Підтримка
www.wikidata.uk-ua.nina.az
Opukle spryazhennya funkciyi ce uzagalnennya peretvorennya Lezhandra yake zastosovuyetsya do neopuklih funkcij Vono vidome takozh yak peretvorennya Lezhandra Fenhelya abo peretvorennya Fenhelya za imenami Adriyena Mari Lezhandra ta en Spryazhennya vikoristovuyetsya dlya peretvorennya zadachi optimizaciyi u vidpovidnu dvoyistu zadachu yaku mozhlivo prostishe rozv yazati ViznachennyaNehaj X displaystyle X dijsnij topologichnij vektornij prostir i nehaj X displaystyle X dvoyistij prostir dlya X displaystyle X Poznachimo en cherez X X R displaystyle langle cdot cdot rangle X times X to mathbb R Dlya funkciyi f X R displaystyle f X to mathbb R cup infty infty yaka nabuvaye znachen na rozshirenij chislovij pryamij opukle spryazhennya f X R displaystyle f X to mathbb R cup infty infty viznacheno v terminah supremumu za formuloyu f x sup x x f x x X displaystyle f left x right sup left left left langle x x right rangle f left x right right x in X right abo ekvivalentno v terminah infimumu za formuloyu f x inf f x x x x X displaystyle f left x right inf left left f left x right left langle x x right rangle right x in X right Ce viznachennya mozhna interpretuvati yak koduvannya opukloyi obolonki nadgrafika funkciyi v terminah yiyi opornih giperploshin PrikladiVipuklo spryazhennya afinnoyi funkciyi f x a x b a R n b R displaystyle f x left langle a x right rangle b a in mathbb R n b in mathbb R dorivnyuye f x b x a x a displaystyle f left x right begin cases b amp x a infty amp x neq a end cases Vipuklo spryazhennya stepenevoyi funkciyi f x 1 p x p 1 lt p lt displaystyle f x frac 1 p x p 1 lt p lt infty dorivnyuye f x 1 q x q 1 lt q lt displaystyle f left x right frac 1 q x q 1 lt q lt infty de 1 p 1 q 1 displaystyle tfrac 1 p tfrac 1 q 1 Opukle spryazhennya funkciyi absolyutnoyi velichini f x x displaystyle f x left x right dorivnyuye f x 0 x 1 x gt 1 displaystyle f left x right begin cases 0 amp left x right leqslant 1 infty amp left x right gt 1 end cases Opukle poyednannya pokaznikovoyi funkciyi f x e x displaystyle f x e x dorivnyuye f x x ln x x x gt 0 0 x 0 x lt 0 displaystyle f left x right begin cases x ln x x amp x gt 0 0 amp x 0 infty amp x lt 0 end cases Opukle spryazhennya i peretvorennya Lezhandra pokaznikovoyi funkciyi zbigayutsya krim togo sho oblast viznachennya opuklogo spryazhennya strogo shirsha oskilki peretvorennya Lezhandra viznacheno lishe dlya dodatnih dijsnih chisel Zv yazok iz ochikuvanimi vtratami serednya cina riziku Nehaj F oznachaye integralnu funkciyu rozpodilu vipadkovoyi velichini X Todi integruyuchi chastinami f x x F u d u E max 0 x X x E min x X displaystyle f x int infty x F u du operatorname E left max 0 x X right x operatorname E left min x X right maye opukle spryazhennya f p 0 p F 1 q d q p 1 F 1 p E min F 1 p X p F 1 p E max 0 F 1 p X displaystyle f p int 0 p F 1 q dq p 1 F 1 p operatorname E left min F 1 p X right pF 1 p operatorname E left max 0 F 1 p X right Vporyadkuvannya Konkretna interpretaciya maye peretvorennya f inc x arg sup t t x 0 1 max t f u 0 d u displaystyle f text inc x arg sup t t cdot x int 0 1 max t f u 0 mathrm d u yak nespadne peregrupuvannya pochatkovoyi funkciyi f Zokrema f inc f displaystyle f text inc f dlya f displaystyle f ne spadaye VlastivostiOpukle spryazhennya zamknutoyi opukloyi funkciyi takozh ye zamknutoyu opukloyu funkciyeyu Opukle spryazhennya poliedralnoyi opukloyi funkciyi opukloyi funkciyi z mnogogrannim nadgrafikom takozh ye poliedralnoyu opukloyu funkciyeyu Obernennya poryadku Opukle spryazhennya obertaye poryadok yaksho f g displaystyle f leqslant g to f g displaystyle f geqslant g Tut f g x f x g x displaystyle f leqslant g iff forall x f x leqslant g x Dlya simejstva funkcij f a a displaystyle left f alpha right alpha ce viplivaye z faktu sho supremumi mozhna perestavlyati miscyami inf a f a x sup a f a x displaystyle left inf alpha f alpha right x sup alpha f alpha x ta z en sup a f a x inf a f a x displaystyle left sup alpha f alpha right x leqslant inf alpha f alpha x Podvijne spryazhennya Opukle spryazhennya funkciyi zavzhdi napivneperervne znizu Podvijne spryazhennya f displaystyle f opukle spryazhennya opuklogo spryazhennya ye takozh zamknenoyu opukloyu obolonkoyu tobto najbilshoyu napivneperervnoyu znizu opukloyu funkciyeyu z f f displaystyle f leqslant f Dlya en f f displaystyle f f todi j lishe todi koli f opukla i napivneperervna znizu za teoremoyu Fenhelya Moro Nerivnist Fenhelya Dlya bud yakoyi funkciyi f ta yiyi opuklogo spryazhennyaf displaystyle f nerivnist Fenhelya vidoma takozh yak nerivnist Fenhelya Moro vikonuyetsya dlya bud yakogo x X displaystyle x in X i p X displaystyle p in X p x f x f p displaystyle left langle p x right rangle leqslant f x f p Dovedennya viplivaye negajno z viznachennya opuklogo spryazhennya f p sup x p x f x p x f x displaystyle f p sup tilde x langle p tilde x rangle f tilde x geqslant langle p x rangle f x Opuklist Dlya dvoh funkcij f 0 displaystyle f 0 i f 1 displaystyle f 1 ta chisla 0 l 1 displaystyle 0 leqslant lambda leqslant 1 vikonuyetsya 1 l f 0 l f 1 1 l f 0 l f 1 displaystyle left 1 lambda f 0 lambda f 1 right leqslant 1 lambda f 0 lambda f 1 Tut operaciya displaystyle ce opukle vidobrazhennya v sebe Infimalna konvolyuciya Infimalna konvolyuciya dvoh funkcij f i g viznachayetsya yak f g x inf f x y g y y R n displaystyle left f Box g right x inf left f x y g y y in mathbb R n right Nehaj f1 fm pravilni opukli napivneperervni znizu funkciyi na R n displaystyle mathbb R n Todi infimalna konvolyuciya opukla i napivneperervna znizu ale ne obov yazkovo bude pravilnoyu funkciyeyu i zadovolnyaye rivnist f 1 f m f 1 f m displaystyle left f 1 Box cdots Box f m right f 1 cdots f m Infimalna konvolyuciya dvoh funkcij maye geometrichnu interpretaciyu strogij nadgrafik infimalnoyi konvolyuciyi dvoh funkcij dorivnyuye sumi Minkovskogo strogih nadgrafikiv cih funkcij Maksimizuvalnij argument Yaksho funkciya f displaystyle f diferencijovna to yiyi pohidna ye maksimizuvalnim argumentom pri obchislenni opuklogo spryazhennya f x x x arg sup x x x f x displaystyle f prime x x x arg sup x langle x x rangle f x i f x x x arg sup x x x f x displaystyle f prime x x x arg sup x langle x x rangle f x zvidki x f f x displaystyle x nabla f nabla f x x f f x displaystyle x nabla f nabla f x i bilsh togo f x f x x 1 displaystyle f prime prime x cdot f prime prime x x 1 f x f x x 1 displaystyle f prime prime x cdot f prime prime x x 1 Masshtabuvalni vlastivosti Yaksho dlya deyakogo g gt 0 displaystyle gamma gt 0 g x a b x g f l x d displaystyle g x alpha beta x gamma cdot f lambda x delta to g x a d x b l g f x b l g displaystyle g x alpha delta frac x beta lambda gamma cdot f left frac x beta lambda gamma right U razi dodatkovogo parametra skazhimo a displaystyle alpha bilsh togo f a x f a x displaystyle f alpha x f alpha tilde x de x displaystyle tilde x vibirayetsya maksimizuvalnim argumentom Povedinka za linijnih peretvoren Nehaj A obmezhenij linijnij operator z X u Y Dlya bud yakoyi opukloyi funkciyi f na X mayemo A f f A displaystyle left Af right f A de A f y inf f x x X A x y displaystyle Af y inf f x x in X Ax y ye proobrazom f dlya A a A spryazhenim operatorom dlya A Zamknuta opukla funkciya f simetrichna dlya zadanoyi mnozhini G ortogonalnih linijnih peretvoren f A x f x x A G displaystyle f left Ax right f x forall x forall A in G todi j lishe todi koli opukle spryazhennya f simetrichne dlya G Tablicya deyakih opuklih spryazhenU tablici navedeno peretvorennya Lezhandra dlya bagatoh poshirenih funkcij a takozh dlya dekilkoh korisnih vlastivostej g x displaystyle g x dom g displaystyle operatorname dom g g x displaystyle g x dom g displaystyle operatorname dom g f a x displaystyle f ax gde a 0 displaystyle a neq 0 X displaystyle X f x a displaystyle f left frac x a right X displaystyle X f x b displaystyle f x b X displaystyle X f x b x displaystyle f x langle b x rangle X displaystyle X a f x displaystyle af x gde a gt 0 displaystyle a gt 0 X displaystyle X a f x a displaystyle af left frac x a right X displaystyle X a b x g f l x d displaystyle alpha beta x gamma cdot f lambda x delta X displaystyle X a d x b l g f x b g l g gt 0 displaystyle alpha delta frac x beta lambda gamma cdot f left frac x beta gamma lambda right quad gamma gt 0 X displaystyle X x p p displaystyle frac x p p gde p gt 1 displaystyle p gt 1 R displaystyle mathbb R x q q displaystyle frac x q q gde 1 p 1 q 1 displaystyle frac 1 p frac 1 q 1 R displaystyle mathbb R x p p displaystyle frac x p p gde 0 lt p lt 1 displaystyle 0 lt p lt 1 R displaystyle mathbb R x q q displaystyle frac x q q gde 1 p 1 q 1 displaystyle frac 1 p frac 1 q 1 R displaystyle mathbb R 1 x 2 displaystyle sqrt 1 x 2 R displaystyle mathbb R 1 x 2 displaystyle sqrt 1 x 2 1 1 displaystyle 1 1 log x displaystyle log x R displaystyle mathbb R 1 log x displaystyle 1 log x R displaystyle mathbb R e x displaystyle e x R displaystyle mathbb R x log x x if x gt 0 0 if x 0 displaystyle begin cases x log x x amp text if x gt 0 0 amp text if x 0 end cases R displaystyle mathbb R log 1 e x displaystyle log left 1 e x right R displaystyle mathbb R x log x 1 x log 1 x if 0 lt x lt 1 0 if x 0 1 displaystyle begin cases x log x 1 x log 1 x amp text if 0 lt x lt 1 0 amp text if x 0 1 end cases 0 1 displaystyle 0 1 log 1 e x displaystyle log left 1 e x right R displaystyle mathbb R x log x 1 x log 1 x if x gt 0 0 if x 0 displaystyle begin cases x log x 1 x log 1 x amp text if x gt 0 0 amp text if x 0 end cases R displaystyle mathbb R Div takozhDvoyista zadacha Teorema dvoyistosti Fenhelya Peretvorennya Lezhandra Nerivnist YungaPrimitkiLegendre Transform Procitovano 14 kvitnya 2019 Frank Nielsen Legendre transformation and information geometry PDF Phelps 1991 s 42 Bauschke Goebel Lucet Wang 2008 s 766 Ioffe Tihomirov 1974 s utverzhdenie 3 4 3 Borwein Lewis 2006 s 50 51 LiteraturaRobert R Phelps Convex Functions Monotone Operators and Differentiability Springer 1991 ISBN 0 387 56715 1 Heinz H Bauschke Rafal Goebel Yves Lucet Xianfu Wang The Proximal Average Basic Theory SIAM Journal on Optimization 2008 T 19 vip 2 DOI 10 1137 070687542 Ioffe A D Tihomirov V M Teoriya ekstremalnyh zadach M Nauka 1974 Jonathan Borwein Adrian Lewis Convex Analysis and Nonlinear Optimization Theory and Examples Springer 2006 ISBN 978 0 387 29570 1 Vladimir Igorevich Arnold Matematicheskie metody klassicheskoj mehaniki M Nauka 1989 R Tyrrell Rockafellar Convex Analysis Princeton Princeton University Press 1970 ISBN 0 691 01586 4 PosilannyaTouchette Hugo 16 zhovtnya 2014 PDF anglijskoyu Arhiv PDF za 7 kvitnya 2017 Procitovano 9 sichnya 2017 Touchette Hugo 21 listopada 2006 PDF anglijskoyu Arhiv originalu PDF za 26 travnya 2015 Procitovano 26 bereznya 2008 Legendre and Legendre Fenchel transforms in a step by step explanation anglijskoyu Procitovano 18 travnya 2013
Топ