У лінійній алгебрі, для векторних просторів і над полем будь-яке лінійне відображення можна подати за допомогою матриці, яка називається матрицею лінійного відображення. Дане представлення є зручним для обчислень та дозволяє обчислювати композицію лінійних відображень через звичайний добуток матриць.
Проте матриця лінійного відображення визначена не однозначно, а залежить від вибору базисів у просторах і . Матриці лінійного перетворення у різних базисах пов'язані матричною тотожністю із використанням матриць переходу між різними базисами.
Означення
Нехай є векторним простором розмірності над полем із вибраним на ньому базисом , а є векторним простором розмірності над полем із вибраним базисом Нехай є лінійним відображенням між цими двома просторами.
Матрицею лінійного відображення у базисах і (позначатиметься ) називається матриця стовпцями якої є коефіцієнти розкладу векторів (тобто образів векторів базису ) у базисі .
Більш детально кожен вектор можна у єдиний спосіб записати через елементи визначивши коефіцієнти :
Тоді матриця лінійного відображення у цих базисах матиме вигляд:
Зокрема, якщо є простором розмірності , а є простором розмірності , то матриця довільного лінійного відображення для довільних базисів матиме порядок
Якщо (тоді лінійне відображення переважно називається лінійним перетворенням), то матриця довільного лінійного перетворення є квадратною. Якщо у цьому випадку базиси і є однаковими для цієї матриці використовується позначення
Зауваження. Подане тут означення є найпоширенішим у літературі але іноді може використовуватися означення де коефіцієнти розкладу векторів у базисі простору утворюють рядки, а не стовпці матриці.
Співвідношення між координатами векторів
Нехай векторні простори і , їх базиси і і лінійне відображення задані як і вище.
Кожен вектор можна однозначно записати через елементи базиса
- .
Аналогічно можна однозначно записати через елементи базиса
- .
Одержані таким чином координати можна записати як вектор-стовпці і .
Тоді ці координати пов'язані між собою через матрицю лінійного перетворення :
- .
Приклади
- Матриця тотожного перетворення (тобто і ) у випадку якщо базиси і є однаковими є одиничною матрицею. Якщо натомість вибрати різні базиси, то ця матриця буде рівною матриці переходу між базисами.
- Нехай позначає лінійний простір многочленів степені яких не перевищують . Нехай на кожному такому просторі вибрано стандартний базис . Оператор формального диференціювання є лінійним оператором із у із стандартними базами. Матрицею цього перетворення є -матриця виду:
Перетворення на площині
Всюди нижче використовується єдиний базис для координат образу і прообразу перетворення.
- Обертання
- Функціональна форма запису обертання на кут θ проти годинникової стрілки відносно початку координат
- Тобто вектор із координатами переходить у вектор із координатами . Матрицею цього лінійного перетворення є матриця повороту і у матричній формі можна записати:
- Масштабування
- Функціональна форма масштабування:
- .
- Матрицею цього перетворення є діагональна матриця:
- Коли , тоді зберігається площа.
- Зсув
- У випадку (shear) можливі два варіанти. Зсув по осі x і ; тоді матриця зсуву має вигляд:
- Зсув по осі y and , в цьому випадку:
- Відбиття
- Для відбиття вектора щодо прямої, яка проходить через початок координат, нехай (lx, ly) вектор, що лежить на прямій. Матрицею відбиття щодо цієї прямої є матриця Хаусхолдера:
- Відбиття відносно прямої, яка не проходить через початок координат не є лінійним перетворенням; це перетворення афінне.
- Для відбиття точки відносно площини можна використати рівняння , де I — одинична матриця і N — одиничний вектор нормалі до площини. Матриця перетворення буде мати вигляд:
- Такий підхід працює лише якщо площина проходить через початок координат: якщо ні, потрібне афінне перетворення.
- Ортогональна проєкція
- Для проєкціонування вектора ортогонально на пряму, яка проходить через початок координат, позначимо як (ux, uy) вектор, що лежить на прямій. Тоді матрицею ортогонального проектування є матриця:
- Як і з відбиттям, ортогональна проєкція на пряму, яка не проходить через початок координат є афінним перетворенням, а не лінійним.
Властивості
Ізоморфізми між просторами лінійних відображень і матриць
Для векторних просторів і , їх базисів і і лінійного відображення , матриця лінійного відображення визначена однозначно.
Навпаки, для таких просторів і базисів кожна матриця задає єдине лінійне відображення із у .
Справді, якщо є послідовністю будь яких векторів простору (не обов'язково базисом), то існує єдине лінійне відображення з , для . Ця єдина визначається так
Звісно, якщо виявиться базисом , тоді це лінійна бієкція; інакше кажучи, це ізоморфізм. Якщо на додаток до цього , тоді кажуть, що це автоморфізм.
Таким чином простори лінійних відображень і матриць розмірності є ізоморфними векторними просторами. Проте ізоморфізм між ними заданий тут залежить від вибору базисів і . Для іншого вибору базисів одержується інший ізоморфізм, тобто одному і тому ж лінійному відображенню відповідатимуть різні матриці. В математичній літературі через це іноді пишуть, що ізоморфізми між лінійними відображеннями і матрицями не є канонічними.
Матриця композиції лінійних відображень
Нехай додатково до попереднього дано також векторний простір розмірності над тим же полем і лінійне відображення Нехай на вибрано базис Тоді аналогічно до попереднього можна визначити матрицю лінійного відображення Дана матриця матиме розмірність
Композиція відображень (тобто відображення для якого ) буде лінійним відображенням матрицею якого буде добуток матриць і :
- .
Зокрема якщо є лінійним ізоморфізмом, то матрицею оберненого відображення є обернена матриця до матриці відображення :
- .
Зміна матриці при переході до нових базисів
Як зазначено вище матриця лінійного відображення залежить від вибору базисів і відповідних просторів. Проте матриці для різних базисів пов'язані простою формулою із використанням матриць переходу між базисами.
Нехай простори і задані як і вище, для простору вибрані два базиси і а у просторі вибрані два базиси і Позначимо матрицю, стовпці якої є коефіцієнтами розкладу векторів із через базис Еквівалентно із використанням множення вектор-рядка на матрицю для виконується співвідношення
де у правій частині вектори із рядка множаться на скаляри із матриці. Також якщо деякий вектор має координати у базисі і у базисі , то У цій формулі навпаки координати у базисі виражаються через координати у базисі Матриця називається матрицею переходу від базиса до базиса або (згідно попереднього у зворотному порядку) від координат у базисі до координат у базисі .
Аналогічно можна визначити і матрицю , яка називається матрицею переходу від базиса до базиса або від координат у базисі до координат у базисі . Обидві ці матриці є невиродженими і і , тобто обернені матриці рівні матрицям зворотніх переходів між базисами.
Якщо тепер є лінійним відображенням і і є його матрицями у різних базах, то ці матриці задовольняють співвідношення:
Зокрема якщо і є лінійним перетворенням, то його матриці у базисах і пов'язані співвідношенням:
- .
У простіших позначеннях, якщо є матрицею перетворення у базисі , а є матрицею перетворення у базисі і , то:
- .
Зауваження. У різних авторів матрицею переходу від базиса до базиса може називатися як матриця введена у цій статті, так і обернена до неї матриця яка тут називається матрицею переходу від координат у базисі до координат у базисі . Тоді зокрема у останній формулі замість матриці використовують її обернену і формула подається у іншому поширеному виді Також при використанні замість визначеної у статті матриці відображення її транспонованої, матриці перетворення теж використовують транспоновані до визначених. тут. Через ці та інші причини формули, що пов'язують матриці відображень та перетворень при зміні базисів попри свою простоту є причиною численних помилок іноді навіть досвідчених математиків.
Матриці деяких нелінійних відображень
Лінійне відображення не єдине, яке можна представити за допомогою матриць. Деякі перетворення що не є лінійними в евклідовому просторі Rn, можуть бути представлені як лінійне перетворення у просторі розмірністю n+1 — Rn+1. В такому випадку вона включатиме як афінні перетворення (такі як переміщення) і проективні перетворення. Зокрема матриці перетворення 4×4 широко використовуються у застосуваннях тривимірної комп'ютерної графіки.
Ці n+1-вимірні матриці перетворення називаються по різному в залежності від області їх застосування, афінні матриці перетворення, проективні матриці перетворення, або в більш загальному варіанті матриці не лінійного перетворення. По відношенню до n-вимірної матриці, матриця розмірністю n+1- може вважатися розширеною матрицею.
Джерела
- Гельфанд И. М. Лекции по линейной алгебре. — Москва : Наука, 1998. — 320 с. — .(рос.)
- Гантмахер Ф. Р. Теория матриц. — 5-е. — М: : Физматлит, 2010. — 559 с. — .(рос.)
- Теория матриц. — 2. — Москва : Наука, 1982. — 272 с.(рос.)
- , . Матричный анализ. — М: : Мир, 1989. — 653 с.(рос.)
- Weisstein, Eric W. Матриця обертання(англ.) на сайті Wolfram MathWorld.
- Калькулятор лінійних перетворень [ 4 вересня 2009 у Wayback Machine.](англ.)
- Аплет перетворень [ 10 квітня 2010 у Wayback Machine.](англ.) - Генерує матриці з 2D перетворень і навпаки.
Примітки
- Gentle, James E. (2007). Matrix Transformations and Factorizations. . Springer. ISBN . Архів оригіналу за 21 лютого 2017. Процитовано 28 грудня 2015.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
U linijnij algebri dlya vektornih prostoriv V displaystyle V i W displaystyle W nad polem K displaystyle K bud yake linijne vidobrazhennya T V W displaystyle T V to W mozhna podati za dopomogoyu matrici yaka nazivayetsya matriceyu linijnogo vidobrazhennya Dane predstavlennya ye zruchnim dlya obchislen ta dozvolyaye obchislyuvati kompoziciyu linijnih vidobrazhen cherez zvichajnij dobutok matric Prote matricya linijnogo vidobrazhennya viznachena ne odnoznachno a zalezhit vid viboru bazisiv u prostorah V displaystyle V i W displaystyle W Matrici linijnogo peretvorennya u riznih bazisah pov yazani matrichnoyu totozhnistyu iz vikoristannyam matric perehodu mizh riznimi bazisami OznachennyaNehaj V displaystyle V ye vektornim prostorom rozmirnosti n displaystyle n nad polem K displaystyle K iz vibranim na nomu bazisom A a 1 a n displaystyle mathcal A mathbf a 1 ldots mathbf a n a W displaystyle W ye vektornim prostorom rozmirnosti m displaystyle m nad polem K displaystyle K iz vibranim bazisom B b 1 b m displaystyle mathcal B mathbf b 1 ldots mathbf b m Nehaj T V W displaystyle T V to W ye linijnim vidobrazhennyam mizh cimi dvoma prostorami Matriceyu linijnogo vidobrazhennya T displaystyle T u bazisah A displaystyle mathcal A i B displaystyle mathcal B poznachatimetsya M T A B displaystyle M T mathcal A mathcal B nazivayetsya matricya stovpcyami yakoyi ye koeficiyenti rozkladu vektoriv T a j displaystyle T mathbf a j tobto obraziv vektoriv bazisu A displaystyle mathcal A u bazisi B displaystyle mathcal B Bilsh detalno kozhen vektor T a j W displaystyle T mathbf a j in W mozhna u yedinij sposib zapisati cherez elementi B displaystyle mathcal B viznachivshi koeficiyenti a i j displaystyle a ij T a j a 1 j b 1 a 2 j b 2 a m j b m i 1 m a i j b i displaystyle T mathbf a j a 1j mathbf b 1 a 2j mathbf b 2 dotsb a mj mathbf b m sum i 1 m a ij mathbf b i Todi matricya linijnogo vidobrazhennya u cih bazisah matime viglyad M T A B a 11 a 1 j a 1 n a 21 a 2 j a 2 n a m 1 a m j a m n displaystyle M T mathcal A mathcal B begin pmatrix a 11 amp dots amp a 1j amp dots amp a 1n a 21 amp dots amp a 2j amp dots amp a 2n vdots amp amp vdots amp amp vdots a m1 amp dots amp a mj amp dots amp a mn end pmatrix Zokrema yaksho V displaystyle V ye prostorom rozmirnosti n displaystyle n a W displaystyle W ye prostorom rozmirnosti m displaystyle m to matricya dovilnogo linijnogo vidobrazhennya dlya dovilnih bazisiv matime poryadok m n displaystyle m times n Yaksho V W displaystyle V W todi linijne vidobrazhennya perevazhno nazivayetsya linijnim peretvorennyam to matricya dovilnogo linijnogo peretvorennya ye kvadratnoyu Yaksho u comu vipadku bazisi A displaystyle mathcal A i B displaystyle mathcal B ye odnakovimi dlya ciyeyi matrici vikoristovuyetsya poznachennya M T A displaystyle M T mathcal A Zauvazhennya Podane tut oznachennya ye najposhirenishim u literaturi ale inodi mozhe vikoristovuvatisya oznachennya de koeficiyenti rozkladu vektoriv T a j displaystyle T mathbf a j u bazisi prostoru W displaystyle W utvoryuyut ryadki a ne stovpci matrici Spivvidnoshennya mizh koordinatami vektorivNehaj vektorni prostori V displaystyle V i W displaystyle W yih bazisi A a 1 a n displaystyle mathcal A mathbf a 1 ldots mathbf a n i B b 1 b n displaystyle mathcal B mathbf b 1 ldots mathbf b n i linijne vidobrazhennya T V W displaystyle T V to W zadani yak i vishe Kozhen vektor x V displaystyle mathbf x in V mozhna odnoznachno zapisati cherez elementi bazisa A displaystyle mathcal A x x 1 a 1 x n a n displaystyle mathbf x x 1 mathbf a 1 dotsb x n mathbf a n Analogichno T x W displaystyle T mathbf x in W mozhna odnoznachno zapisati cherez elementi bazisa B displaystyle mathcal B T x y 1 b 1 y n b n displaystyle T mathbf x y 1 mathbf b 1 dotsb y n mathbf b n Oderzhani takim chinom koordinati mozhna zapisati yak vektor stovpci x 1 x n displaystyle begin pmatrix x 1 vdots x n end pmatrix i y 1 y m displaystyle begin pmatrix y 1 vdots y m end pmatrix Todi ci koordinati pov yazani mizh soboyu cherez matricyu linijnogo peretvorennya M T A B displaystyle M T mathcal A mathcal B y 1 y m a 11 a 1 n a m 1 a m n x 1 x n displaystyle begin pmatrix y 1 vdots y m end pmatrix begin pmatrix a 11 amp dots amp a 1n vdots amp ddots amp vdots a m1 amp dots amp a mn end pmatrix cdot begin pmatrix x 1 vdots x n end pmatrix PrikladiMatricya totozhnogo peretvorennya tobto V W displaystyle V W i T x x x V displaystyle T x x forall x in V u vipadku yaksho bazisi A displaystyle mathcal A i B displaystyle mathcal B ye odnakovimi ye odinichnoyu matriceyu Yaksho natomist vibrati rizni bazisi to cya matricya bude rivnoyu matrici perehodu mizh bazisami Nehaj P n x displaystyle P n x poznachaye linijnij prostir mnogochleniv stepeni yakih ne perevishuyut n displaystyle n Nehaj na kozhnomu takomu prostori vibrano standartnij bazis 1 x 1 x 2 x n displaystyle 1 x 1 x 2 ldots x n Operator formalnogo diferenciyuvannya a 0 a 1 x 1 a 2 x 2 a n x n a 1 2 a 2 x 1 n a n x n 1 displaystyle a 0 a 1 x 1 a 2 x 2 ldots a n x n a 1 2a 2 x 1 ldots na n x n 1 ye linijnim operatorom iz P n x displaystyle P n x u P n 1 x displaystyle P n 1 x iz standartnimi bazami Matriceyu cogo peretvorennya ye n n 1 displaystyle n times n 1 matricya vidu 0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 n displaystyle begin pmatrix 0 amp 1 amp 0 amp 0 amp dots amp 0 0 amp 0 amp 2 amp 0 amp dots amp 0 0 amp 0 amp 0 amp 3 amp dots amp 0 vdots amp vdots amp vdots amp vdots amp ddots amp vdots 0 amp 0 amp 0 amp 0 amp dots amp n end pmatrix dd Peretvorennya na ploshini Vsyudi nizhche vikoristovuyetsya yedinij bazis dlya koordinat obrazu i proobrazu peretvorennya Obertannya Funkcionalna forma zapisu obertannya na kut 8 proti godinnikovoyi strilki vidnosno pochatku koordinat x x cos 8 y sin 8 y x sin 8 y cos 8 displaystyle begin cases x x cos theta y sin theta y x sin theta y cos theta end cases dd Tobto vektor iz koordinatami x y displaystyle x y perehodit u vektor iz koordinatami x y displaystyle x y Matriceyu cogo linijnogo peretvorennya ye matricya povorotu i u matrichnij formi mozhna zapisati x y cos 8 sin 8 sin 8 cos 8 x y displaystyle begin pmatrix x y end pmatrix begin pmatrix cos theta amp sin theta sin theta amp cos theta end pmatrix begin pmatrix x y end pmatrix dd Masshtabuvannya Funkcionalna forma masshtabuvannya x s x x y s y y displaystyle begin cases x s x cdot x y s y cdot y end cases dd Matriceyu cogo peretvorennya ye diagonalna matricya x y s x 0 0 s y x y displaystyle begin pmatrix x y end pmatrix begin pmatrix s x amp 0 0 amp s y end pmatrix begin pmatrix x y end pmatrix dd Koli s x s y 1 displaystyle s x s y 1 todi zberigayetsya plosha Zsuv U vipadku shear mozhlivi dva varianti Zsuv po osi x x x k y displaystyle x x ky i y y displaystyle y y todi matricya zsuvu maye viglyad x y 1 k 0 1 x y displaystyle begin pmatrix x y end pmatrix begin pmatrix 1 amp k 0 amp 1 end pmatrix begin pmatrix x y end pmatrix dd Zsuv po osi y x x displaystyle x x and y y k x displaystyle y y kx v comu vipadku x y 1 0 k 1 x y displaystyle begin pmatrix x y end pmatrix begin pmatrix 1 amp 0 k amp 1 end pmatrix begin pmatrix x y end pmatrix dd Vidbittya Dlya vidbittya vektora shodo pryamoyi yaka prohodit cherez pochatok koordinat nehaj lx ly vektor sho lezhit na pryamij Matriceyu vidbittya shodo ciyeyi pryamoyi ye matricya Hausholdera A 1 l x 2 l y 2 l x 2 l y 2 2 l x l y 2 l x l y l y 2 l x 2 displaystyle mathbf A frac 1 l x 2 l y 2 begin pmatrix l x 2 l y 2 amp 2l x l y 2l x l y amp l y 2 l x 2 end pmatrix dd Vidbittya vidnosno pryamoyi yaka ne prohodit cherez pochatok koordinat ne ye linijnim peretvorennyam ce peretvorennya afinne Dlya vidbittya tochki vidnosno ploshini a x b y c z 0 displaystyle ax by cz 0 mozhna vikoristati rivnyannya I 2 N N T displaystyle I 2NN T de I odinichna matricya i N odinichnij vektor normali do ploshini Matricya peretvorennya bude mati viglyad 1 2 a 2 2 a b 2 a c 2 a b 1 2 b 2 2 b c 2 a c 2 b c 1 2 c 2 displaystyle begin pmatrix 1 2a 2 amp 2ab amp 2ac 2ab amp 1 2b 2 amp 2bc 2ac amp 2bc amp 1 2c 2 end pmatrix dd Takij pidhid pracyuye lishe yaksho ploshina prohodit cherez pochatok koordinat yaksho ni potribne afinne peretvorennya Ortogonalna proyekciya Dokladnishe Proekcijna matricya Dlya proyekcionuvannya vektora ortogonalno na pryamu yaka prohodit cherez pochatok koordinat poznachimo yak ux uy vektor sho lezhit na pryamij Todi matriceyu ortogonalnogo proektuvannya ye matricya A 1 u x 2 u y 2 u x 2 u x u y u x u y u y 2 displaystyle mathbf A frac 1 u x 2 u y 2 begin pmatrix u x 2 amp u x u y u x u y amp u y 2 end pmatrix dd Yak i z vidbittyam ortogonalna proyekciya na pryamu yaka ne prohodit cherez pochatok koordinat ye afinnim peretvorennyam a ne linijnim VlastivostiIzomorfizmi mizh prostorami linijnih vidobrazhen i matric Dlya vektornih prostoriv V displaystyle V i W displaystyle W yih bazisiv A a 1 a m displaystyle mathcal A mathbf a 1 ldots mathbf a m i B b 1 b n displaystyle mathcal B mathbf b 1 ldots mathbf b n i linijnogo vidobrazhennya T V W displaystyle T V to W matricya linijnogo vidobrazhennya M T A B displaystyle M T mathcal A mathcal B viznachena odnoznachno Navpaki dlya takih prostoriv i bazisiv kozhna m n displaystyle m times n matricya M a 11 a 1 j a 1 n a 21 a 2 j a 2 n a m 1 a m j a m n displaystyle M begin pmatrix a 11 amp dots amp a 1j amp dots amp a 1n a 21 amp dots amp a 2j amp dots amp a 2n vdots amp amp vdots amp amp vdots a m1 amp dots amp a mj amp dots amp a mn end pmatrix zadaye yedine linijne vidobrazhennya iz V displaystyle V u W displaystyle W Spravdi yaksho C c 1 c n displaystyle mathcal C mathbf c 1 cdots mathbf c n ye poslidovnistyu bud yakih vektoriv prostoru W displaystyle W ne obov yazkovo bazisom to isnuye yedine linijne vidobrazhennya T V W displaystyle T V rightarrow W z T a j c j displaystyle T mathbf a j mathbf c j dlya j 1 n displaystyle j 1 cdots n Cya yedina T displaystyle T viznachayetsya tak T x 1 a 1 x n a n T x 1 a 1 T x n a n x 1 T a 1 x n T a n x 1 c 1 x n c n displaystyle T x 1 mathbf a 1 cdots x n mathbf a n T x 1 mathbf a 1 cdots T x n mathbf a n x 1 T mathbf a 1 cdots x n T mathbf a n x 1 mathbf c 1 cdots x n mathbf c n Zvisno yaksho C c 1 c n displaystyle mathcal C mathbf c 1 cdots mathbf c n viyavitsya bazisom W displaystyle W todi T displaystyle T ce linijna biyekciya inakshe kazhuchi T displaystyle T ce izomorfizm Yaksho na dodatok do cogo W V displaystyle W V todi kazhut sho T displaystyle T ce avtomorfizm Takim chinom prostori linijnih vidobrazhen T V W displaystyle T V to W i matric rozmirnosti m n displaystyle m times n ye izomorfnimi vektornimi prostorami Prote izomorfizm mizh nimi zadanij tut zalezhit vid viboru bazisiv A displaystyle mathcal A i B displaystyle mathcal B Dlya inshogo viboru bazisiv oderzhuyetsya inshij izomorfizm tobto odnomu i tomu zh linijnomu vidobrazhennyu vidpovidatimut rizni matrici V matematichnij literaturi cherez ce inodi pishut sho izomorfizmi mizh linijnimi vidobrazhennyami i matricyami ne ye kanonichnimi Matricya kompoziciyi linijnih vidobrazhen Nehaj dodatkovo do poperednogo dano takozh vektornij prostir Z displaystyle Z rozmirnosti k displaystyle k nad tim zhe polem i linijne vidobrazhennya S W Z displaystyle S W to Z Nehaj na Z displaystyle Z vibrano bazis C c 1 c k displaystyle mathcal C mathbf c 1 cdots mathbf c k Todi analogichno do poperednogo mozhna viznachiti matricyu linijnogo vidobrazhennya M S B C displaystyle M S mathcal B mathcal C Dana matricya matime rozmirnist p m displaystyle p times m Kompoziciya vidobrazhen S T V Z displaystyle S circ T V to Z tobto vidobrazhennya dlya yakogo S T x S T x displaystyle S circ T x S T x bude linijnim vidobrazhennyam matriceyu yakogo bude dobutok matric M S B C displaystyle M S mathcal B mathcal C i M T A B displaystyle M T mathcal A mathcal B M S T A C M S B C M T A B displaystyle M S circ T mathcal A mathcal C M S mathcal B mathcal C cdot M T mathcal A mathcal B Zokrema yaksho T displaystyle T ye linijnim izomorfizmom to matriceyu obernenogo vidobrazhennya ye obernena matricya do matrici vidobrazhennya T displaystyle T M T 1 B A M T A B 1 displaystyle M T 1 mathcal B mathcal A M T mathcal A mathcal B 1 Zmina matrici pri perehodi do novih bazisiv Dokladnishe Zmina bazisu Yak zaznacheno vishe matricya linijnogo vidobrazhennya zalezhit vid viboru bazisiv A displaystyle mathcal A i B displaystyle mathcal B vidpovidnih prostoriv Prote matrici dlya riznih bazisiv pov yazani prostoyu formuloyu iz vikoristannyam matric perehodu mizh bazisami Nehaj prostori V displaystyle V i W displaystyle W zadani yak i vishe dlya prostoru V displaystyle V vibrani dva bazisi A a 1 a n displaystyle mathcal A mathbf a 1 ldots mathbf a n i A a 1 a n displaystyle mathcal A mathbf a 1 ldots mathbf a n a u prostori W displaystyle W vibrani dva bazisi B b 1 b m displaystyle mathcal B mathbf b 1 ldots mathbf b m i B b 1 b m displaystyle mathcal B mathbf b 1 ldots mathbf b m Poznachimo B A A displaystyle B mathcal A mathcal A matricyu stovpci yakoyi ye koeficiyentami rozkladu vektoriv iz A displaystyle mathcal A cherez bazis A displaystyle mathcal A Ekvivalentno iz vikoristannyam mnozhennya vektor ryadka na matricyu dlya B A A displaystyle B mathcal A mathcal A vikonuyetsya spivvidnoshennya a 1 a n a 1 a n B A A displaystyle mathbf a 1 ldots mathbf a n mathbf a 1 ldots mathbf a n cdot displaystyle B mathcal A mathcal A de u pravij chastini vektori iz ryadka mnozhatsya na skalyari iz matrici Takozh yaksho deyakij vektor maye koordinati x 1 x n displaystyle begin pmatrix x 1 vdots x n end pmatrix u bazisi A displaystyle mathcal A i y 1 y n displaystyle begin pmatrix y 1 vdots y n end pmatrix u bazisi A displaystyle mathcal A to y 1 y n B A A x 1 x n displaystyle begin pmatrix y 1 vdots y n end pmatrix displaystyle B mathcal A mathcal A begin pmatrix x 1 vdots x n end pmatrix U cij formuli navpaki koordinati u bazisi A displaystyle mathcal A virazhayutsya cherez koordinati u bazisi A displaystyle mathcal A Matricya B A A displaystyle B mathcal A mathcal A nazivayetsya matriceyu perehodu vid bazisa A displaystyle mathcal A do bazisa A displaystyle mathcal A abo zgidno poperednogo u zvorotnomu poryadku vid koordinat u bazisi A displaystyle mathcal A do koordinat u bazisi A displaystyle mathcal A Analogichno mozhna viznachiti i matricyu B B B displaystyle B mathcal B mathcal B yaka nazivayetsya matriceyu perehodu vid bazisa B displaystyle mathcal B do bazisa B displaystyle mathcal B abo vid koordinat u bazisi B displaystyle mathcal B do koordinat u bazisi B displaystyle mathcal B Obidvi ci matrici ye nevirodzhenimi i B A A 1 B A A displaystyle B mathcal A mathcal A 1 B mathcal A mathcal A i B B B 1 B B B displaystyle B mathcal B mathcal B 1 B mathcal B mathcal B tobto oberneni matrici rivni matricyam zvorotnih perehodiv mizh bazisami Yaksho teper T V W displaystyle T V to W ye linijnim vidobrazhennyam i M T A B displaystyle M T mathcal A mathcal B i M T A B displaystyle M T mathcal A mathcal B ye jogo matricyami u riznih bazah to ci matrici zadovolnyayut spivvidnoshennya M T A B B B B M T A B B A A B B B 1 M T A B B A A displaystyle M T mathcal A mathcal B B mathcal B mathcal B cdot M T mathcal A mathcal B cdot B mathcal A mathcal A B mathcal B mathcal B 1 cdot M T mathcal A mathcal B cdot B mathcal A mathcal A Zokrema yaksho V W displaystyle V W i T displaystyle T ye linijnim peretvorennyam to jogo matrici u bazisah A displaystyle mathcal A i A displaystyle mathcal A pov yazani spivvidnoshennyam M T A B A A 1 M T A B A A displaystyle M T mathcal A B mathcal A mathcal A 1 cdot M T mathcal A cdot B mathcal A mathcal A U prostishih poznachennyah yaksho A displaystyle A ye matriceyu peretvorennya u bazisi A displaystyle mathcal A a A displaystyle A ye matriceyu peretvorennya u bazisi A displaystyle mathcal A i U B A A displaystyle U B mathcal A mathcal A to A U 1 A U displaystyle A U 1 AU Zauvazhennya U riznih avtoriv matriceyu perehodu vid bazisa A displaystyle mathcal A do bazisa A displaystyle mathcal A mozhe nazivatisya yak matricya B A A displaystyle B mathcal A mathcal A vvedena u cij statti tak i obernena do neyi matricya B A A displaystyle B mathcal A mathcal A yaka tut nazivayetsya matriceyu perehodu vid koordinat u bazisi A displaystyle mathcal A do koordinat u bazisi A displaystyle mathcal A Todi zokrema u ostannij formuli zamist matrici U displaystyle U vikoristovuyut yiyi obernenu V U 1 displaystyle V U 1 i formula podayetsya u inshomu poshirenomu vidi A V A V 1 displaystyle A VAV 1 Takozh pri vikoristanni zamist viznachenoyi u statti matrici vidobrazhennya yiyi transponovanoyi matrici peretvorennya tezh vikoristovuyut transponovani do viznachenih tut Cherez ci ta inshi prichini formuli sho pov yazuyut matrici vidobrazhen ta peretvoren pri zmini bazisiv popri svoyu prostotu ye prichinoyu chislennih pomilok inodi navit dosvidchenih matematikiv Matrici deyakih nelinijnih vidobrazhenLinijne vidobrazhennya ne yedine yake mozhna predstaviti za dopomogoyu matric Deyaki peretvorennya sho ne ye linijnimi v evklidovomu prostori Rn mozhut buti predstavleni yak linijne peretvorennya u prostori rozmirnistyu n 1 Rn 1 V takomu vipadku vona vklyuchatime yak afinni peretvorennya taki yak peremishennya i proektivni peretvorennya Zokrema matrici peretvorennya 4 4 shiroko vikoristovuyutsya u zastosuvannyah trivimirnoyi komp yuternoyi grafiki Ci n 1 vimirni matrici peretvorennya nazivayutsya po riznomu v zalezhnosti vid oblasti yih zastosuvannya afinni matrici peretvorennya proektivni matrici peretvorennya abo v bilsh zagalnomu varianti matrici ne linijnogo peretvorennya Po vidnoshennyu do n vimirnoyi matrici matricya rozmirnistyu n 1 mozhe vvazhatisya rozshirenoyu matriceyu DzherelaGelfand I M Lekcii po linejnoj algebre Moskva Nauka 1998 320 s ISBN 5791300158 ros Gantmaher F R Teoriya matric 5 e M Fizmatlit 2010 559 s ISBN 5 9221 0524 8 ros Teoriya matric 2 Moskva Nauka 1982 272 s ros Matrichnyj analiz M Mir 1989 653 s ros Weisstein Eric W Matricya obertannya angl na sajti Wolfram MathWorld Kalkulyator linijnih peretvoren 4 veresnya 2009 u Wayback Machine angl Aplet peretvoren 10 kvitnya 2010 u Wayback Machine angl Generuye matrici z 2D peretvoren i navpaki PrimitkiGentle James E 2007 Matrix Transformations and Factorizations Springer ISBN 9780387708737 Arhiv originalu za 21 lyutogo 2017 Procitovano 28 grudnya 2015