Теорема синусів — наступне тригонометричне твердження про властивості кутів та сторін довільного трикутника: нехай a, b і c є сторонами трикутника, а A, B і C — кути протилежні вказаним сторонам, тоді
Обернене значення числа в теоремі синусів (тобто a/sin(A)) дорівнює діаметру D (або ж 2-ом радіусам) описаного навколо трикутника кола (єдине коло, що проходить через три точки A, B і C). Таким чином теорему можна переписати у розширеній формі
Наслідком теореми синусів є наступне твердження:
- У трикутнику навпроти більшого кута лежить більша сторона, навпроти більшої сторони лежить більший кут.
Теорему синусів використовують при розв'язуванні трикутників:
- Якщо відомі сторона a та два прилеглі кути β і γ довільного трикутника, то інші дві сторони можемо знайти із співвідношення:
;
.
Це є типовою проблемою, що постає при тріангуляції.
2. Якщо відомі дві сторони та один із кутів, що не утворюється цими сторонами
Зазначена формула дає два можливих значення для внутрішнього кута. В цьому випадку, часто лишень одне значення задовольняє умові, що сума трьох кутів трикутника дорівнює 180°; інакше отримаємо два можливих розв'язки.
Доведення
Нехай дано трикутник зі сторонами a, b, і c, з протилежними до них кутами A, B, і C. Опустимо перпендикуляр довжиною h з C на c.
Бачимо, що, (за означенням):
- та
Звідси:
також
Повторимо операцію з кутом A і стороною a, і дістанемо:
- .∎
Доведення розширеної форми теореми синусів
Достатньо довести, що
Проведемо діаметр описаного кола.
За властивістю кутів, вписаних у коло, кут прямий, а кут дорівнює або , якщо точки і лежать по один бік від прямої , або в іншому разі.
Оскільки , в обох випадках маємо
- .
Повторивши ці міркування для двох інших сторін трикутника, маємо:
Візьмемо дві формули для знаходження площі трикутника і
Варіації та узагальнення
де — кут між гранями і ; — спільна грань і ; — об'єм симплекса.
Теорема синусів для сферичного трикутника
Ця теорема справедлива для трикутників на сфері, сторонами яких є дуги великих кіл сфери.
Нехай дано сферу одиничного радіуса і трикутник на ній, утворений перетином трьох її великих кіл. Нехай a, b і c — довжини дуг, які є сторонами трикутника. Оскільки сфера є одиничною, то a, b і c виражають кути з вершиною у центрі сфери між двома її радіусами, стягнуті цими дугами в радіанах.
Нехай A, B і C — кути, протилежні цим сторонам, тобто це двогранні кути між площинами трьох великих кіл.
Тоді, для сферичного трикутника справедливе твердження:
Доведення через вектори
Розглянемо сферу одиничного радіуса з центром О в початку координат. OA, OB та OC — одиничні вектори, проведені від початку координат до вершин A, B, C трикутника. Отже, кути α, β і γ є кутами a, b і c відповідно. Дуга BC утворює кут величиною a з вершиною у центрі сфери.
Введемо декартову систему координат так, щоб її вісь z проходила вздовж вектора OA. Вектор OB в площині xz утворює кут утворює кут c з віссю z та проектується на відрізок OМ у площині xy. Вектор OC утворює кут b з віссю z та проектується на ON у площині xy, а кут між ON та віссю x дорівнює A. Отже, три вектори мають координати:
Змішаний добуток трьох векторів, OA ⋅ (OB × OC), дорівнює об'єму паралелепіпеда, побудованого на векторах OA, OB та OC. Цей об'єм є інваріантним до конкретної системи координат, яка використовується для представлення OA, OB і OC.
Значення змішаного добутку трьох векторів OA ⋅ (OB × OC) є 3 × 3 — визначником, рядками якого є координати векторів OA, OB і OC.
З віссю z вздовж OA квадрат цього визначника дорівнює
Якщо повторити це обчислення з віссю z вздовж OB, отримаємо (sin c sin a sin B)2, а з віссю z вздовж OC — (sin a sin b sin C)2.
Прирівнюємо ці вирази та ділимо їх на (sin a sin b sin c)2:
Легко побачити, що для малих сферичних трикутників, коли радіус сфери значно перевищує довжини сторін трикутника, ця формула в граничному значенні переходить в формулу для плоского трикутника, оскільки
Доведення геометричне
Розглянемо сферу одиничного радіуса:
Будуємо точку та точку так, що
Будуємо точку так, що
Тому видно, що та
Точка є проекцією точки на площину . Тому
Згідно з основною тригонометрією, маємо:
Але
Поєднавши ці рівності, отримаємо:
Проводячи аналогічні обчислення, отримуємо теорему синусів для сферичного трикутника:
Малюнок, використаний в геометричному доказі вище, використовується і також надається в (див. Малюнок 3 у цьому документі) для виведення теореми синусів за допомогою елементарної лінійної алгебри та проекційних матриць.
Теорема синусів для гіперболічного трикутника
В гіперболічній геометрії Лобачевського з кривиною −1, теорема синусів для гіперболічного трикутника має вигляд:
В окремому випадку, коли кут B прямий, отримаємо:
що є аналогом формули в евклідовій геометрії, яка виражає синус кута як частку від ділення протилежної сторони прямокутного трикутника на його гіпотенузу.
Теорема синусів для поверхонь постійної кривини
Визначимо узагальнену функцію синусів, що залежить також від дійсного параметра K:
Теорема синусів при постійній кривині K має вигляд
Підставивши K = 0, K = 1, або K = −1, Отримаємо відповідно евклідовий, сферичний та гіперболічний випадки теореми синусів, описані вище.
Нехай pK(r) позначає довжину кола радіуса r у просторі постійної кривини K.
Тоді pK(r) = 2π sinK r.
Тому теорему синусів також можна записати у вигляді:
Це формулювання було знайдене Яношом Бояї.
У вищих розмірностях
- у тривімірному просторі тетраедр має чотири трикутних граней. Абсолютне значення [en] (psin) нормальних векторів до трьох граней, що мають спільну вершину тетраедра, поділене на площу четвертої грані, не залежить від вибору вершини:
- Для n — вимірного симплекса (тобто, трикутника (n = 2), тетраедра (n = 3), п'ятикомірника (n = 4), тощо) в n — вимірному евклідовому просторі, абсолютна величина [en] нормальних векторів до фасетів, що мають спільну вершину, поділена на гіперплощу грані, протилежної до цієї вершини, не залежить від вибору вершини.
Позначимо V — гіпероб'єм n-вимірного симплекса і P — добуток гіперплощ його (n - 1)-вимірних граней. Тоді загальне співвідношення має вигляд
Історія
- У першій главі Альмагеста (бл. 140 року н. е.) теорему синусів використано, але явно не сформульовано.
- Найдавніше з доведень, що дійшли до нас, теореми синусів на площині описано в книзі Насир ад-Діна ат-Тусі «Трактат про повний чотирибічник» написаній у XIII столітті.
- Теорему синусів для сферичного трикутника довели математики середньовічного Сходу ще в X столітті. У праці [ru] XI століття «Книга про невідомі дуги сфери» наводилось загальне доведення теореми синусів на сфері.
Див. також
Примітки
- Banerjee, Sudipto (2004), Revisiting Spherical Trigonometry with Orthogonal Projectors, The College Mathematics Journal, Mathematical Association of America, 35 (5): 375—381, doi:10.1080/07468342.2004.11922099, S2CID 122277398Text online
- Generalized law of sines. mathworld.
- Katok, Svetlana (1992). Fuchsian groups. Chicago: University of Chicago Press. с. 22. ISBN .
- Florian Cajori. A History of Mathematics : ( )[англ.]. — 5th edition. — 1991. — С. 47.
- Berggren, J. Lennart. Mathematics in Medieval Islam // The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook : ( )[англ.]. — Princeton University Press, 2007. — С. 518. — .
- Sesiano just lists al-Wafa as a contributor. Sesiano, Jacques (2000). «Islamic mathematics», pp. 137. — Page 157, in Selin, Helaine; D'Ambrosio, Ubiratan (2000), Mathematics Across Cultures: The History of Non-western Mathematics, , ISBN
- . Архів оригіналу за 29 травня 2016. Процитовано 29 грудня 2021.
Посилання
- Синусів теорема // Універсальний словник-енциклопедія. — 4-те вид. — К. : Тека, 2006.
- Теорема синусів: формулювання та доведення
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Teorema sinusiv nastupne trigonometrichne tverdzhennya pro vlastivosti kutiv ta storin dovilnogo trikutnika nehaj a b i c ye storonami trikutnika a A B i C kuti protilezhni vkazanim storonam todi sin A a sin B b sin C c displaystyle sin A over a sin B over b sin C over c Obernene znachennya chisla v teoremi sinusiv tobto a sin A dorivnyuye diametru D abo zh 2 om radiusam opisanogo navkolo trikutnika kola yedine kolo sho prohodit cherez tri tochki A B i C Takim chinom teoremu mozhna perepisati u rozshirenij formi a sin A b sin B c sin C D 2 R displaystyle a over sin A b over sin B c over sin C D 2R Naslidkom teoremi sinusiv ye nastupne tverdzhennya U trikutniku navproti bilshogo kuta lezhit bilsha storona navproti bilshoyi storoni lezhit bilshij kut Rozv yazannya trikutnikiv Teoremu sinusiv vikoristovuyut pri rozv yazuvanni trikutnikiv Yaksho vidomi storona a ta dva prilegli kuti b i g dovilnogo trikutnika to inshi dvi storoni mozhemo znajti iz spivvidnoshennya b a sin b sin a a sin b sin p b g displaystyle b a cdot frac sin beta sin alpha a cdot frac sin beta sin left pi beta gamma right c a sin g sin a a sin g sin p b g displaystyle c a cdot frac sin gamma sin alpha a cdot frac sin gamma sin left pi beta gamma right Ce ye tipovoyu problemoyu sho postaye pri triangulyaciyi 2 Yaksho vidomi dvi storoni ta odin iz kutiv sho ne utvoryuyetsya cimi storonami Zaznachena formula daye dva mozhlivih znachennya dlya vnutrishnogo kuta V comu vipadku chasto lishen odne znachennya zadovolnyaye umovi sho suma troh kutiv trikutnika dorivnyuye 180 inakshe otrimayemo dva mozhlivih rozv yazki DovedennyaNehaj dano trikutnik zi storonami a b i c z protilezhnimi do nih kutami A B i C Opustimo perpendikulyar dovzhinoyu h z C na c Bachimo sho za oznachennyam sin A h b displaystyle sin A frac h b ta sin B h a displaystyle sin B frac h a Zvidsi h b sin A a sin B displaystyle h b sin A a sin B takozh sin A a sin B b displaystyle frac sin A a frac sin B b Povtorimo operaciyu z kutom A i storonoyu a i distanemo sin B b sin C c displaystyle frac sin B b frac sin C c Dovedennya rozshirenoyi formi teoremi sinusiv Dostatno dovesti sho a sin a 2 R displaystyle frac a sin alpha 2R Provedemo diametr B G displaystyle BG opisanogo kola Za vlastivistyu kutiv vpisanih u kolo kut G C B displaystyle GCB pryamij a kut C G B displaystyle CGB dorivnyuye abo a displaystyle alpha yaksho tochki A displaystyle A i G displaystyle G lezhat po odin bik vid pryamoyi B C displaystyle BC abo p a displaystyle pi alpha v inshomu razi Oskilki sin p a sin a displaystyle sin pi alpha sin alpha v oboh vipadkah mayemo a 2 R sin a displaystyle a 2R sin alpha Povtorivshi ci mirkuvannya dlya dvoh inshih storin trikutnika mayemo a sin a b sin b c sin g 2 R displaystyle frac a sin alpha frac b sin beta frac c sin gamma 2R Dovedennya cherez formuli znahodzhennya ploshi trikutnika Vizmemo dvi formuli dlya znahodzhennya ploshi trikutnika S a b c 4 R displaystyle S frac abc 4R i S 1 2 a b sin g displaystyle S frac 1 2 ab sin gamma a b c 4 R 1 2 a b sin g a b c 4 R 1 2 a c sin b a b c 4 R 1 2 b c sin a c 2 R sin g b 2 R sin b a 2 R sin a 2 R c sin g 2 R b sin b 2 R a sin a 2 R a sin a b sin b c sin g displaystyle begin cases frac abc 4R frac 1 2 ab sin gamma frac abc 4R frac 1 2 ac sin beta frac abc 4R frac 1 2 bc sin alpha end cases Leftrightarrow begin cases frac c 2R sin gamma frac b 2R sin beta frac a 2R sin alpha end cases Leftrightarrow begin cases 2R frac c sin gamma 2R frac b sin beta 2R frac a sin alpha end cases Leftrightarrow 2R frac a sin alpha frac b sin beta frac c sin gamma Variaciyi ta uzagalnennyaU simpleksi V n n 1 n V n 1 i V n 1 j V n 2 i j sin A i j displaystyle V n frac n 1 n cdot frac V n 1 i V n 1 j V n 2 i j cdot sin A i j de A i j displaystyle A i j kut mizh granyami V n 1 i displaystyle V n 1 i i V n 1 j displaystyle V n 1 j V n 2 i j displaystyle V n 2 i j spilna gran V n 1 i displaystyle V n 1 i i V n 1 j displaystyle V n 1 j V n displaystyle V n ob yem simpleksa Teorema sinusiv dlya sferichnogo trikutnika Dokladnishe Sferichna teorema sinusiv Cya teorema spravedliva dlya trikutnikiv na sferi storonami yakih ye dugi velikih kil sferi Nehaj dano sferu odinichnogo radiusa i trikutnik na nij utvorenij peretinom troh yiyi velikih kil Nehaj a b i c dovzhini dug yaki ye storonami trikutnika Oskilki sfera ye odinichnoyu to a b i c virazhayut kuti z vershinoyu u centri sferi mizh dvoma yiyi radiusami styagnuti cimi dugami v radianah Nehaj A B i C kuti protilezhni cim storonam tobto ce dvogranni kuti mizh ploshinami troh velikih kil Todi dlya sferichnogo trikutnika spravedlive tverdzhennya sin A sin a sin B sin b sin C sin c displaystyle frac sin A sin a frac sin B sin b frac sin C sin c Dovedennya cherez vektori Rozglyanemo sferu odinichnogo radiusa z centrom O v pochatku koordinat OA OB ta OC odinichni vektori provedeni vid pochatku koordinat do vershin A B C trikutnika Otzhe kuti a b i g ye kutami a b i c vidpovidno Duga BC utvoryuye kut velichinoyu a z vershinoyu u centri sferi Vvedemo dekartovu sistemu koordinat tak shob yiyi vis z prohodila vzdovzh vektora OA Vektor OB v ploshini xz utvoryuye kut utvoryuye kut c z vissyu z ta proektuyetsya na vidrizok OM u ploshini xy Vektor OC utvoryuye kut b z vissyu z ta proektuyetsya na ON u ploshini xy a kut mizh ON ta vissyu x dorivnyuye A Otzhe tri vektori mayut koordinati O A 0 0 1 O B sin c 0 cos c O C sin b cos A sin b sin A cos b displaystyle mathbf OA begin pmatrix 0 0 1 end pmatrix quad mathbf OB begin pmatrix sin c 0 cos c end pmatrix quad mathbf OC begin pmatrix sin b cos A sin b sin A cos b end pmatrix Zmishanij dobutok troh vektoriv OA OB OC dorivnyuye ob yemu paralelepipeda pobudovanogo na vektorah OA OB ta OC Cej ob yem ye invariantnim do konkretnoyi sistemi koordinat yaka vikoristovuyetsya dlya predstavlennya OA OB i OC Znachennya zmishanogo dobutku troh vektoriv OA OB OC ye 3 3 viznachnikom ryadkami yakogo ye koordinati vektoriv OA OB i OC Z vissyu z vzdovzh OA kvadrat cogo viznachnika dorivnyuye O A O B O C 2 det O A O B O C 2 0 0 1 sin c 0 cos c sin b cos A sin b sin A cos b 2 sin b sin c sin A 2 displaystyle begin aligned bigl mathbf OA cdot mathbf OB times mathbf OC bigr 2 amp left det begin pmatrix mathbf OA amp mathbf OB amp mathbf OC end pmatrix right 2 4pt amp begin vmatrix 0 amp 0 amp 1 sin c amp 0 amp cos c sin b cos A amp sin b sin A amp cos b end vmatrix 2 left sin b sin c sin A right 2 end aligned Yaksho povtoriti ce obchislennya z vissyu z vzdovzh OB otrimayemo sin c sin a sin B 2 a z vissyu z vzdovzh OC sin a sin b sin C 2 Pririvnyuyemo ci virazi ta dilimo yih na sin a sin b sin c 2 sin 2 A sin 2 a sin 2 B sin 2 b sin 2 C sin 2 c V 2 sin 2 a sin 2 b sin 2 c displaystyle frac sin 2 A sin 2 a frac sin 2 B sin 2 b frac sin 2 C sin 2 c frac V 2 sin 2 a sin 2 b sin 2 c de V ob yem paralelepipeda pobudovanogo na vektorah OA OB ta OC sho vidpovidayut vershinam sferichnogo trikutnika Legko pobachiti sho dlya malih sferichnih trikutnikiv koli radius sferi znachno perevishuye dovzhini storin trikutnika cya formula v granichnomu znachenni perehodit v formulu dlya ploskogo trikutnika oskilkilim a 0 sin a a 1 displaystyle lim a to 0 frac sin a a 1 i tak samo dlya sin b ta sin c Dovedennya geometrichne Rozglyanemo sferu odinichnogo radiusa O A O B O C 1 displaystyle OA OB OC 1 Buduyemo tochku D displaystyle D ta tochku E displaystyle E tak sho A D O A E O 90 displaystyle angle ADO angle AEO 90 circ Buduyemo tochku A displaystyle A tak sho A D O A E O 90 displaystyle angle A DO angle A EO 90 circ Tomu vidno sho A D A B displaystyle angle ADA B ta A E A C displaystyle angle AEA C Tochka A displaystyle A ye proekciyeyu tochki A displaystyle A na ploshinu O B C displaystyle OBC Tomu A A D A A E 90 displaystyle angle AA D angle AA E 90 circ Zgidno z osnovnoyu trigonometriyeyu mayemo A D sin c A E sin b displaystyle begin aligned AD amp sin c AE amp sin b end aligned Ale A A A D sin B A E sin C displaystyle AA AD cdot sin B AE cdot sin C Poyednavshi ci rivnosti otrimayemo sin c sin B sin b sin C sin B sin b sin C sin c displaystyle begin aligned sin c cdot sin B amp sin b cdot sin C Rightarrow frac sin B sin b amp frac sin C sin c end aligned Provodyachi analogichni obchislennya otrimuyemo teoremu sinusiv dlya sferichnogo trikutnika sin A sin a sin B sin b sin C sin c displaystyle frac sin A sin a frac sin B sin b frac sin C sin c Malyunok vikoristanij v geometrichnomu dokazi vishe vikoristovuyetsya i takozh nadayetsya v div Malyunok 3 u comu dokumenti dlya vivedennya teoremi sinusiv za dopomogoyu elementarnoyi linijnoyi algebri ta proekcijnih matric Teorema sinusiv dlya giperbolichnogo trikutnika V giperbolichnij geometriyi Lobachevskogo z krivinoyu 1 teorema sinusiv dlya giperbolichnogo trikutnika maye viglyad sin A s h a sin B s h b sin C s h c displaystyle frac sin A mathrm sh a frac sin B mathrm sh b frac sin C mathrm sh c V okremomu vipadku koli kut B pryamij otrimayemo sin C sinh c sinh b displaystyle sin C frac sinh c sinh b sho ye analogom formuli v evklidovij geometriyi yaka virazhaye sinus kuta yak chastku vid dilennya protilezhnoyi storoni pryamokutnogo trikutnika na jogo gipotenuzu Teorema sinusiv dlya poverhon postijnoyi krivini Viznachimo uzagalnenu funkciyu sinusiv sho zalezhit takozh vid dijsnogo parametra K sin K x x K x 3 3 K 2 x 5 5 K 3 x 7 7 displaystyle sin K x x frac Kx 3 3 frac K 2 x 5 5 frac K 3 x 7 7 cdots Teorema sinusiv pri postijnij krivini K maye viglyadsin A sin K a sin B sin K b sin C sin K c displaystyle frac sin A sin K a frac sin B sin K b frac sin C sin K c Pidstavivshi K 0 K 1 abo K 1 Otrimayemo vidpovidno evklidovij sferichnij ta giperbolichnij vipadki teoremi sinusiv opisani vishe Nehaj pK r poznachaye dovzhinu kola radiusa r u prostori postijnoyi krivini K Todi pK r 2p sinK r Tomu teoremu sinusiv takozh mozhna zapisati u viglyadi sin A p K a sin B p K b sin C p K c displaystyle frac sin A p K a frac sin B p K b frac sin C p K c Ce formulyuvannya bulo znajdene Yanoshom Boyayi U vishih rozmirnostyah u trivimirnomu prostori tetraedr maye chotiri trikutnih granej Absolyutne znachennya en psin normalnih vektoriv do troh granej sho mayut spilnu vershinu tetraedra podilene na ploshu chetvertoyi grani ne zalezhit vid viboru vershini psin b c d S a psin a c d S b psin a b d S c psin a b c S d 3 V tetr 2 2 S a S b S c S d displaystyle begin aligned amp frac left operatorname psin mathbf b mathbf c mathbf d right mathrm S a frac left operatorname psin mathbf a mathbf c mathbf d right mathrm S b frac left operatorname psin mathbf a mathbf b mathbf d right mathrm S c frac left operatorname psin mathbf a mathbf b mathbf c right mathrm S d 4pt amp frac 3 operatorname V text tetr 2 2 mathrm S a cdot mathrm S b cdot mathrm S c cdot mathrm S d end aligned Dlya n vimirnogo simpleksa tobto trikutnika n 2 tetraedra n 3 p yatikomirnika n 4 tosho v n vimirnomu evklidovomu prostori absolyutna velichina en normalnih vektoriv do fasetiv sho mayut spilnu vershinu podilena na giperploshu grani protilezhnoyi do ciyeyi vershini ne zalezhit vid viboru vershini Poznachimo V giperob yem n vimirnogo simpleksa i P dobutok giperplosh jogo n 1 vimirnih granej Todi zagalne spivvidnoshennya maye viglyad psin b z S a psin a y S z n V n 1 n 1 P displaystyle frac left operatorname psin mathbf b ldots mathbf z right mathrm S a cdots frac left operatorname psin mathbf a ldots mathbf y right mathrm S z frac nV n 1 n 1 P IstoriyaU pershij glavi Almagesta bl 140 roku n e teoremu sinusiv vikoristano ale yavno ne sformulovano Najdavnishe z doveden sho dijshli do nas teoremi sinusiv na ploshini opisano v knizi Nasir ad Dina at Tusi Traktat pro povnij chotiribichnik napisanij u XIII stolitti Teoremu sinusiv dlya sferichnogo trikutnika doveli matematiki serednovichnogo Shodu she v X stolitti U praci ru XI stolittya Kniga pro nevidomi dugi sferi navodilos zagalne dovedennya teoremi sinusiv na sferi Div takozhTriangulyaciya Teorema kosinusiv Teorema tangensivPrimitkiBanerjee Sudipto 2004 Revisiting Spherical Trigonometry with Orthogonal Projectors The College Mathematics Journal Mathematical Association of America 35 5 375 381 doi 10 1080 07468342 2004 11922099 S2CID 122277398Text online Generalized law of sines mathworld Katok Svetlana 1992 Fuchsian groups Chicago University of Chicago Press s 22 ISBN 0 226 42583 5 Florian Cajori A History of Mathematics angl 5th edition 1991 S 47 Berggren J Lennart Mathematics in Medieval Islam The Mathematics of Egypt Mesopotamia China India and Islam A Sourcebook angl Princeton University Press 2007 S 518 ISBN 9780691114859 Sesiano just lists al Wafa as a contributor Sesiano Jacques 2000 Islamic mathematics pp 137 Page 157 in Selin Helaine D Ambrosio Ubiratan 2000 Mathematics Across Cultures The History of Non western Mathematics Springer ISBN 1402002602 Arhiv originalu za 29 travnya 2016 Procitovano 29 grudnya 2021 PosilannyaSinusiv teorema Universalnij slovnik enciklopediya 4 te vid K Teka 2006 Teorema sinusiv formulyuvannya ta dovedennya