Формалізм Арновітта — Десера — Мізнера, АДМ-формалізм (англ. ADM formalism) — розроблене 1959 року [en], Стенлі Десером і Чарлзом Мізнером гамільтонівське формулювання загальної теорії відносності. Воно відіграє важливу роль у квантовій гравітації і чисельній відносності.
Основний огляд формалізму під назвою «Динаміка загальної теорії відносності» (англ. The Dynamics of General Relativity) автори опублікували у збірнику «Gravitation: An introduction to current research» під редакцією , Wiley NY (1962); chapter 7, pp. 227-265. 2008 року статтю передруковано в журналі у серії класичних робіт із гравітації Початкові роботи авторів виходили у Physical Review.
Огляд
Формалізм припускає, що простір-час можна розшарувати на сукупність просторовоподібних 3-вимірних гіперповерхонь , які нумеруються за допомогою часової координати , а на кожній гіперповерхні вводяться просторові координати . Динамічними змінними формалізму в такому випадку виявляються: метричний тензор на цих гіперповерхнях і пов'язаний з ним тензор канонічних імпульсів . З цих змінних виражається гамільтоніан, який відповідає рівнянням Ейнштейна, і таким чином, рівняння руху загальної теорії відносності виявляються записаними в гамільтоновій формі.
Крім 12 змінних і (тривимірні симетричні тензори містять по 6 компонент), у формалізмі присутні 4 лагранжевих множники: функції ходу (англ. the lapse function) , та функції зсуву — компоненти 3-вектора (англ. shift vector field) . Вони описують, як точки на сусідніх шарах пов'язані між собою. Рівняння руху для цих змінних можна вибрати довільно, що відповідає свободі вибору системи координатної для опису простору-часу.
Позначення
Більшість літератури застосовує позначення, в яких чотиривимірні тензори записуються в абстрактній індексній нотації, причому грецькі індекси є просторово-часовими і набувають значень (0, 1, 2, 3), а латинські індекси є просторовими і набувають значень (1, 2, 3). У висновку просторово-часові об'єкти, які мають також і тривимірні аналоги, будуть для розрізнення позначатися попереднім верхнім індексом (4), наприклад, метричний тензор на тривимірному шарі буде позначатися , а повна просторово-часова метрика буде позначатися як .
Тут використовуються позначення Ейнштейна, в яких передбачається підсумовування за повторюваними індексами.
Використовуються два типи похідних: часткові похідні позначаються або оператором або індексами, перед якими ставиться кома; коваріантні похідні позначаються або оператором або індексами, перед якими ставиться крапка з комою.
Абсолютне значення визначника матриці метричних тензорних коефіцієнтів позначено (без індексів). Інші символи тензора, написані без індексів, представляють слід відповідного тензора, наприклад, .
Виведення
Формулювання лагранжіана
Початковою точкою для формулювання ADM є лагранжіан
що є добутком квадратного кореня з визначника чотиривимірного метричного тензора для повного простору-часу та його скаляра Річчі. Це Лагранжіан з дії Ейнштейна – Гільберта.
Бажаним результатом виведення є визначення вбудування тривимірних просторових зрізів у чотиривимірний простір-час. Метрика тривимірних зрізів
буде узагальненими координатами для гамільтонового формулювання. Потім можна обчислити спряжені імпульси як
використовуючи стандартні прийоми та визначення. Символи — символи Крістофеля, пов'язані з метрикою повного чотиривимірного простору-часу. Інтетрвал
і вектор зсуву
- це інші елементи чотириметричного тензора.
Наступним кроком, після визначення величин для формулювання, є переписання лагранжіана з точки зору цих змінних. Новий вираз для лагранжіана
зручно записати через дві нові величини
відомі як [en] та обмеження імпульсу відповідно. Інтервал і зсув з'являються в лагранжіані як множники Лагранжа .
Рівняння руху
Хоча змінні в лагранжіані представляють метричний тензор у тривимірних просторах, вбудованих у чотиривимірний простір-час, можливо і бажано використовувати звичайні процедури механіки Лагранжа для виведення «рівнянь руху», що описують еволюцію часу обох метрик та його спряжений імпульс . Результат
Беручи варіації щодо інтервалу і зсуву, забезпечують рівняння обмежень
є нелінійною системою рівнянь у часткових похідних.
а самі інтервал і зсув можна задати вільно, відбиваючи той факт, що системи координат можна вибирати вільно як у просторі, так і в часі.
Застосування
Застосування до квантової гравітації
Використовуючи формулювання АДМ, можна спробувати побудувати квантову теорію гравітації так само, як побудовано рівняння Шредінгера, яке відповідає цьому гамільтоніану в квантовій механіці. Тобто замінити канонічні моменти та просторові метричні функції лінійними функціональними диференціальними операторами
Точніше, заміна класичних змінних операторами обмежена комутаційними відношеннями. Циркумфлекс у квантовій теорії позначає оператори. Це призводить до [en].
Застосування до чисельних розв'язків рівнянь Ейнштейна
Точних розв'язків рівнянь поля Ейнштейна відомо порівняно небагато. Пошуком інших розв'язків займається чисельна теорія відносності, в якій для відшукання наближених розв'язків рівнянь використовують суперкомп'ютери. Чисельну побудову таких розв'язків більшість дослідників починають з формулювання рівнянь Ейнштейна, тісно пов'язаних із формулюванням АДМ. Найпоширеніші підходи починаються з задачі початкового значення, заснованої на формалізмі АДМ.
У формулюваннях Гамільтона основним моментом є заміна набору рівнянь другого порядку набором рівнянь першого порядку. Цей другий набір рівнянь легко отримати за формулою Гамільтона. Це корисно для чисельної фізики, оскільки зниження порядку диференціальних рівнянь часто зручне, якщо планується комп'ютерне їх опрацювання.
Енергія та маса АДМ
Енергія АДМ — це особливий спосіб визначення енергії в загальній теорії відносності, який застосовується лише до деяких особливих геометрій простору-часу, які асимптотично наближаються до чітко визначеного метричного тензора на нескінченності — наприклад, до простору-часу, який асимптотично наближається до простору Мінковського. Енергія АДМ у цих випадках визначається як функція відхилення метричного тензора від встановленої асимптотичної форми. Іншими словами, енергія АДМ обчислюється як сила гравітаційного поля на нескінченності.
Якщо необхідна асимптотична форма не залежить від часу (наприклад, сам простір Мінковського), то вона відповідає поступальній у часі симетрії. Тоді з теореми Нетер випливає, що енергія АДМ зберігається. Відповідно до загальної теорії відносності, закон збереження загальної енергії не діє в більш загальних, залежних від часу умовах — наприклад, він повністю порушується у фізичній космології. Зокрема, космічна інфляція здатна виробляти енергію (і масу) з «нічого», оскільки густина енергії вакууму приблизно стала, а об'єм Всесвіту зростає експоненційно.
Застосування до модифікованої гравітації
Використовуючи декомпозицію АДМ та вводячи допоміжні поля, 2009 року [en] та інші відшукали метод знаходження [en] для модифікованих теорій гравітації, «чий лагранжіан є довільною функцією тензора Рімана».
Дискусія
2008 року Кірющева та Кузьмін опублікували спростування 4-х основ формалізму АДМ, зазначивши, що лише у формалізмі Дірака — Гамільтона, а не у формалізмі АДМ можна відновити належну інваріантність дифеоморфізму за допомогою канонічних перетворень. Різниця в канонічній структурі формалізмів Гамільтона — Дірака та АДМ є предметом постійних суперечок, які ще не завершено у фізичній літературі.
Див. також
- Канонічні координати
- [en]
- [en]
Примітки
- . Архів оригіналу за 20 липня 2011. Процитовано 9 січня 2021.
- Arnowitt R., Deser S., Misner C. Republication of: The dynamics of general relativity // : journal. — 2008. — Vol. 40, no. 9 (16 June). — P. 1997—2027. — arXiv:gr-qc/0405109. — Bibcode: . — DOI: .
- Arnowitt R., Deser S., Misner C. Dynamical Structure and Definition of Energy in General Relativity // Physical Review : journal. — 1959. — Vol. 116, no. 5 (16 June). — P. 1322—1330. — Bibcode: . — DOI: .
- Arnowitt R., Deser S. Quantum Theory of Gravitation: General Formulation and Linearized Theory // Physical Review : journal. — 1959. — Vol. 113, no. 2 (16 June). — P. 745—750. — Bibcode: . — DOI: .
- Arnowitt R., Deser S., Misner C. Canonical Variables for General Relativity // Physical Review : journal. — 1960. — Vol. 117, no. 6 (16 June). — P. 1595—1602. — Bibcode: . — DOI: .
- Arnowitt R., Deser S., Misner C. Finite Self-Energy of Classical Point Particles // Physical Review Letters : journal. — 1960. — Vol. 4, no. 7 (16 June). — P. 375—377. — Bibcode: . — DOI: .
- Arnowitt R., Deser S., Misner C. Energy and the Criteria for Radiation in General Relativity // Physical Review : journal. — 1960. — Vol. 118, no. 4 (16 June). — P. 1100—1104. — Bibcode: . — DOI: .
- Arnowitt R., Deser S., Misner C. Gravitational-Electromagnetic Coupling and the Classical Self-Energy Problem // Physical Review : journal. — 1960. — Vol. 120 (16 June). — P. 313—320. — Bibcode: . — DOI: .
- Arnowitt R., Deser S., Misner C. Interior Schwarzschild Solutions and Interpretation of Source Terms // Physical Review : journal. — 1960. — Vol. 120 (16 June). — P. 321—324. — Bibcode: . — DOI: .
- Arnowitt R., Deser S., Misner C. Wave Zone in General Relativity // Physical Review : journal. — 1961. — Vol. 121, no. 5 (16 June). — P. 1556—1566. — Bibcode: . — DOI: .
- Arnowitt R., Deser S., Misner C. Coordinate Invariance and Energy Expressions in General Relativity // Physical Review : journal. — 1961. — Vol. 122, no. 3 (16 June). — P. 997—1006. — Bibcode: . — DOI: .
- Deruelle, Nathalie; Sasaki, Misao; Sendouda, Yuuiti; Yamauchi, Daisuke (2010). Hamiltonian formulation of f(Riemann) theories of gravity. Progress of Theoretical Physics. 123 (1): 169—185. arXiv:0908.0679. Bibcode:2010PThPh.123..169D. doi:10.1143/PTP.123.169.
- Kiriushcheva, N.; Kuzmin, S. (2008). The Hamiltonian formulation of general relativity: Myths and reality. Central European Journal of Physics C. 9 (3): 576—615. arXiv:0809.0097. doi:10.2478/s11534-010-0072-2.
Література
- Kiefer, Claus. Quantum Gravity. — Oxford, New York : Oxford University Press, 2007. — .
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Formalizm Arnovitta Desera Miznera ADM formalizm angl ADM formalism rozroblene 1959 roku en Stenli Deserom i Charlzom Miznerom gamiltonivske formulyuvannya zagalnoyi teoriyi vidnosnosti Vono vidigraye vazhlivu rol u kvantovij gravitaciyi i chiselnij vidnosnosti en Stenli Deser i Charlz Mizner na konferenciyi ADM 50 A Celebration of Current GR Innovation na chest 50 richchya yihnoyi osnovnoyi roboti listopad 2009 roku Osnovnij oglyad formalizmu pid nazvoyu Dinamika zagalnoyi teoriyi vidnosnosti angl The Dynamics of General Relativity avtori opublikuvali u zbirniku Gravitation An introduction to current research pid redakciyeyu Wiley NY 1962 chapter 7 pp 227 265 2008 roku stattyu peredrukovano v zhurnali u seriyi klasichnih robit iz gravitaciyi Pochatkovi roboti avtoriv vihodili u Physical Review OglyadFormalizm pripuskaye sho prostir chas mozhna rozsharuvati na sukupnist prostorovopodibnih 3 vimirnih giperpoverhon S t displaystyle Sigma t yaki numeruyutsya za dopomogoyu chasovoyi koordinati t displaystyle t a na kozhnij giperpoverhni vvodyatsya prostorovi koordinati x i displaystyle x i Dinamichnimi zminnimi formalizmu v takomu vipadku viyavlyayutsya metrichnij tenzor na cih giperpoverhnyah g i j t x k displaystyle gamma ij t x k i pov yazanij z nim tenzor kanonichnih impulsiv p i j t x k displaystyle pi ij t x k Z cih zminnih virazhayetsya gamiltonian yakij vidpovidaye rivnyannyam Ejnshtejna i takim chinom rivnyannya ruhu zagalnoyi teoriyi vidnosnosti viyavlyayutsya zapisanimi v gamiltonovij formi Krim 12 zminnih g i j displaystyle gamma ij i p i j displaystyle pi ij trivimirni simetrichni tenzori mistyat po 6 komponent u formalizmi prisutni 4 lagranzhevih mnozhniki funkciyi hodu angl the lapse function N displaystyle N ta funkciyi zsuvu komponenti 3 vektora angl shift vector field N i displaystyle N i Voni opisuyut yak tochki x i c o n s t displaystyle x i const na susidnih sharah S t t c o n s t displaystyle Sigma t t const pov yazani mizh soboyu Rivnyannya ruhu dlya cih zminnih mozhna vibrati dovilno sho vidpovidaye svobodi viboru sistemi koordinatnoyi dlya opisu prostoru chasu PoznachennyaBilshist literaturi zastosovuye poznachennya v yakih chotirivimirni tenzori zapisuyutsya v abstraktnij indeksnij notaciyi prichomu grecki indeksi ye prostorovo chasovimi i nabuvayut znachen 0 1 2 3 a latinski indeksi ye prostorovimi i nabuvayut znachen 1 2 3 U visnovku prostorovo chasovi ob yekti yaki mayut takozh i trivimirni analogi budut dlya rozriznennya poznachatisya poperednim verhnim indeksom 4 napriklad metrichnij tenzor na trivimirnomu shari bude poznachatisya g i j displaystyle g ij a povna prostorovo chasova metrika bude poznachatisya yak 4 g m n displaystyle 4 g mu nu Tut vikoristovuyutsya poznachennya Ejnshtejna v yakih peredbachayetsya pidsumovuvannya za povtoryuvanimi indeksami Vikoristovuyutsya dva tipi pohidnih chastkovi pohidni poznachayutsya abo operatorom i displaystyle partial i abo indeksami pered yakimi stavitsya koma kovariantni pohidni poznachayutsya abo operatorom i displaystyle nabla i abo indeksami pered yakimi stavitsya krapka z komoyu Absolyutne znachennya viznachnika matrici metrichnih tenzornih koeficiyentiv poznacheno g displaystyle g bez indeksiv Inshi simvoli tenzora napisani bez indeksiv predstavlyayut slid vidpovidnogo tenzora napriklad p g i j p i j displaystyle pi g ij pi ij VivedennyaFormulyuvannya lagranzhiana Pochatkovoyu tochkoyu dlya formulyuvannya ADM ye lagranzhian L 4 R 4 g displaystyle mathcal L 4 R sqrt 4 g sho ye dobutkom kvadratnogo korenya z viznachnika chotirivimirnogo metrichnogo tenzora dlya povnogo prostoru chasu ta jogo skalyara Richchi Ce Lagranzhian z diyi Ejnshtejna Gilberta Bazhanim rezultatom vivedennya ye viznachennya vbuduvannya trivimirnih prostorovih zriziv u chotirivimirnij prostir chas Metrika trivimirnih zriziv g i j 4 g i j displaystyle g ij 4 g ij bude uzagalnenimi koordinatami dlya gamiltonovogo formulyuvannya Potim mozhna obchisliti spryazheni impulsi yak p i j 4 g 4 G p q 0 g p q 4 G r s 0 g r s g i p g j q displaystyle pi ij sqrt 4 g left 4 Gamma pq 0 g pq 4 Gamma rs 0 g rs right g ip g jq vikoristovuyuchi standartni prijomi ta viznachennya Simvoli 4 G i j 0 displaystyle 4 Gamma ij 0 simvoli Kristofelya pov yazani z metrikoyu povnogo chotirivimirnogo prostoru chasu Intetrval N 4 g 00 1 2 displaystyle N left 4 g 00 right 1 2 i vektor zsuvu N i 4 g 0 i displaystyle N i 4 g 0i ce inshi elementi chotirimetrichnogo tenzora Nastupnim krokom pislya viznachennya velichin dlya formulyuvannya ye perepisannya lagranzhiana z tochki zoru cih zminnih Novij viraz dlya lagranzhiana L g i j t p i j N H N i P i 2 i p i j N j 1 2 p N i i N g displaystyle mathcal L g ij partial t pi ij NH N i P i 2 partial i left pi ij N j frac 1 2 pi N i nabla i N sqrt g right zruchno zapisati cherez dvi novi velichini H g 3 R g 1 1 2 p 2 p i j p i j displaystyle H sqrt g left 3 R g 1 left frac 1 2 pi 2 pi ij pi ij right right vidomi yak en ta obmezhennya impulsu vidpovidno Interval i zsuv z yavlyayutsya v lagranzhiani yak mnozhniki Lagranzha P i 2 p i j j displaystyle P i 2 pi ij j Rivnyannya ruhu Hocha zminni v lagranzhiani predstavlyayut metrichnij tenzor u trivimirnih prostorah vbudovanih u chotirivimirnij prostir chas mozhlivo i bazhano vikoristovuvati zvichajni proceduri mehaniki Lagranzha dlya vivedennya rivnyan ruhu sho opisuyut evolyuciyu chasu oboh metrik g i j displaystyle g ij ta jogo spryazhenij impuls p i j displaystyle pi ij Rezultat t g i j 2 N g p i j 1 2 p g i j N i j N j i displaystyle partial t g ij frac 2N sqrt g left pi ij tfrac 1 2 pi g ij right N i j N j i Beruchi variaciyi shodo intervalu i zsuvu zabezpechuyut rivnyannya obmezhen t p i j N g R i j 1 2 R g i j N 2 g g i j p m n p m n 1 2 p 2 2 N g p i n p n j 1 2 p p i j g i j N g i j n n N n p i j N n N i n p n j N j n p n i displaystyle begin aligned partial t pi ij amp N sqrt g left R ij tfrac 1 2 Rg ij right frac N 2 sqrt g g ij left pi mn pi mn tfrac 1 2 pi 2 right frac 2N sqrt g left pi in pi n j tfrac 1 2 pi pi ij right amp sqrt g left nabla i nabla j N g ij nabla n nabla n N right nabla n left pi ij N n right N i n pi nj N j n pi ni end aligned ye nelinijnoyu sistemoyu rivnyan u chastkovih pohidnih H 0 displaystyle H 0 a sami interval i zsuv mozhna zadati vilno vidbivayuchi toj fakt sho sistemi koordinat mozhna vibirati vilno yak u prostori tak i v chasi P i 0 displaystyle P i 0 ZastosuvannyaZastosuvannya do kvantovoyi gravitaciyi Vikoristovuyuchi formulyuvannya ADM mozhna sprobuvati pobuduvati kvantovu teoriyu gravitaciyi tak samo yak pobudovano rivnyannya Shredingera yake vidpovidaye comu gamiltonianu v kvantovij mehanici Tobto zaminiti kanonichni momenti p i j t x k displaystyle pi ij t x k ta prostorovi metrichni funkciyi linijnimi funkcionalnimi diferencialnimi operatorami g i j t x k g i j t x k displaystyle hat g ij t x k mapsto g ij t x k p i j t x k i d d g i j t x k displaystyle hat pi ij t x k mapsto i frac delta delta g ij t x k Tochnishe zamina klasichnih zminnih operatorami obmezhena komutacijnimi vidnoshennyami Cirkumfleks u kvantovij teoriyi poznachaye operatori Ce prizvodit do en Zastosuvannya do chiselnih rozv yazkiv rivnyan Ejnshtejna Div takozh Rozv yazki rivnyan Ejnshtejna Tochnih rozv yazkiv rivnyan polya Ejnshtejna vidomo porivnyano nebagato Poshukom inshih rozv yazkiv zajmayetsya chiselna teoriya vidnosnosti v yakij dlya vidshukannya nablizhenih rozv yazkiv rivnyan vikoristovuyut superkomp yuteri Chiselnu pobudovu takih rozv yazkiv bilshist doslidnikiv pochinayut z formulyuvannya rivnyan Ejnshtejna tisno pov yazanih iz formulyuvannyam ADM Najposhirenishi pidhodi pochinayutsya z zadachi pochatkovogo znachennya zasnovanoyi na formalizmi ADM U formulyuvannyah Gamiltona osnovnim momentom ye zamina naboru rivnyan drugogo poryadku naborom rivnyan pershogo poryadku Cej drugij nabir rivnyan legko otrimati za formuloyu Gamiltona Ce korisno dlya chiselnoyi fiziki oskilki znizhennya poryadku diferencialnih rivnyan chasto zruchne yaksho planuyetsya komp yuterne yih opracyuvannya Energiya ta masa ADMEnergiya ADM ce osoblivij sposib viznachennya energiyi v zagalnij teoriyi vidnosnosti yakij zastosovuyetsya lishe do deyakih osoblivih geometrij prostoru chasu yaki asimptotichno nablizhayutsya do chitko viznachenogo metrichnogo tenzora na neskinchennosti napriklad do prostoru chasu yakij asimptotichno nablizhayetsya do prostoru Minkovskogo Energiya ADM u cih vipadkah viznachayetsya yak funkciya vidhilennya metrichnogo tenzora vid vstanovlenoyi asimptotichnoyi formi Inshimi slovami energiya ADM obchislyuyetsya yak sila gravitacijnogo polya na neskinchennosti Yaksho neobhidna asimptotichna forma ne zalezhit vid chasu napriklad sam prostir Minkovskogo to vona vidpovidaye postupalnij u chasi simetriyi Todi z teoremi Neter viplivaye sho energiya ADM zberigayetsya Vidpovidno do zagalnoyi teoriyi vidnosnosti zakon zberezhennya zagalnoyi energiyi ne diye v bilsh zagalnih zalezhnih vid chasu umovah napriklad vin povnistyu porushuyetsya u fizichnij kosmologiyi Zokrema kosmichna inflyaciya zdatna viroblyati energiyu i masu z nichogo oskilki gustina energiyi vakuumu priblizno stala a ob yem Vsesvitu zrostaye eksponencijno Zastosuvannya do modifikovanoyi gravitaciyiVikoristovuyuchi dekompoziciyu ADM ta vvodyachi dopomizhni polya 2009 roku en ta inshi vidshukali metod znahodzhennya en dlya modifikovanih teorij gravitaciyi chij lagranzhian ye dovilnoyu funkciyeyu tenzora Rimana Diskusiya2008 roku Kiryusheva ta Kuzmin opublikuvali sprostuvannya 4 h osnov formalizmu ADM zaznachivshi sho lishe u formalizmi Diraka Gamiltona a ne u formalizmi ADM mozhna vidnoviti nalezhnu invariantnist difeomorfizmu za dopomogoyu kanonichnih peretvoren Riznicya v kanonichnij strukturi formalizmiv Gamiltona Diraka ta ADM ye predmetom postijnih superechok yaki she ne zaversheno u fizichnij literaturi Div takozhKanonichni koordinati en en Primitki Arhiv originalu za 20 lipnya 2011 Procitovano 9 sichnya 2021 Arnowitt R Deser S Misner C Republication of The dynamics of general relativity journal 2008 Vol 40 no 9 16 June P 1997 2027 arXiv gr qc 0405109 Bibcode 2008GReGr 40 1997A DOI 10 1007 s10714 008 0661 1 Arnowitt R Deser S Misner C Dynamical Structure and Definition of Energy in General Relativity Physical Review journal 1959 Vol 116 no 5 16 June P 1322 1330 Bibcode 1959PhRv 116 1322A DOI 10 1103 PhysRev 116 1322 Arnowitt R Deser S Quantum Theory of Gravitation General Formulation and Linearized Theory Physical Review journal 1959 Vol 113 no 2 16 June P 745 750 Bibcode 1959PhRv 113 745A DOI 10 1103 PhysRev 113 745 Arnowitt R Deser S Misner C Canonical Variables for General Relativity Physical Review journal 1960 Vol 117 no 6 16 June P 1595 1602 Bibcode 1960PhRv 117 1595A DOI 10 1103 PhysRev 117 1595 Arnowitt R Deser S Misner C Finite Self Energy of Classical Point Particles Physical Review Letters journal 1960 Vol 4 no 7 16 June P 375 377 Bibcode 1960PhRvL 4 375A DOI 10 1103 PhysRevLett 4 375 Arnowitt R Deser S Misner C Energy and the Criteria for Radiation in General Relativity Physical Review journal 1960 Vol 118 no 4 16 June P 1100 1104 Bibcode 1960PhRv 118 1100A DOI 10 1103 PhysRev 118 1100 Arnowitt R Deser S Misner C Gravitational Electromagnetic Coupling and the Classical Self Energy Problem Physical Review journal 1960 Vol 120 16 June P 313 320 Bibcode 1960PhRv 120 313A DOI 10 1103 PhysRev 120 313 Arnowitt R Deser S Misner C Interior Schwarzschild Solutions and Interpretation of Source Terms Physical Review journal 1960 Vol 120 16 June P 321 324 Bibcode 1960PhRv 120 321A DOI 10 1103 PhysRev 120 321 Arnowitt R Deser S Misner C Wave Zone in General Relativity Physical Review journal 1961 Vol 121 no 5 16 June P 1556 1566 Bibcode 1961PhRv 121 1556A DOI 10 1103 PhysRev 121 1556 Arnowitt R Deser S Misner C Coordinate Invariance and Energy Expressions in General Relativity Physical Review journal 1961 Vol 122 no 3 16 June P 997 1006 Bibcode 1961PhRv 122 997A DOI 10 1103 PhysRev 122 997 Deruelle Nathalie Sasaki Misao Sendouda Yuuiti Yamauchi Daisuke 2010 Hamiltonian formulation of f Riemann theories of gravity Progress of Theoretical Physics 123 1 169 185 arXiv 0908 0679 Bibcode 2010PThPh 123 169D doi 10 1143 PTP 123 169 Kiriushcheva N Kuzmin S 2008 The Hamiltonian formulation of general relativity Myths and reality Central European Journal of Physics C 9 3 576 615 arXiv 0809 0097 doi 10 2478 s11534 010 0072 2 LiteraturaKiefer Claus Quantum Gravity Oxford New York Oxford University Press 2007 ISBN 978 0 19 921252 1