У лінійній алгебрі, базис для векторного простору це лінійно незалежна множина для якої цей простір є лінійною оболонкою. Ця стаття здебільшого розглядає скінченно-вимірні векторні простори, але багато теорем мають місце для нескінченно-вимірних векторних просторів. Базис векторного простору розмірності n це множина з n векторів (α1, …, αn), які називають базисними векторами, з властивістю, що будь-який вектор цього простору можна представити як унікальну лінійну комбінацію базисних векторів. Матриці переходу операторів також визначені вибраним базисом. Через те, що часто бажано працювати з більше ніж одним базисом для векторного простору, у лінійній алгебрі засадничо важливо бути здатним легко переходити від координатних представлень векторів і операторів в одному базисі до їх тотожних представлень в іншому базисі. Такий перехід називається зміною базису.
Хоча символ R, що ми його використовуємо нижче може позначати поле дійсних чисел, результати дійсні і, якщо R замінено на будь-яке поле F. Хоча нижче використано термінологію векторних просторів, обговорені результати дійсні і тоді коли R це комутативне кільце а векторний простір повсюдно замінено на вільний R-модуль.
Матриця переходу
Означення
Матрицею переходу в -вимірному просторі від базису до базису називається квадратна матриця, стовпці якої — координати розкладу векторів у базисі .
А саме нехай виконуються рівності (де всі коефіцієнти однозначно визначені, бо є базисом):
- .
Тоді матриця переходу має вигляд:
Якщо записувати базиси за допомогою вектор-рядків елементами яких є базисні вектори, то можна у матричній формі записати:
Властивості
- Матрицею переходу від довільного базису до самого себе є одинична матриця.
- Якщо , і є трьома базисами одного векторного простору і є матрицею переходу від до базису а є матрицею переходу від базису до базису , то матриця переходу від до є добутком цих матриць:
- Зокрема із попереднього випливає, що матриця переходу між будь-якими матрицями є невиродженою і матриця зворотного переходу є оберненою до даної матриці переходу:
- .
- Якщо розглядається векторний простір над полем дійсних чисел і базис є ортонормованим щодо деякого скалярного добутку на просторі, то базис буде ортонормованим тоді і тільки тоді, коли матриця переходу буде ортогональною. У випадку комплексних векторних просторів таке саме твердження справедливе для унітарних матриць і ермітових скалярних добутків.
Перетворення координат вектора при зміні базису
Нехай деякий довільний вектор виражається через вектори у базисах і як
і
Ці рівності дозволяють ввести координатні вектор-стовпці і за допомогою матричного добутку і означення матриці переходу записати:
Із однозначності запису вектора через базис звідси випливає формула перетворення координат при зміні базису:
Тобто якщо координати деякого вектора у базисі утворюють вектор стовпець , а у базисі утворюють вектор стовпець , то
Важливо помітити зміну порядку у цій формулі. Якщо матриця визначає перехід від базису до базису , то формула перетворення координат задає перехід навпаки від координат у базисі до координат у базисі . Тому матрицю можна також називати матрицею переходу від координат у базисі до координат у базисі .
У такій інтерпретації можна також дати означення матриці переходу через матриці лінійного відображення. Стовпцями такої матриці є координати у базисі . Якщо вибрати тотожне лінійне перетворення то стовпцями матриці будуть координати розкладів векторів із у базисі . Тому
- .
Зміна порядку базисів у правій і лівій частині не є помилково.
Приклади
Два виміри
У двовимірному просторі, двійка векторів отриманих обертанням стандартного базису проти годинникової стрілки на 45° є базисом простору. Матриця чиї стовпчики є координатами цих векторів у початковому базисі має вид:
Якщо ми хочемо перевести будь-який вектор простору в цей базис, нам треба помножити зліва його компоненти на обернену до цієї матрицю, а щоб перевести вектор з координатами у новому базисі у координати стандартного потрібно нові координати помножити на саму матрицю.
Три виміри
Нехай R буде новим базисом заданим за допомогою кутів Ейлера. Матриця цього базису в якості стовпців матиме компоненти кожного з векторів у стандартному базисі. Отже, ця матриця виглядає так (Див. статтю Ейлерові кути):
Знов-таки, будь-який вектор простору можна перевести в цей новий базис домножуючи його зліва на обернену до цієї матриці.
Перетворення матриці лінійного відображення при зміні базису
Нехай задані векторні простори і над одним полем і для простору вибрані два базиси і а у просторі вибрані два базиси і Нехай і є відповідними переходами між базисами у двох просторах.
Якщо тепер є лінійним відображенням то у відповідних базисах воно задається матрицями і . Якщо є довільним вектором, координати якого у базисах і можна записати за допомогою вектор стовпців і , то є вектором простору координати якого у базисах можна записати за допомогою вектор стовпців і .
У цих позначеннях у матричному записі враховуючи означення матриць переходу і лінійного відображення:
Оскільки вказані рівності справедливі для координатних стовпців усіх векторів , то є однозначно визначеною матрицею відображення у базисах і :
Зокрема якщо і є лінійним перетворенням, то його матриці у базисах і пов'язані співвідношенням:
- .
У простіших позначеннях, якщо є матрицею перетворення у базисі , а є матрицею перетворення у базисі і , то:
- .
Матриця білінійної форми
Білінійна форма на векторному просторі V над полем R це відображення V × V → R лінійне щодо обох аргументів. Тобто, B : V × V → R білінійна, якщо відображення
лінійні для будь-якого y з V. Це визначення також застосовне для модуля над комутативним кільцем і в якості лінійного відображення.
Матриця Грама G, що відповідає базису визначена так
Якщо і це представлення векторів x, y у цьому базисі, тоді білінійна форма задана так
Матриця буде симетрична якщо білінійна форма B це симетрична білінійна форма.
Зміна базису
Якщо задано два базиси і , є матрицею Грама у першому базисі, а є матрицею грама у другому базисі, то ці матриці пов'язана співвідношенням із матрицею переходу :
Джерела
- Гельфанд И. М. Лекции по линейной алгебре. — Москва : Наука, 1998. — 320 с. — .(рос.)
- Anton, Howard (1987), Elementary Linear Algebra (вид. 5th), New York: , ISBN
- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: , ISBN
- Nering, Evar D. (1970), Linear Algebra and Matrix Theory (вид. 2nd), New York: , LCCN 76091646
Примітки
- Anton, (1987, с. 171)
- Beauregard та Fraleigh, (1973, с. 93)
- Nering, (1970, с. 15)
- Anton, (1987, с. 74—76)
- Beauregard та Fraleigh, (1973, с. 194—195)
- Anton, (1987, с. 221—237)
- Beauregard та Fraleigh, (1973, с. 240—243)
- Nering, (1970, с. 50—52)
- . www.math.hmc.edu. Архів оригіналу за 16 липня 2016. Процитовано 22 серпня 2017. і пояснення / доведення . www.math.hmc.edu. Архів оригіналу за 22 серпня 2017. Процитовано 22 серпня 2017.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
U linijnij algebri bazis dlya vektornogo prostoru ce linijno nezalezhna mnozhina dlya yakoyi cej prostir ye linijnoyu obolonkoyu Cya stattya zdebilshogo rozglyadaye skinchenno vimirni vektorni prostori ale bagato teorem mayut misce dlya neskinchenno vimirnih vektornih prostoriv Bazis vektornogo prostoru rozmirnosti n ce mnozhina z n vektoriv a1 an yaki nazivayut bazisnimi vektorami z vlastivistyu sho bud yakij vektor cogo prostoru mozhna predstaviti yak unikalnu linijnu kombinaciyu bazisnih vektoriv Matrici perehodu operatoriv takozh viznacheni vibranim bazisom Cherez te sho chasto bazhano pracyuvati z bilshe nizh odnim bazisom dlya vektornogo prostoru u linijnij algebri zasadnicho vazhlivo buti zdatnim legko perehoditi vid koordinatnih predstavlen vektoriv i operatoriv v odnomu bazisi do yih totozhnih predstavlen v inshomu bazisi Takij perehid nazivayetsya zminoyu bazisu Linijni kombinaciyi odniyeyi bazisnoyi mnozhini vektoriv fioletovi formuyut novi vektori chervoni Yaksho voni linijno nezalezhni to voni utvoryuyut novu bazisnu mnozhinu Linijni kombinaciyi sho pov yazuyut pershu mnozhinu i drugu stanovlyat linijne vidobrazhennya yake nazivayetsya zminoyu bazisu Vektor predstavleno v dvoh riznih bazisah fioletovi i chervoni strilki Hocha simvol R sho mi jogo vikoristovuyemo nizhche mozhe poznachati pole dijsnih chisel rezultati dijsni i yaksho R zamineno na bud yake pole F Hocha nizhche vikoristano terminologiyu vektornih prostoriv obgovoreni rezultati dijsni i todi koli R ce komutativne kilce a vektornij prostir povsyudno zamineno na vilnij R modul Matricya perehoduOznachennya Matriceyu perehodu v n displaystyle n vimirnomu prostori vid bazisu A a 1 a 2 a n displaystyle mathcal A langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle do bazisu B b 1 b 2 b n displaystyle mathcal B langle mathbf b 1 mathbf b 2 ldots mathbf b n rangle nazivayetsya kvadratna matricya stovpci yakoyi koordinati rozkladu vektoriv b 1 b 2 b n displaystyle langle mathbf b 1 mathbf b 2 ldots mathbf b n rangle u bazisi a 1 a 2 a n displaystyle langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle A same nehaj vikonuyutsya rivnosti de vsi koeficiyenti odnoznachno viznacheni bo a 1 a 2 a n displaystyle langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle ye bazisom b 1 a 11 a 1 a 12 a 2 a 1 n a n displaystyle mathbf b 1 alpha 11 mathbf a 1 alpha 12 mathbf a 2 ldots alpha 1n mathbf a n b 2 a 21 a 1 a 22 a 2 a 2 n a n displaystyle mathbf b 2 alpha 21 mathbf a 1 alpha 22 mathbf a 2 ldots alpha 2n mathbf a n displaystyle cdots b n a n 1 a 1 a n 2 a 2 a n n a n displaystyle mathbf b n alpha n1 mathbf a 1 alpha n2 mathbf a 2 ldots alpha nn mathbf a n Todi matricya perehodu maye viglyad B A B a 11 a 21 a n 1 a 12 a 22 a n 2 a 1 n a 2 n a n n displaystyle B mathcal A mathcal B begin pmatrix alpha 11 amp alpha 21 amp ldots amp alpha n1 alpha 12 amp alpha 22 amp ldots amp alpha n2 vdots amp vdots amp ddots amp vdots alpha 1n amp alpha 2n amp ldots amp alpha nn end pmatrix Yaksho zapisuvati bazisi za dopomogoyu vektor ryadkiv elementami yakih ye bazisni vektori to mozhna u matrichnij formi zapisati b 1 b 2 b n a 1 a 2 a n B A B a 1 a 2 a n a 11 a 21 a n 1 a 12 a 22 a n 2 a 1 n a 2 n a n n displaystyle langle mathbf b 1 mathbf b 2 ldots mathbf b n rangle langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle cdot B mathcal A mathcal B langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle begin pmatrix alpha 11 amp alpha 21 amp ldots amp alpha n1 alpha 12 amp alpha 22 amp ldots amp alpha n2 vdots amp vdots amp ddots amp vdots alpha 1n amp alpha 2n amp ldots amp alpha nn end pmatrix Vlastivosti Matriceyu perehodu vid dovilnogo bazisu A a 1 a 2 a n displaystyle mathcal A langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle do samogo sebe ye odinichna matricya Yaksho A a 1 a 2 a n displaystyle mathcal A langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle B b 1 b 2 b n displaystyle mathcal B langle mathbf b 1 mathbf b 2 ldots mathbf b n rangle i C c 1 c 2 c n displaystyle mathcal C langle mathbf c 1 mathbf c 2 ldots mathbf c n rangle ye troma bazisami odnogo vektornogo prostoru i B A B displaystyle B mathcal A mathcal B ye matriceyu perehodu vid A displaystyle mathcal A do bazisu B displaystyle mathcal B a B B C displaystyle B mathcal B mathcal C ye matriceyu perehodu vid bazisu B displaystyle mathcal B do bazisu C displaystyle mathcal C to matricya perehodu vid A displaystyle mathcal A do C displaystyle mathcal C ye dobutkom cih matric B A C B B C B A B displaystyle B mathcal A mathcal C B mathcal B mathcal C cdot B mathcal A mathcal B dd Zokrema iz poperednogo viplivaye sho matricya perehodu mizh bud yakimi matricyami ye nevirodzhenoyu i matricya zvorotnogo perehodu ye obernenoyu do danoyi matrici perehodu B B A B A B 1 displaystyle B mathcal B mathcal A B mathcal A mathcal B 1 dd Yaksho rozglyadayetsya vektornij prostir nad polem dijsnih chisel i bazis A a 1 a 2 a n displaystyle mathcal A langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle ye ortonormovanim shodo deyakogo skalyarnogo dobutku na prostori to bazis B b 1 b 2 b n displaystyle mathcal B langle mathbf b 1 mathbf b 2 ldots mathbf b n rangle bude ortonormovanim todi i tilki todi koli matricya perehodu B A B displaystyle B mathcal A mathcal B bude ortogonalnoyu U vipadku kompleksnih vektornih prostoriv take same tverdzhennya spravedlive dlya unitarnih matric i ermitovih skalyarnih dobutkiv Peretvorennya koordinat vektora pri zmini bazisuNehaj deyakij dovilnij vektor x displaystyle mathbf x virazhayetsya cherez vektori u bazisah A a 1 a 2 a n displaystyle mathcal A langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle i B b 1 b 2 b n displaystyle mathcal B langle mathbf b 1 mathbf b 2 ldots mathbf b n rangle yak x x 1 a 1 x 2 a 2 x n a n i x i a i displaystyle mathbf x x 1 mathbf a 1 x 2 mathbf a 2 dots x n mathbf a n sum i x i mathbf a i i x y 1 b 1 y 2 b 2 y n b n i y i b i displaystyle mathbf x y 1 mathbf b 1 y 2 mathbf b 2 dots y n mathbf b n sum i y i mathbf b i Ci rivnosti dozvolyayut vvesti koordinatni vektor stovpci i za dopomogoyu matrichnogo dobutku i oznachennya matrici perehodu zapisati x a 1 a 2 a n x 1 x n b 1 b 2 b n y 1 y n a 1 a 2 a n B A B y 1 y n displaystyle mathbf x langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle begin pmatrix x 1 vdots x n end pmatrix langle mathbf b 1 mathbf b 2 ldots mathbf b n rangle begin pmatrix y 1 vdots y n end pmatrix langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle cdot B mathcal A mathcal B begin pmatrix y 1 vdots y n end pmatrix Iz odnoznachnosti zapisu vektora cherez bazis zvidsi viplivaye formula peretvorennya koordinat pri zmini bazisu x 1 x n B A B y 1 y n displaystyle begin pmatrix x 1 vdots x n end pmatrix B mathcal A mathcal B begin pmatrix y 1 vdots y n end pmatrix Tobto yaksho koordinati deyakogo vektora u bazisi B displaystyle mathcal B utvoryuyut vektor stovpec y displaystyle y a u bazisi A displaystyle mathcal A utvoryuyut vektor stovpec x displaystyle x to x B A B y displaystyle x B mathcal A mathcal B y Vazhlivo pomititi zminu poryadku u cij formuli Yaksho matricya B A B displaystyle B mathcal A mathcal B viznachaye perehid vid bazisu A displaystyle mathcal A do bazisu B displaystyle mathcal B to formula peretvorennya koordinat zadaye perehid navpaki vid koordinat u bazisi B displaystyle mathcal B do koordinat u bazisi A displaystyle mathcal A Tomu matricyu B A B displaystyle B mathcal A mathcal B mozhna takozh nazivati matriceyu perehodu vid koordinat u bazisi B displaystyle mathcal B do koordinat u bazisi A displaystyle mathcal A U takij interpretaciyi mozhna takozh dati oznachennya matrici perehodu cherez matrici linijnogo vidobrazhennya Stovpcyami takoyi matrici M T A B displaystyle M T mathcal A mathcal B ye koordinati T a i displaystyle T mathbf a i u bazisi B displaystyle mathcal B Yaksho vibrati totozhne linijne peretvorennya to stovpcyami matrici M I B A displaystyle M I mathcal B mathcal A budut koordinati rozkladiv vektoriv iz B displaystyle mathcal B u bazisi A displaystyle mathcal A Tomu B A B M I B A displaystyle B mathcal A mathcal B M I mathcal B mathcal A Zmina poryadku bazisiv u pravij i livij chastini ne ye pomilkovo Prikladi Dva vimiri U dvovimirnomu prostori dvijka vektoriv otrimanih obertannyam standartnogo bazisu proti godinnikovoyi strilki na 45 ye bazisom prostoru Matricya chiyi stovpchiki ye koordinatami cih vektoriv u pochatkovomu bazisi maye vid M 1 2 1 2 1 2 1 2 displaystyle M begin bmatrix frac 1 sqrt 2 amp frac 1 sqrt 2 frac 1 sqrt 2 amp frac 1 sqrt 2 end bmatrix Yaksho mi hochemo perevesti bud yakij vektor prostoru v cej bazis nam treba pomnozhiti zliva jogo komponenti na obernenu do ciyeyi matricyu a shob perevesti vektor z koordinatami u novomu bazisi u koordinati standartnogo potribno novi koordinati pomnozhiti na samu matricyu Tri vimiri Nehaj R bude novim bazisom zadanim za dopomogoyu kutiv Ejlera Matricya cogo bazisu v yakosti stovpciv matime komponenti kozhnogo z vektoriv u standartnomu bazisi Otzhe cya matricya viglyadaye tak Div stattyu Ejlerovi kuti R c a c g s a c b s g c a s g s a c b c g s b s a s a c g c a c b s g s a s g c a c b c g s b c a s b s g s b c g c b displaystyle mathbf R begin bmatrix mathrm c alpha mathrm c gamma mathrm s alpha mathrm c beta mathrm s gamma amp mathrm c alpha mathrm s gamma mathrm s alpha mathrm c beta mathrm c gamma amp mathrm s beta mathrm s alpha mathrm s alpha mathrm c gamma mathrm c alpha mathrm c beta mathrm s gamma amp mathrm s alpha mathrm s gamma mathrm c alpha mathrm c beta mathrm c gamma amp mathrm s beta mathrm c alpha mathrm s beta mathrm s gamma amp mathrm s beta mathrm c gamma amp mathrm c beta end bmatrix Znov taki bud yakij vektor prostoru mozhna perevesti v cej novij bazis domnozhuyuchi jogo zliva na obernenu do ciyeyi matrici Peretvorennya matrici linijnogo vidobrazhennya pri zmini bazisuNehaj zadani vektorni prostori V displaystyle V i W displaystyle W nad odnim polem i dlya prostoru V displaystyle V vibrani dva bazisi A a 1 a n displaystyle mathcal A mathbf a 1 ldots mathbf a n i A a 1 a n displaystyle mathcal A mathbf a 1 ldots mathbf a n a u prostori W displaystyle W vibrani dva bazisi B b 1 b m displaystyle mathcal B mathbf b 1 ldots mathbf b m i B b 1 b m displaystyle mathcal B mathbf b 1 ldots mathbf b m Nehaj B A A displaystyle B mathcal A mathcal A i B B B displaystyle B mathcal B mathcal B ye vidpovidnimi perehodami mizh bazisami u dvoh prostorah Yaksho teper T V W displaystyle T V to W ye linijnim vidobrazhennyam to u vidpovidnih bazisah vono zadayetsya matricyami M T A B displaystyle M T mathcal A mathcal B i M T A B displaystyle M T mathcal A mathcal B Yaksho x V displaystyle mathbf x in V ye dovilnim vektorom koordinati yakogo u bazisah A displaystyle mathcal A i A displaystyle mathcal A mozhna zapisati za dopomogoyu vektor stovpciv x 1 x n displaystyle begin pmatrix x 1 vdots x n end pmatrix i x 1 x n displaystyle begin pmatrix x 1 vdots x n end pmatrix to T x displaystyle T mathbf x ye vektorom prostoru W displaystyle W koordinati yakogo u bazisah B B displaystyle mathcal B mathcal B mozhna zapisati za dopomogoyu vektor stovpciv y 1 y m displaystyle begin pmatrix y 1 vdots y m end pmatrix i y 1 y m displaystyle begin pmatrix y 1 vdots y m end pmatrix U cih poznachennyah u matrichnomu zapisi vrahovuyuchi oznachennya matric perehodu i linijnogo vidobrazhennya y 1 y m B B B y 1 y m B B B M T A B x 1 x n B B B M T A B B A A x 1 x n displaystyle begin pmatrix y 1 vdots y m end pmatrix B mathcal B mathcal B cdot begin pmatrix y 1 vdots y m end pmatrix B mathcal B mathcal B cdot M T mathcal A mathcal B cdot begin pmatrix x 1 vdots x n end pmatrix B mathcal B mathcal B cdot M T mathcal A mathcal B cdot B mathcal A mathcal A cdot begin pmatrix x 1 vdots x n end pmatrix Oskilki vkazani rivnosti spravedlivi dlya koordinatnih stovpciv usih vektoriv x V displaystyle mathbf x in V to B B B M T A B B A A displaystyle B mathcal B mathcal B cdot M T mathcal A mathcal B cdot B mathcal A mathcal A ye odnoznachno viznachenoyu matriceyu vidobrazhennya T V W displaystyle T V to W u bazisah A displaystyle mathcal A i B displaystyle mathcal B M T A B B B B M T A B B A A B B B 1 M T A B B A A displaystyle M T mathcal A mathcal B B mathcal B mathcal B cdot M T mathcal A mathcal B cdot B mathcal A mathcal A B mathcal B mathcal B 1 cdot M T mathcal A mathcal B cdot B mathcal A mathcal A Zokrema yaksho V W displaystyle V W i T displaystyle T ye linijnim peretvorennyam to jogo matrici u bazisah A displaystyle mathcal A i A displaystyle mathcal A pov yazani spivvidnoshennyam M T A B A A 1 M T A B A A displaystyle M T mathcal A B mathcal A mathcal A 1 cdot M T mathcal A cdot B mathcal A mathcal A U prostishih poznachennyah yaksho A displaystyle A ye matriceyu peretvorennya u bazisi A displaystyle mathcal A a A displaystyle A ye matriceyu peretvorennya u bazisi A displaystyle mathcal A i U B A A displaystyle U B mathcal A mathcal A to A U 1 A U displaystyle A U 1 AU Matricya bilinijnoyi formiBilinijna forma na vektornomu prostori V nad polem R ce vidobrazhennya V V R linijne shodo oboh argumentiv Tobto B V V R bilinijna yaksho vidobrazhennya x B x y displaystyle mathbf x mapsto B mathbf x mathbf y y B y x displaystyle mathbf y mapsto B mathbf y mathbf x linijni dlya bud yakogo y z V Ce viznachennya takozh zastosovne dlya modulya nad komutativnim kilcem i v yakosti linijnogo vidobrazhennya Matricya Grama G sho vidpovidaye bazisu A a 1 a 2 a n displaystyle mathcal A langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle viznachena tak G i j B a i a j displaystyle G i j B mathbf a i mathbf a j Yaksho x i x i a i displaystyle mathbf x sum i x i mathbf a i i y i y i a i displaystyle mathbf y sum i y i mathbf a i ce predstavlennya vektoriv x y u comu bazisi todi bilinijna forma zadana tak B x y x T G y displaystyle B mathbf x mathbf y mathbf x mathsf T G mathbf y Matricya bude simetrichna yaksho bilinijna forma B ce simetrichna bilinijna forma Zmina bazisu Yaksho zadano dva bazisi A a 1 a 2 a n displaystyle mathcal A langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle i A a 1 a 2 a n displaystyle mathcal A langle mathbf a 1 mathbf a 2 ldots mathbf a n rangle G displaystyle G ye matriceyu Grama u pershomu bazisi a G displaystyle G ye matriceyu grama u drugomu bazisi to ci matrici pov yazana spivvidnoshennyam iz matriceyu perehodu B A A displaystyle B mathcal A mathcal A G B A A T G B A A displaystyle G B mathcal A mathcal A mathsf T cdot G cdot B mathcal A mathcal A DzherelaGelfand I M Lekcii po linejnoj algebre Moskva Nauka 1998 320 s ISBN 5791300158 ros Anton Howard 1987 Elementary Linear Algebra vid 5th New York Wiley ISBN 0 471 84819 0 Beauregard Raymond A Fraleigh John B 1973 A First Course In Linear Algebra with Optional Introduction to Groups Rings and Fields Boston ISBN 0 395 14017 X Nering Evar D 1970 Linear Algebra and Matrix Theory vid 2nd New York Wiley LCCN 76091646PrimitkiAnton 1987 s 171 Beauregard ta Fraleigh 1973 s 93 Nering 1970 s 15 Anton 1987 s 74 76 Beauregard ta Fraleigh 1973 s 194 195 Anton 1987 s 221 237 Beauregard ta Fraleigh 1973 s 240 243 Nering 1970 s 50 52 www math hmc edu Arhiv originalu za 16 lipnya 2016 Procitovano 22 serpnya 2017 i poyasnennya dovedennya www math hmc edu Arhiv originalu za 22 serpnya 2017 Procitovano 22 serpnya 2017