riznih integralnih podan dlya staloyi Aperi pochinayuchi vid trivialnih formul na zrazok z 3 1 2 0 x 2 e x 1 d x 2 3 0 x 2 e x 1 d x displaystyle zeta 3 frac 1 2 int limits 0 infty frac x 2 e x 1 dx frac 2 3 int limits 0 infty frac x 2 e x 1 dx abo z 3 0 1 ln x ln 1 x x d x displaystyle zeta 3 int limits 0 1 frac ln x ln 1 x x dx yaki viplivayut iz najprostishih integralnih viznachen dzeta funkciyi Rimana do dosit skladnih takih yak z 3 p 0 cos 2 a r c t g x x 2 1 c h 1 2 p x 2 d x displaystyle zeta 3 pi int limits 0 infty frac cos 2 mathrm arctg x left x 2 1 right big mathrm ch big frac 1 2 pi x big big 2 dx qquad ru z 3 1 2 0 1 0 1 ln x y 1 x y d x d y displaystyle zeta 3 frac 1 2 int limits 0 1 int limits 0 1 frac ln xy 1 xy dx dy qquad en z 3 8 p 2 7 0 1 x x 4 4 x 2 1 ln ln 1 x 1 x 2 4 d x displaystyle zeta 3 frac 8 pi 2 7 int limits 0 1 frac x left x 4 4x 2 1 right ln ln frac 1 x 1 x 2 4 dx qquad Yaroslav Blagushin Lancyugovi drobiLancyugovij drib dlya staloyi Aperi poslidovnist A013631 z Onlajn enciklopediyi poslidovnostej cilih chisel OEIS maye takij viglyad z 3 1 4 1 18 1 1 1 4 1 9 9 2 1 1 1 2 7 1 1 7 11 1 1 1 displaystyle zeta 3 1 4 1 18 1 1 1 4 1 9 9 2 1 1 1 2 7 1 1 7 11 1 1 1 cdots 1 1 4 1 1 1 18 1 1 displaystyle 1 cfrac 1 4 cfrac 1 1 cfrac 1 18 cfrac 1 1 ldots Pershij uzagalnenij lancyugovij drib dlya staloyi Aperi sho maye zakonomirnist vidkrili nezalezhno Stiltyes i Ramanudzhan z 3 1 1 4 1 3 1 1 3 12 2 3 1 2 3 20 3 3 1 3 3 28 n 3 1 n 3 4 2 n 1 displaystyle zeta 3 1 cfrac 1 4 cfrac 1 3 1 cfrac 1 3 12 cfrac 2 3 1 cfrac 2 3 20 cfrac 3 3 1 cfrac 3 3 28 cfrac dots dots cfrac n 3 1 cfrac n 3 4 2n 1 dots Jogo mozhna peretvoriti do viglyadu z 3 1 1 5 1 6 21 2 6 55 3 6 119 4 6 225 n 6 2 n 3 3 n 2 11 n 5 displaystyle zeta 3 1 cfrac 1 5 cfrac 1 6 21 cfrac 2 6 55 cfrac 3 6 119 cfrac 4 6 225 cfrac dots dots cfrac n 6 2n 3 3n 2 11n 5 dots Aperi zmig priskoriti zbizhnist lancyugovogo drobu dlya staloyi z 3 6 5 1 6 117 2 6 535 3 6 1436 4 6 3105 n 6 34 n 3 51 n 2 27 n 5 displaystyle zeta 3 frac 6 5 cfrac 1 6 117 cfrac 2 6 535 cfrac 3 6 1436 cfrac 4 6 3105 cfrac dots dots cfrac n 6 34n 3 51n 2 27n 5 dots Obchislennya desyatkovih cifrChislo vidomih znachushih cifr staloyi Aperi z 3 displaystyle zeta 3 znachno zroslo za ostanni desyatilittya zavdyaki yak zbilshennyu komp yuternih potuzhnostej tak i polipshennyu algoritmiv Kilkist vidomih znachushih cifr staloyi Aperi z 3 displaystyle zeta 3 Data Kilkist znachushih cifr Avtori obchislennya 1735 16 Leonard Ejler 1887 32 Tomas Joanes Stiltyes 1996 520 000 Greg J Fee amp Simon Plouffe 1997 1 000 000 Bruno Haible amp Thomas Papanikolaou 1997 traven 10 536 006 Patrick Demichel 1998 lyutij 14 000 074 Sebastian Wedeniwski 1998 berezen 32 000 213 Sebastian Wedeniwski 1998 lipen 64 000 091 Sebastian Wedeniwski 1998 gruden 128 000 026 Sebastian Wedeniwski 2001 veresen 200 001 000 Shigeru Kondo amp Xavier Gourdon 2002 lyutij 600 001 000 Shigeru Kondo amp Xavier Gourdon 2003 lyutij 1 000 000 000 Patrick Demichel amp Xavier Gourdon 2006 kviten 10 000 000 000 Shigeru Kondo amp Steve Pagliarulo 2009 sichen 15 510 000 000 Alexander J Yee amp Raymond Chan 2009 berezen 31 026 000 000 Alexander J Yee amp Raymond Chan 2010 veresen 100 000 001 000 Alexander J Yee 2013 veresen 200 000 001 000 Robert J Setti 2015 serpen 250 000 000 000 Ron Watkins 2015 gruden 400 000 000 000 Dipanjan Nag 2017 serpen 500 000 000 000 Ron Watkins 2019 traven 1 000 000 000 000 Ian Cutress 2020 lipen 1 200 000 000 000 Seungmin KimInshi znachennya dzeta funkciyi v neparnih tochkahIsnuye bagato doslidzhen prisvyachenih inshim znachennyam dzeta funkciyi Rimana v neparnih tochkah z 2 n 1 displaystyle zeta 2n 1 pri n gt 1 displaystyle n gt 1 Zokrema v robotah en i Tangaya Rivoalya pokazano sho irracionalnimi ye neskinchenna mnozhina chisel z 2 n 1 displaystyle zeta 2n 1 a takozh sho prinajmni odne z chisel z 5 displaystyle zeta 5 z 7 displaystyle zeta 7 z 9 displaystyle zeta 9 abo z 11 displaystyle zeta 11 ye irracionalnim PrimitkiSimon Plouffe English arhiv originalu HTML za 5 lyutogo 2008 procitovano 8 lyutogo 2011 Roger Apery 1979 Irrationalite de z 2 et z 3 Asterisque French 61 11 13 A van der Poorten 1979 PDF The Mathematical Intelligencer English 1 195 203 doi 10 1007 BF03028234 arhiv originalu PDF za 6 lipnya 2011 procitovano 8 lyutogo 2011 Leonhard Euler 1741 Inventio summae cuiusque seriei ex dato termino generali 13 oktyabrya 1735 PDF Commentarii academiae scientiarum Petropolitanae Latin 8 173 204 procitovano 9 lyutogo 2011 Leonhard Euler translation by Jordan Bell 2008 Finding the sum of any series from a given general term PDF arXiv 0806 4096 English procitovano 9 lyutogo 2011 Leonhard Euler 1773 Exercitationes analyticae PDF Novi Commentarii academiae scientiarum Petropolitanae Latin 17 173 204 procitovano 8 lyutogo 2011 Bruce C Berndt 1989 Ramanujan s notebooks Part II Springer Verlag ISBN 978 0 387 96794 3 procitovano 8 lyutogo 2011 D J Broadhurst 1998 Polylogarithmic ladders hypergeometric series and the ten millionth digits of z 3 and z 5 PDF arXiv math CA 9803067 procitovano 8 lyutogo 2011 G M Fihtengolc Kurs differencialnogo i integralnogo ischisleniya 7 oe izd s 769 Nauka Moskva 1969 Johan Ludwig William Valdemar Jensen Note numero 245 Deuxieme reponse Remarques relatives aux reponses du MM Franel et Kluyver L Intermediaire des mathematiciens tome II pp 346 347 1895 F Beukers A Note on the Irrationality of z 2 and z 3 Bull London Math Soc 11 pp 268 272 1979 Iaroslav V Blagouchine Rediscovery of Malmsten s integrals their evaluation by contour integration methods and some related results The Ramanujan Journal vol 35 no 1 pp 21 110 2014 PDF Steven R Finch Mathematical Constants 1 6 6 1979 PDF The Mathematical Intelligencer 1 4 195 203 doi 10 1007 BF03028234 arhiv originalu PDF za 6 lipnya 2011 procitovano 22 chervnya 2021 X Gourdon amp P Sebah Constants and Records of Computation HTML numbers computation free fr procitovano 8 lyutogo 2011 Sebastian Wedeniwski 2001 The Value of Zeta 3 to 1 000 000 places Project Gutenberg a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Citation title Shablon Citation citation a access date vimagaye url dovidka Xavier Gourdon amp Pascal Sebah 2003 The Apery s constant z 3 HTML procitovano 8 lyutogo 2011 Alexander J Yee amp Raymond Chan 2009 Large Computations HTML procitovano 8 lyutogo 2011 Alexander J Yee 2015 Zeta 3 Apery s Constant HTML procitovano 24 listopada 2018 Apery s Constant Polymath Collector T Rivoal 2000 La fonction zeta de Riemann prend une infnite de valuers irrationnelles aux entiers impairs Comptes Rendus Acad Sci Paris Ser I Math 331 267 270 V V Zudilin Odno iz chisel z 5 z 7 z 9 z 11 irracionalno UMN 2001 T 56 vip 4 340 29 chervnya S 149 150 PosilannyaYu I Manin A A Panchishkin I 2 4 Diofantovy priblizheniya i irracionalnost z 3 Vvedenie v teoriyu chisel VINITI 1990 T 49 S 83 89 Itogi nauki i tehniki Seriya Sovremennye problemy matematiki Fundamentalnye napravleniya V Ramaswami 1934 Notes on Riemann s z function PDF J London Math Soc 9 165 169 doi 10 1112 jlms s1 9 3 165 Weisstein Eric W Stala Aperi angl na sajti Wolfram MathWorld