Астроспектроскопія — це розділ астрономії, який використовує методи спектроскопії для вимірювання спектра електромагнітного випромінювання, зокрема й видимого, що його випромінюють зорі та інші небесні об'єкти. Зоряний спектр може виявити багато властивостей зір, як-от їхній хімічний склад, температуру, щільність, масу, відстань, світність і відносний рух за допомогою вимірювань доплерівського зсуву. Спектроскопія також використовується для вивчення фізичних властивостей багатьох інших типів небесних об'єктів, таких як планети, туманності, галактики та активні ядра галактик.
Історія
Астрономічна спектроскопія використовується для вимірювання трьох основних смуг випромінювання: спектра видимого випромінювання, радіо- і рентгенівського випромінювання. У той час як уся спектроскопія розглядає конкретні області спектра, для отримання сигналу залежно від частоти потрібні різні методи. Озон (O3) і молекулярний кисень (O2) поглинають світло з довжинами хвиль до 300 нм, що означає, що для рентгенівської та ультрафіолетової спектроскопії потрібне використання супутникового телескопа або детекторів, встановлених на ракеті. Радіосигнали випромінюються на набагато довших хвилях, ніж оптичні сигнали, і вимагають використання антен або радіоприймачів. Інфрачервоне випромінювання поглинається атмосферною водою і вуглекислим газом, тому, хоча обладнання аналогічне тому, що використовується в оптичній спектроскопії, супутники зобов'язані реєструвати більшу частину інфрачервоного спектра.
Оптична спектроскопія
Фізики вивчали сонячний спектр відтоді, як Ісаак Ньютон уперше використав просту призму для спостереження властивостей світла під час заломлення. На початку 1800-х років Йозеф фон Фраунгофер використав свою майстерність як виробника скла для створення дуже чистих призм, що дало йому змогу спостерігати 574 темні лінії в удаваному безперервному спектрі. Незабаром після цього він об'єднав телескоп і призму, щоб спостерігати спектр Венери, Місяця, Марса і різних зір, таких як Бетельгейзе; його компанія продовжувала виготовляти та продавати високоякісні заломлюючі телескопи, засновані на його оригінальних розробках, до його закриття в 1884 році. Значний внесок у розвиток спектроскопії зірок зробили на рубежі XIX-XX ст. співробітники Гарвардської обсерваторії.
Роздільна здатність призми обмежена її розмірами; більша призма забезпечить більш детальний спектр, але збільшення маси робить її непридатною для високоточних спостережень. Цю проблему було розв'язано на початку 1900-х років із розробкою Дж. Пласкеттом високоякісних відбивних решіток, який працював у Доміньйонській обсерваторії в Оттаві, Канада: світло, що падає на дзеркало, відбивається під тим самим кутом, проте невелика частина світла буде заломлюватися під іншим кутом; це залежить від показників заломлення матеріалів і довжини хвилі світла. Створюючи "заломлюючу" решітку, яка використовує велику кількість паралельних дзеркал, невелика частина світла може бути сфокусована і візуалізована. Ці нові спектроскопи давали більш деталізоване зображення, ніж призма, вимагали менше світла і могли бути сфокусовані на певній області спектра шляхом нахилу решітки.
Обмеженням на заломлюючу решітку є ширина дзеркал, які можна заточити тільки до тієї величини, як втрачатиметься фокус; максимум становить близько 1000 рядків/мм. Щоб подолати це обмеження, було розроблено голографічні решітки. В об'ємно-фазових голографічних решітках використовується тонка плівка дихромованого желатину на скляній поверхні, яка згодом піддається впливу інтерференції хвиль, створюваної інтерферометром. Ця хвильова картина створює картину віддзеркалення, схожу на заломлювальну решітку, але з використанням умови Брегга — Вульфа, тобто процесу, в якому кут віддзеркалення залежить від розташування атомів у желатині. Голографічні решітки можуть мати до 6000 ліній/мм і можуть удвічі ефективніше збирати світло, ніж заломлювальні решітки. Оскільки вони запечатані між двома листами скла, голографічні решітки дуже універсальні, потенційно можуть працювати десятиліття до необхідності заміни.
Світло, розсіяне решіткою або призмою в спектрографі, може бути зареєстроване детектором. Історично фотографічні пластини широко використовували для запису спектрів, поки не було розроблено електронні детектори, і сьогодні в оптичних спектрографах найчастіше використовують прилади із зарядовим зв'язком (ПЗЗ). Шкала довжин хвиль спектра може бути відкалібрована шляхом спостереження спектра ліній випромінювання відомої довжини хвилі від газорозрядної лампи. Шкала потоку спектра може бути відкалібрована як функція довжини хвилі шляхом порівняння зі спостереженням стандартної зорі з поправками на атмосферне поглинання світла; цей процес відомий як спектрофотометрія.
Радіоспектроскопія
Радіоастрономія була заснована роботами Карла Янського на початку 1930-х років, коли він працював у Лабораторії Белла. Він побудував радіоантену для пошуку потенційних джерел перешкод для трансатлантичних радіопередач. Одне з виявлених джерел шуму прийшло не з Землі, а з центру Чумацького шляху в сузір'ї Стрільця. У 1942 році Дж. С. Гей виявив радіочастоту Сонця за допомогою військових радіолокаційних приймачів. Радіоспектроскопія почалася з відкриття 21-сантиметрової лінії H I у 1951 році.
Радіоінтерферометрія
Радіоінтерферометрія була вперше введена в експлуатацію 1946 року, коли Джозеф Лейд Позі, Рубі Пейн-Скотт і використовували єдину антену на морській кручі для спостереження сонячного випромінювання на частоті 200 МГц. Два падаючих промені, один прямо від сонця, а інший відбитий від поверхні моря, створювали необхідні перешкоди. Перший багатоприймальний інтерферометр був побудований того ж року Мартіном Райлом і Вонбергом. У 1960 році Райл і Ентоні Г'юїш опублікували методику апертурного синтезу для аналізу даних інтерферометра. Процес синтезу діафрагми, який включає автокореляцію і дискретне перетворення Фур'є вхідного сигналу, відновлює як просторову, так і частотну зміну потоку. Результатом є тривимірне зображення, третьою віссю якого є частота. За цю роботу Райл і Г'юїш були спільно нагороджені Нобелівською премією з фізики 1974 року.
Зорі та їх властивості
Хімічні властивості
Ньютон використовував призму для поділу білого світла на кольори, а високоякісні призми Фраунгофера дали змогу
вченим побачити темні лінії невідомого походження. У 1850-х роках Густав Кірхгоф і Роберт Бунзен описали явища, що стоять за цими темними лініями. Гарячі тверді об'єкти виробляють світло з безперервним спектром, гарячі гази випромінюють світло на певних довжинах хвиль, а гарячі тверді об'єкти, оточені холоднішими газами, демонструють майже безперервний спектр із темними лініями, що відповідають лініям випромінювання газів. Порівнюючи лінії поглинання Сонця зі спектрами випромінювання відомих газів, можна визначити хімічний склад зір.
Позначення | Елемент або з'єднання | Довжина хвилі (нм) | Позначення | Елемент | Довжина хвилі (нм) |
y | O2 | 8987,65 | c | Fe | 4957,61 |
Z | O2 | 8226,96 | F | Hβ | 4861,34 |
A | O2 | 7593,70 | d | Fe | 4668,14 |
B | O2 | 6867,19 | e | Fe | 4383,55 |
C | Hα | 6562,81 | G' | Hγ | 4340,47 |
a | O2 | 6276,61 | G | Fe | 4307,90 |
D1 | Na | 5895,92 | G | Ca | 4307,74 |
D2 | Na | 5889,95 | h | Hδ | 4101,75 |
D3 или d | He | 5875,618 | H | Ca II | 3968,47 |
e | Hg | 5460,73 | K | Ca II | 3933,68 |
E2 | Fe | 5270,39 | L | Fe | 3820,44 |
b1 | Mg | 5183,62 | N | Fe | 3581,21 |
b2 | Mg | 5172,70 | P | Ti II | 3361,12 |
b3 | Fe | 5168,91 | T | Fe | 3021,08 |
b4 | Fe | 5167,51 | t | Ni | 2994,44 |
b4 | Mg | 5167,33 |
Не всі елементи на Сонці були негайно ідентифіковані. Два приклади перераховані нижче.
- У 1868 році Норман Лок'єр і П'єр Жансен незалежно один від одного спостерігали лінію поруч із дублетом натрію (D1 і D2), яку Лок'єр визначив як новий елемент. Він назвав його Гелієм, але тільки 1895 року цей елемент був знайдений на Землі.
- У 1869 році астрономи Чарльз Огастес Янг і [en] незалежно один від одного спостерігали нову зелену лінію випромінювання в сонячній короні під час затемнення. Цей "новий" елемент був неправильно названий [en], оскільки він був знайдений тільки в короні. Лише в 1930-х роках [en] і [en] виявили, що спектральна лінія на довжині хвилі 530,3 нм обумовлена сильно іонізованим залізом (Fe13+). Інші незвичайні лінії в корональному спектрі також викликані сильно іонізованими елементами, такими як нікель і кальцій, причому висока іонізація обумовлена екстремальною температурою сонячної корони.
На сьогодні для Сонця було перераховано понад 20 000 ліній поглинання в діапазоні між 293,5 і 877,0 нм, але тільки приблизно 75 % цих ліній були пов'язані з поглинанням елементами.
Аналізуючи ширину кожної спектральної лінії в спектрі випромінювання, можна визначити як елементи, присутні в зорі, так і їхній відносний вміст. Використовуючи цю інформацію, зорі можна розділити на зоряні популяції; Зорі популяції I є наймолодшими зорями та мають найвищий вміст металів (наше Сонце належить саме до цього типу), тоді як зорі популяції III є найстарішими зорями з дуже низьким вмістом металів.
Температура та розмір
У 1860 році Густав Кірхгоф запропонував ідею абсолютно чорного тіла, матеріалу, що випромінює електромагнітне випромінювання на всіх довжинах хвиль. У 1894 році Вільгельм Він отримав вираз, що пов'язує температуру (T) чорного тіла з його піковою довжиною хвилі випромінювання (λmax):
b - коефіцієнт пропорційності, яка називається постійною зміщення Віна, що дорівнює 2,897771955...×10−3 нм•К. Це рівняння називається законом зміщення Віна. Вимірюючи пікову довжину хвилі зорі, можна визначити поверхневу температуру зорі. Наприклад, якщо довжина хвилі піка випромінювання зорі становить 502 нм, відповідна температура буде 5778 К.
Світність зорі є мірою виділення енергії випромінювання за певний проміжок часу. Світність (L) може бути пов'язана з температурою (T) зорі таким співвідношенням:
де R - радіус зорі, а σ - постійна Стефана - Больцмана зі значенням: Вт•м−2•К−4.Таким чином, коли світність і температура відомі (за допомогою прямого вимірювання і розрахунку), можна визначити радіус зорі.
Джерела
- . California Institute of Technology. Архів оригіналу за 11 жовтня 2018. Процитовано 23 жовтня 2013.
- Foukal, Peter V. (2004). Solar Astrophysics. Weinheim: Wiley VCH. ISBN .
- Newton, Isaac (1642-1727) Auteur du texte (1704). Opticks or, a Treatise of the reflexions, refractions, inflexions and colours of light . Also two treatises of the species and magnitude of curvilinear figures (FR) . с. 13—19.
- Wissenschaften, Bayerische Akademie der (1817). Denkschriften der Königlichen Akademie der Wissenschaften zu München (нім.). Die Akademie. Bibcode:1817AnP....56..264F.
- Hearnshaw, J.B. (1986). The analysis of starlight. Cambridge University Press. ISBN .
- Kitchin, C.R. (1995). Optical Astronomical Spectroscopy. Bristol: Institute of Physics Publishing.
- Barden, S.C.; Arns, J.A.; Colburn, W.S. (July 1998). d'Odorico, Sandro (ред.). (PDF). Proc. SPIE. Optical Astronomical Instrumentation. 3355: 866—876. Bibcode:1998SPIE.3355..866B. CiteSeerX 10.1.1.25.5736. doi:10.1117/12.316806. S2CID 17445305. Архів оригіналу (PDF) за 28 липня 2010. Процитовано 12 вересня 2019.
- Oke, J. B.; Gunn, J. E. (1983). Secondary standard stars for absolute spectrophotometry. The Astrophysical Journal. 266: 713. Bibcode:1983ApJ...266..713O. doi:10.1086/160817.
- Ghigo, F. Karl Jansky. National Radio Astronomy Observatory. Associated Universities, Inc. Процитовано 24 жовтня 2013.
- Pawsey, Joseph; Payne-Scott, Ruby; McCready, Lindsay (1946). Radio-Frequency Energy from the Sun. Nature. 157 (3980): 158—159. Bibcode:1946Natur.157..158P. doi:10.1038/157158a0. PMID 21015114. S2CID 4056021.
- Ryle, M.; Vonberg, D. D. (1946). Solar Radiation on 175 Mc./s. Nature. 158 (4010): 339—340. Bibcode:1946Natur.158..339R. doi:10.1038/158339b0. S2CID 4097569.
- Robertson, Peter (1992). Beyond southern skies: radio astronomy and the Parkes telescope. University of Cambridge. с. 42, 43. ISBN .
- W. E. Howard. A Chronological History of Radio Astronomy (PDF). Архів оригіналу (PDF) за 14 липня 2012. Процитовано 2 грудня 2013.
- . Архів оригіналу за 3 грудня 2013. Процитовано 2 грудня 2013.
- Press Release: The 1974 Nobel Prize in Physics. Процитовано 2 грудня 2013.
- Jenkins, Francis A.; Harvey E. White (1957). Fundamentals of Optics. с. 430–437.
- Internet Archive, J. B. (1990). The analysis of starlight : one hundred and fifty years of astronomical spectroscopy. Cambridge ; New York : Cambridge University Press. ISBN .
- (PDF). web.archive.org. Архів оригіналу (PDF) за 29 жовтня 2013. Процитовано 22 травня 2024.
- Foukal, Peter V. (2004). Solar Astrophysics. с. 69. ISBN .
- Gregory, Stephen A.; Michael Zeilik (1998). Introductory astronomy & astrophysics (вид. 4.). Fort Worth [u.a.]: Saunders College Publ. с. 322. ISBN .
- Pan, Liubin; Scannapieco, Evan; Scalo, Jon (1 жовтня 2013). Modeling the Pollution of Pristine Gas in the Early Universe. The Astrophysical Journal. 775 (2): 111. arXiv:1306.4663. Bibcode:2013ApJ...775..111P. doi:10.1088/0004-637X/775/2/111. S2CID 119233184.
- The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science (англ.). Taylor & Francis. 1860.
- Massoud, Mahmoud (16 вересня 2005). Engineering Thermofluids: Thermodynamics, Fluid Mechanics, and Heat Transfer (англ.). Springer Science & Business Media. ISBN .
- CODATA Value: Wien wavelength displacement law constant†. physics.nist.gov. Процитовано 22 травня 2024.
- Jenkins, Francis A.; Harvey E. White (1957). Fundamentals of Optics. New York: McGraw-Hill. с. 430—437. ISBN .
- . web.archive.org. 9 серпня 2014. Архів оригіналу за 9 серпня 2014. Процитовано 22 травня 2024.
{{}}
: Обслуговування CS1: bot: Сторінки з посиланнями на джерела, де статус оригінального URL невідомий () - CODATA Value: Stefan-Boltzmann constant. physics.nist.gov. Процитовано 22 травня 2024.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Astrospektroskopiya ce rozdil astronomiyi yakij vikoristovuye metodi spektroskopiyi dlya vimiryuvannya spektra elektromagnitnogo viprominyuvannya zokrema j vidimogo sho jogo viprominyuyut zori ta inshi nebesni ob yekti Zoryanij spektr mozhe viyaviti bagato vlastivostej zir yak ot yihnij himichnij sklad temperaturu shilnist masu vidstan svitnist i vidnosnij ruh za dopomogoyu vimiryuvan doplerivskogo zsuvu Spektroskopiya takozh vikoristovuyetsya dlya vivchennya fizichnih vlastivostej bagatoh inshih tipiv nebesnih ob yektiv takih yak planeti tumannosti galaktiki ta aktivni yadra galaktik Zoryanij spektroskop Likskoyi observatoriyi 1898 roku Rozroblenij Dzhejmsom Kilerom Prozorist v atmosferi Zemli dlya riznih dovzhin hvil elektromagnitnogo viprominyuvannyaIstoriyaAstronomichna spektroskopiya vikoristovuyetsya dlya vimiryuvannya troh osnovnih smug viprominyuvannya spektra vidimogo viprominyuvannya radio i rentgenivskogo viprominyuvannya U toj chas yak usya spektroskopiya rozglyadaye konkretni oblasti spektra dlya otrimannya signalu zalezhno vid chastoti potribni rizni metodi Ozon O3 i molekulyarnij kisen O2 poglinayut svitlo z dovzhinami hvil do 300 nm sho oznachaye sho dlya rentgenivskoyi ta ultrafioletovoyi spektroskopiyi potribne vikoristannya suputnikovogo teleskopa abo detektoriv vstanovlenih na raketi Radiosignali viprominyuyutsya na nabagato dovshih hvilyah nizh optichni signali i vimagayut vikoristannya anten abo radioprijmachiv Infrachervone viprominyuvannya poglinayetsya atmosfernoyu vodoyu i vuglekislim gazom tomu hocha obladnannya analogichne tomu sho vikoristovuyetsya v optichnij spektroskopiyi suputniki zobov yazani reyestruvati bilshu chastinu infrachervonogo spektra Optichna spektroskopiya Svitlo sho padaye vidbivayetsya pid tim samim kutom chorni liniyi ale nevelika chastina svitla zalomlyuyetsya chervoni ta sini liniyi Fiziki vivchali sonyachnij spektr vidtodi yak Isaak Nyuton upershe vikoristav prostu prizmu dlya sposterezhennya vlastivostej svitla pid chas zalomlennya Na pochatku 1800 h rokiv Jozef fon Fraungofer vikoristav svoyu majsternist yak virobnika skla dlya stvorennya duzhe chistih prizm sho dalo jomu zmogu sposterigati 574 temni liniyi v udavanomu bezperervnomu spektri Nezabarom pislya cogo vin ob yednav teleskop i prizmu shob sposterigati spektr Veneri Misyacya Marsa i riznih zir takih yak Betelgejze jogo kompaniya prodovzhuvala vigotovlyati ta prodavati visokoyakisni zalomlyuyuchi teleskopi zasnovani na jogo originalnih rozrobkah do jogo zakrittya v 1884 roci Znachnij vnesok u rozvitok spektroskopiyi zirok zrobili na rubezhi XIX XX st spivrobitniki Garvardskoyi observatoriyi Rozdilna zdatnist prizmi obmezhena yiyi rozmirami bilsha prizma zabezpechit bilsh detalnij spektr ale zbilshennya masi robit yiyi nepridatnoyu dlya visokotochnih sposterezhen Cyu problemu bulo rozv yazano na pochatku 1900 h rokiv iz rozrobkoyu Dzh Plaskettom visokoyakisnih vidbivnih reshitok yakij pracyuvav u Dominjonskij observatoriyi v Ottavi Kanada svitlo sho padaye na dzerkalo vidbivayetsya pid tim samim kutom prote nevelika chastina svitla bude zalomlyuvatisya pid inshim kutom ce zalezhit vid pokaznikiv zalomlennya materialiv i dovzhini hvili svitla Stvoryuyuchi zalomlyuyuchu reshitku yaka vikoristovuye veliku kilkist paralelnih dzerkal nevelika chastina svitla mozhe buti sfokusovana i vizualizovana Ci novi spektroskopi davali bilsh detalizovane zobrazhennya nizh prizma vimagali menshe svitla i mogli buti sfokusovani na pevnij oblasti spektra shlyahom nahilu reshitki Obmezhennyam na zalomlyuyuchu reshitku ye shirina dzerkal yaki mozhna zatochiti tilki do tiyeyi velichini yak vtrachatimetsya fokus maksimum stanovit blizko 1000 ryadkiv mm Shob podolati ce obmezhennya bulo rozrobleno golografichni reshitki V ob yemno fazovih golografichnih reshitkah vikoristovuyetsya tonka plivka dihromovanogo zhelatinu na sklyanij poverhni yaka zgodom piddayetsya vplivu interferenciyi hvil stvoryuvanoyi interferometrom Cya hvilova kartina stvoryuye kartinu viddzerkalennya shozhu na zalomlyuvalnu reshitku ale z vikoristannyam umovi Bregga Vulfa tobto procesu v yakomu kut viddzerkalennya zalezhit vid roztashuvannya atomiv u zhelatini Golografichni reshitki mozhut mati do 6000 linij mm i mozhut udvichi efektivnishe zbirati svitlo nizh zalomlyuvalni reshitki Oskilki voni zapechatani mizh dvoma listami skla golografichni reshitki duzhe universalni potencijno mozhut pracyuvati desyatilittya do neobhidnosti zamini Svitlo rozsiyane reshitkoyu abo prizmoyu v spektrografi mozhe buti zareyestrovane detektorom Istorichno fotografichni plastini shiroko vikoristovuvali dlya zapisu spektriv poki ne bulo rozrobleno elektronni detektori i sogodni v optichnih spektrografah najchastishe vikoristovuyut priladi iz zaryadovim zv yazkom PZZ Shkala dovzhin hvil spektra mozhe buti vidkalibrovana shlyahom sposterezhennya spektra linij viprominyuvannya vidomoyi dovzhini hvili vid gazorozryadnoyi lampi Shkala potoku spektra mozhe buti vidkalibrovana yak funkciya dovzhini hvili shlyahom porivnyannya zi sposterezhennyam standartnoyi zori z popravkami na atmosferne poglinannya svitla cej proces vidomij yak spektrofotometriya Radiospektroskopiya Radioastronomiya bula zasnovana robotami Karla Yanskogo na pochatku 1930 h rokiv koli vin pracyuvav u Laboratoriyi Bella Vin pobuduvav radioantenu dlya poshuku potencijnih dzherel pereshkod dlya transatlantichnih radioperedach Odne z viyavlenih dzherel shumu prijshlo ne z Zemli a z centru Chumackogo shlyahu v suzir yi Strilcya U 1942 roci Dzh S Gej viyaviv radiochastotu Soncya za dopomogoyu vijskovih radiolokacijnih prijmachiv Radiospektroskopiya pochalasya z vidkrittya 21 santimetrovoyi liniyi H I u 1951 roci Radiointerferometriya Radiointerferometriya bula vpershe vvedena v ekspluataciyu 1946 roku koli Dzhozef Lejd Pozi Rubi Pejn Skott i vikoristovuvali yedinu antenu na morskij kruchi dlya sposterezhennya sonyachnogo viprominyuvannya na chastoti 200 MGc Dva padayuchih promeni odin pryamo vid soncya a inshij vidbitij vid poverhni morya stvoryuvali neobhidni pereshkodi Pershij bagatoprijmalnij interferometr buv pobudovanij togo zh roku Martinom Rajlom i Vonbergom U 1960 roci Rajl i Entoni G yuyish opublikuvali metodiku aperturnogo sintezu dlya analizu danih interferometra Proces sintezu diafragmi yakij vklyuchaye avtokorelyaciyu i diskretne peretvorennya Fur ye vhidnogo signalu vidnovlyuye yak prostorovu tak i chastotnu zminu potoku Rezultatom ye trivimirne zobrazhennya tretoyu vissyu yakogo ye chastota Za cyu robotu Rajl i G yuyish buli spilno nagorodzheni Nobelivskoyu premiyeyu z fiziki 1974 roku Zori ta yih vlastivostiHimichni vlastivosti Nyuton vikoristovuvav prizmu dlya podilu bilogo svitla na kolori a visokoyakisni prizmi Fraungofera dali zmoguBezperervnij spektrEmisijnij spektrAbsorbcijnij spektr vchenim pobachiti temni liniyi nevidomogo pohodzhennya U 1850 h rokah Gustav Kirhgof i Robert Bunzen opisali yavisha sho stoyat za cimi temnimi liniyami Garyachi tverdi ob yekti viroblyayut svitlo z bezperervnim spektrom garyachi gazi viprominyuyut svitlo na pevnih dovzhinah hvil a garyachi tverdi ob yekti otocheni holodnishimi gazami demonstruyut majzhe bezperervnij spektr iz temnimi liniyami sho vidpovidayut liniyam viprominyuvannya gaziv Porivnyuyuchi liniyi poglinannya Soncya zi spektrami viprominyuvannya vidomih gaziv mozhna viznachiti himichnij sklad zir Poznachennya Element abo z yednannya Dovzhina hvili nm Poznachennya Element Dovzhina hvili nm y O2 8987 65 c Fe 4957 61 Z O2 8226 96 F Hb 4861 34 A O2 7593 70 d Fe 4668 14 B O2 6867 19 e Fe 4383 55 C Ha 6562 81 G Hg 4340 47 a O2 6276 61 G Fe 4307 90 D1 Na 5895 92 G Ca 4307 74 D2 Na 5889 95 h Hd 4101 75 D3 ili d He 5875 618 H Ca II 3968 47 e Hg 5460 73 K Ca II 3933 68 E2 Fe 5270 39 L Fe 3820 44 b1 Mg 5183 62 N Fe 3581 21 b2 Mg 5172 70 P Ti II 3361 12 b3 Fe 5168 91 T Fe 3021 08 b4 Fe 5167 51 t Ni 2994 44 b4 Mg 5167 33 Ne vsi elementi na Sonci buli negajno identifikovani Dva prikladi pererahovani nizhche U 1868 roci Norman Lok yer i P yer Zhansen nezalezhno odin vid odnogo sposterigali liniyu poruch iz dubletom natriyu D1 i D2 yaku Lok yer viznachiv yak novij element Vin nazvav jogo Geliyem ale tilki 1895 roku cej element buv znajdenij na Zemli U 1869 roci astronomi Charlz Ogastes Yang i en nezalezhno odin vid odnogo sposterigali novu zelenu liniyu viprominyuvannya v sonyachnij koroni pid chas zatemnennya Cej novij element buv nepravilno nazvanij en oskilki vin buv znajdenij tilki v koroni Lishe v 1930 h rokah en i en viyavili sho spektralna liniya na dovzhini hvili 530 3 nm obumovlena silno ionizovanim zalizom Fe13 Inshi nezvichajni liniyi v koronalnomu spektri takozh viklikani silno ionizovanimi elementami takimi yak nikel i kalcij prichomu visoka ionizaciya obumovlena ekstremalnoyu temperaturoyu sonyachnoyi koroni Na sogodni dlya Soncya bulo pererahovano ponad 20 000 linij poglinannya v diapazoni mizh 293 5 i 877 0 nm ale tilki priblizno 75 cih linij buli pov yazani z poglinannyam elementami Analizuyuchi shirinu kozhnoyi spektralnoyi liniyi v spektri viprominyuvannya mozhna viznachiti yak elementi prisutni v zori tak i yihnij vidnosnij vmist Vikoristovuyuchi cyu informaciyu zori mozhna rozdiliti na zoryani populyaciyi Zori populyaciyi I ye najmolodshimi zoryami ta mayut najvishij vmist metaliv nashe Sonce nalezhit same do cogo tipu todi yak zori populyaciyi III ye najstarishimi zoryami z duzhe nizkim vmistom metaliv Krivi viprominyuvannya absolyutno chornogo tila dlya riznih temperatur Temperatura ta rozmir Div takozh Svitnist ta Zoryana velichina U 1860 roci Gustav Kirhgof zaproponuvav ideyu absolyutno chornogo tila materialu sho viprominyuye elektromagnitne viprominyuvannya na vsih dovzhinah hvil U 1894 roci Vilgelm Vin otrimav viraz sho pov yazuye temperaturu T chornogo tila z jogo pikovoyu dovzhinoyu hvili viprominyuvannya lmax l max T b displaystyle lambda text max T b b koeficiyent proporcijnosti yaka nazivayetsya postijnoyu zmishennya Vina sho dorivnyuye 2 897771955 10 3 nm K Ce rivnyannya nazivayetsya zakonom zmishennya Vina Vimiryuyuchi pikovu dovzhinu hvili zori mozhna viznachiti poverhnevu temperaturu zori Napriklad yaksho dovzhina hvili pika viprominyuvannya zori stanovit 502 nm vidpovidna temperatura bude 5778 K Svitnist zori ye miroyu vidilennya energiyi viprominyuvannya za pevnij promizhok chasu Svitnist L mozhe buti pov yazana z temperaturoyu T zori takim spivvidnoshennyam L 4 p R 2 s T 4 displaystyle L 4 pi R 2 sigma T 4 de R radius zori a s postijna Stefana Bolcmana zi znachennyam s 5 670 367 13 10 8 displaystyle sigma 5 670367 13 times 10 8 Vt m 2 K 4 Takim chinom koli svitnist i temperatura vidomi za dopomogoyu pryamogo vimiryuvannya i rozrahunku mozhna viznachiti radius zori Dzherela California Institute of Technology Arhiv originalu za 11 zhovtnya 2018 Procitovano 23 zhovtnya 2013 Foukal Peter V 2004 Solar Astrophysics Weinheim Wiley VCH ISBN 3 527 40374 4 Newton Isaac 1642 1727 Auteur du texte 1704 Opticks or a Treatise of the reflexions refractions inflexions and colours of light Also two treatises of the species and magnitude of curvilinear figures FR s 13 19 Wissenschaften Bayerische Akademie der 1817 Denkschriften der Koniglichen Akademie der Wissenschaften zu Munchen nim Die Akademie Bibcode 1817AnP 56 264F Hearnshaw J B 1986 The analysis of starlight Cambridge University Press ISBN 0 521 39916 5 Kitchin C R 1995 Optical Astronomical Spectroscopy Bristol Institute of Physics Publishing Barden S C Arns J A Colburn W S July 1998 d Odorico Sandro red PDF Proc SPIE Optical Astronomical Instrumentation 3355 866 876 Bibcode 1998SPIE 3355 866B CiteSeerX 10 1 1 25 5736 doi 10 1117 12 316806 S2CID 17445305 Arhiv originalu PDF za 28 lipnya 2010 Procitovano 12 veresnya 2019 Oke J B Gunn J E 1983 Secondary standard stars for absolute spectrophotometry The Astrophysical Journal 266 713 Bibcode 1983ApJ 266 713O doi 10 1086 160817 Ghigo F Karl Jansky National Radio Astronomy Observatory Associated Universities Inc Procitovano 24 zhovtnya 2013 Pawsey Joseph Payne Scott Ruby McCready Lindsay 1946 Radio Frequency Energy from the Sun Nature 157 3980 158 159 Bibcode 1946Natur 157 158P doi 10 1038 157158a0 PMID 21015114 S2CID 4056021 Ryle M Vonberg D D 1946 Solar Radiation on 175 Mc s Nature 158 4010 339 340 Bibcode 1946Natur 158 339R doi 10 1038 158339b0 S2CID 4097569 Robertson Peter 1992 Beyond southern skies radio astronomy and the Parkes telescope University of Cambridge s 42 43 ISBN 0 521 41408 3 W E Howard A Chronological History of Radio Astronomy PDF Arhiv originalu PDF za 14 lipnya 2012 Procitovano 2 grudnya 2013 Arhiv originalu za 3 grudnya 2013 Procitovano 2 grudnya 2013 Press Release The 1974 Nobel Prize in Physics Procitovano 2 grudnya 2013 Jenkins Francis A Harvey E White 1957 Fundamentals of Optics s 430 437 Internet Archive J B 1990 The analysis of starlight one hundred and fifty years of astronomical spectroscopy Cambridge New York Cambridge University Press ISBN 978 0 521 39916 6 PDF web archive org Arhiv originalu PDF za 29 zhovtnya 2013 Procitovano 22 travnya 2024 Foukal Peter V 2004 Solar Astrophysics s 69 ISBN 3 527 40374 4 Gregory Stephen A Michael Zeilik 1998 Introductory astronomy amp astrophysics vid 4 Fort Worth u a Saunders College Publ s 322 ISBN 0 03 006228 4 Pan Liubin Scannapieco Evan Scalo Jon 1 zhovtnya 2013 Modeling the Pollution of Pristine Gas in the Early Universe The Astrophysical Journal 775 2 111 arXiv 1306 4663 Bibcode 2013ApJ 775 111P doi 10 1088 0004 637X 775 2 111 S2CID 119233184 The London Edinburgh and Dublin Philosophical Magazine and Journal of Science angl Taylor amp Francis 1860 Massoud Mahmoud 16 veresnya 2005 Engineering Thermofluids Thermodynamics Fluid Mechanics and Heat Transfer angl Springer Science amp Business Media ISBN 978 3 540 27280 9 CODATA Value Wien wavelength displacement law constant physics nist gov Procitovano 22 travnya 2024 Jenkins Francis A Harvey E White 1957 Fundamentals of Optics New York McGraw Hill s 430 437 ISBN 0 07 085346 0 web archive org 9 serpnya 2014 Arhiv originalu za 9 serpnya 2014 Procitovano 22 travnya 2024 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Obslugovuvannya CS1 bot Storinki z posilannyami na dzherela de status originalnogo URL nevidomij posilannya CODATA Value Stefan Boltzmann constant physics nist gov Procitovano 22 travnya 2024