Підтримка
www.wikidata.uk-ua.nina.az
Dvoyistist abo princip dvoyistosti princip za yakim zadachu optimizaciyi mozhna rozglyadati z dvoh tochok zoru yak pryamu zadachu abo dvoyistu zadachu Rozv yazannya dvoyistoyi zadachi daye nizhnyu mezhu pryamoyi zadachi pri minimizaciyi Odnak u zagalnomu vipadku znachennya cilovih funkcij optimalnih rozv yazkiv pryamoyi ta dvoyistoyi zadach ne obov yazkovo zbigayutsya Riznicyu cih znachen yaksho vona sposterigayetsya nazivayut rozrivom dvoyistosti Dlya zadach opuklogo programuvannya rozriv dvoyistosti dorivnyuye nulyu za vikonannya umov regulyarnosti obmezhen Dvoyista zadachaZazvichaj termin dvoyista zadacha oznachaye lagranzhevu dvoyistu zadachu ale vikoristovuyutsya j inshi dvoyisti zadachi napriklad en i dvoyista zadacha Fenhelya Dvoyista zadacha Lagranzha vihodit pri utvorenni lagranzhiana vikoristanni nevid yemnih mnozhnikiv Lagranzha dlya dodavannya obmezhen do cilovoyi funkciyi ta minimizaciyi lagranzhiana vidnosno deyakih zminnih pryamoyi zadachi Takij rozv yazok daye zminni pryamoyi zadachi yak funkciyi vid mnozhnikiv Lagranzha yaki nazivayutsya dvoyistimi zminnimi tak sho nova zadacha staye zadacheyu maksimizaciyi cilovoyi funkciyi za dvoyistimi zminnimi za porodzhenih obmezhen na dvoyisti zminni prinajmni nevid yemnist U zagalnomu vipadku yaksho dano en vidokremlyuvanih lokalnih opuklih prostoriv X X displaystyle left X X right ta funkciyu f X R displaystyle f X to mathbb R cup infty mozhna viznachiti pryamu zadachu yak znahodzhennya x displaystyle hat x takogo sho f x inf x X f x displaystyle f hat x inf x in X f x Inshimi slovami f x displaystyle f hat x ce infimum tochna nizhnya mezha funkciyi f displaystyle f Yaksho ye obmezhennya yih mozhna vbuduvati u funkciyu f displaystyle f yaksho poklasti f f I c o n s t r a i n t s displaystyle tilde f f I mathrm constraints de I displaystyle I en Nehaj teper F X Y R displaystyle F X times Y to mathbb R cup infty dlya inshoyi dvoyistoyi pari Y Y displaystyle left Y Y right bude en takoyu sho F x 0 f x displaystyle F x 0 tilde f x Rozriv dvoyistosti ce riznicya pravoyi ta livoyi chastin nerivnosti sup y Y F 0 y inf x X F x 0 displaystyle sup y in Y F 0 y leqslant inf x in X F x 0 de F displaystyle F spryazhena funkciya vid oboh zminnih a sup displaystyle sup oznachaye supremum tochna verhnya mezha Rozriv dvoyistosti Rozriv dvoyistosti ce riznicya mizh znachennyami bud yakih rozv yazkiv pryamoyi zadachi ta znachennyami bud yakih rozv yazkiv dvoyistoyi zadachi Yaksho d displaystyle d optimalne znachennya dvoyistoyi zadachi a p displaystyle p optimalne znachennya pryamoyi zadachi rozriv dvoyistosti dorivnyuye p d displaystyle p d Ce znachennya zavzhdi bilshe abo dorivnyuye 0 Rozriv dvoyistosti dorivnyuye nulyu todi j lishe todi koli maye misce silna dvoyistist Inakshe rozriv strogo dodatnij i maye misce slabka dvoyistist U zadachah chiselnoyi optimizaciyi chasto vikoristovuyut inshij rozriv dvoyistosti yakij dorivnyuye riznici mizh bud yakim dvoyistim rozv yazkom ta znachennyam dopustimoyi ale ne lokalno optimalnoyi iteraciyi dlya pryamoyi zadachi Alternativnij rozriv dvoyistosti virazhaye nevidpovidnist mizh znachennyam potochnogo dopustimogo ale ne lokalno optimalnogo rozv yazku dlya pryamoyi zadachi ta znachennyam dvoyistoyi zadachi Znachennya dvoyistoyi zadachi dorivnyuye za umovi regulyarnosti obmezhen znachennyu opuklogo oslablennya pryamoyi zadachi de opukle oslablennya vinikaye vnaslidok zamini neopukloyi mnozhini dopustimih rozv yazkiv jogo zamknutoyu opukloyu obolonkoyu i zaminoyu nepukloyi funkciyi yiyi opuklim zamikannyam tobto zamikannyam pochatkovoyi cilovoyi funkciyi pryamoyi zadachi Linijnij vipadokZadachi linijnogo programuvannya ce zavdachi optimizaciyi v yakih cilova funkciya ta obmezhennya linijni U pryamij zadachi cilova funkciya ye linijnoyu kombinaciyeyu n zminnih Ye m obmezhen kozhne z yakih obmezhuye zverhu linijnu kombinaciyu n zminnih Cil maksimizuvati znachennya cilovoyi funkciyi pri obmezhennyah Rozv yazok ce vektor spisok iz n znachen sho daye maksimalne znachennya cilovoyi funkciyi U dvoyistij zadachi cilova funkciya ye linijnoyu kombinaciyeyu m znachen yaki ye pravimi chastinami m obmezhen pryamoyi zadachi Ye n dvoyistih obmezhen kozhne z yakih obmezhuye znizu linijnu kombinaciyu m dvoyistih zminnih Zv yazok mizh pryamoyu ta dvoyistoyu zadachami U linijnomu vipadku v pryamij zadachi z kozhnoyi tochki lokalnogo optimumu sho zadovolnyaye vsim obmezhennyam isnuye napryamok abo pidprostir napryamkiv i ruh u comu napryamku zbilshuye cilovu funkciyu Kazhut sho ruh u bud yakomu takomu napryamku zmenshuye zazor mizh dopustimim rozv yazkom abo dopustimim planom ta odnim iz obmezhen Nedopustimij mozhlivij rozv yazok ce rozv yazok sho porushuye odne chi bilshe obmezhen U dvoyistij zadachi elementi dvoyistogo vektora mnozhitsya na stovpci yaki vidpovidayut obmezhennyam u pryamij zadachi Zburennya dvoyistogo vektora u dvoyistij zadachi ekvivalentne pereglyadu verhnoyi mezhi pryamoyi zadachi Pri rozv yazuvanni dvoyistoyi zadachi shukayetsya najmensha verhnya mezha tobto dvoyistij vektor zminyuyetsya tak shob zmenshiti zazor mizh dopustimim rozv yazkom ta dijsnim optimumom Dokladnishe pro zv yazok pryamoyi ta dvoyistoyi zadach div rozdil u statti Linijne programuvannya Ekonomichna interpretaciya Yaksho mi rozumiyemo nashu pryamu zadachu linijnogo programuvannya yak klasichnu zadachu rozpodilu resursiv dvoyistu zadachu mozhna interpretuvati yak zadachu en Nelinijnij vipadokU nelinijnomu programuvanni obmezhennya neobov yazkovo linijni Odnak bagato principiv linijnogo vipadku zastosovni Shob zabezpechiti shob globalnij maksimum nelinijnoyi zadachi mig buti viznachenij prosto u formulyuvanni zadachi chasto potribno shob funkciyi buli opuklimi i mali kompaktni mnozhini nizhnih rivniv tobto mnozhini na yakih funkciya nabuvaye znachen menshih vid pevnogo rivnya U comu polyagaye umova Karusha Kuna Takkera Voni doveli neobhidni umovi viznachennya lokalnogo optimumu nelinijnih zadach Isnuyut dodatkovi umovi umova regulyarnosti obmezhen yaki neobhidni dlya viznachennya napryamku na optimalnij rozv yazok Tut optimalnij rozv yazok ce odin iz lokalnih optimumiv yakij mozhlivo ne ye globalnim Strogij princip Lagranzha dvoyistist Lagranzha Yaksho zadano zadachu nelinijnogo programuvannya u standartnij formi minimizuvati f 0 x displaystyle f 0 x za umov f i x 0 i 1 m displaystyle f i x leqslant 0 i in left 1 dots m right h i x 0 i 1 p displaystyle h i x 0 i in left 1 dots p right z oblastyu viznachennya D R n displaystyle mathcal D subset mathbb R n sho maye neporozhnyu vnutrishnist funkciya Lagranzha L R n R m R p R displaystyle Lambda mathbb R n times mathbb R m times mathbb R p to mathbb R viznachayetsya yak L x l n f 0 x i 1 m l i f i x i 1 p n i h i x displaystyle Lambda x lambda nu f 0 x sum i 1 m lambda i f i x sum i 1 p nu i h i x Vektori l displaystyle lambda i n displaystyle nu nazivayut dvoyistimi zminnimi abo vektorami mnozhnikiv Lagranzha pov yazanimi iz zadacheyu Dvoyista funkciya Lagranzha g R m R p R displaystyle g mathbb R m times mathbb R p to mathbb R viznachayetsya yak g l n inf x D L x l n inf x D f 0 x i 1 m l i f i x i 1 p n i h i x displaystyle g lambda nu inf x in mathcal D Lambda x lambda nu inf x in mathcal D left f 0 x sum i 1 m lambda i f i x sum i 1 p nu i h i x right Dvoyista funkciya g uvignuta navit yaksho pochatkova zadacha ne opukla oskilki vona ye potochkovim infimumom afinnih funkcij Dvoyista funkciya daye nizhni mezhi optimalnogo znachennya p displaystyle p pochatkovoyi zadachi Dlya bud yakogo l 0 displaystyle lambda geqslant 0 ta bud yakogo n displaystyle nu mayemo g l n p displaystyle g lambda nu leqslant p Yaksho vikonuyutsya umovi regulyarnosti obmezhen taki yak umova Slejtera i pochatkova zadacha opukla mi mayemo silnu dvoyistist tobto d max l 0 n g l n inf f 0 p displaystyle d max lambda geqslant 0 nu g lambda nu inf f 0 p Opukli zadachi Dlya zadachi opukloyi minimizaciyi z obmezhennyami nerivnostyami minimizuvati f x displaystyle f x za umov g i x 0 i 1 m displaystyle g i x leqslant 0 quad i 1 dots m Lagranzhevoyu dvoyistoyu zadacheyu bude maksimizuvati inf x f x j 1 m u j g j x displaystyle inf x left f x sum j 1 m u j g j x right za umov u i 0 i 1 m displaystyle u i geqslant 0 quad i 1 dots m de cilovoyu funkciyeyu ye dvoyista funkciya Lagranzha Yaksho vidomo sho funkciyi f displaystyle f i g 1 g m displaystyle g 1 cdots g m neperervno diferencijovni infimum perebuvaye v tochkah de gradiyent dorivnyuye nulyu Zadacha maksimizuvati f x j 1 m u j g j x displaystyle f x sum j 1 m u j g j x za umov f x j 1 m u j g j x 0 displaystyle nabla f x sum j 1 m u j nabla g j x 0 u i 0 i 1 m displaystyle u i geqslant 0 quad i 1 dots m nazivayetsya dvoyistoyu zadacheyu Vulfa Cya zadacha obchislyuvalno mozhe viyavitisya skladnoyu oskilki cilova funkciya ne opukla v koordinatah u x displaystyle u x Takozh obmezhennya f x j 1 m u j g j x displaystyle nabla f x sum j 1 m u j nabla g j x u zagalnomu vipadku nelinijne otzhe dvoyista zadacha Vulfa zazvichaj ye neopukloyu zadacheyu optimizaciyi U kozhnomu razi maye misce slabka dvoyistist IstoriyaZa Dzhordzhom Dancigom teoremu dvoyistosti dlya linijnoyi optimizaciyi visloviv yak gipotezu Dzhon fon Nejman vidrazu pislya togo yak Dancig predstaviv zadachu linijnogo programuvannya Fon Nejman pomitiv sho toj vikoristav informaciyu z jogo teoriyi igor i visloviv pripushennya sho matrichna gra dvoh osib iz nulovoyu sumoyu ekvivalentna zadachi linijnogo programuvannya Stroge dovedennya cogo faktu vpershe opublikuvali 1948 roku en i jogo grupa Div takozh en PrimitkiBoyd Vandenberghe 2004 Dvoyista para ce trijka X X displaystyle left X X langle rangle right de X displaystyle X vektornij prostir nad polem F displaystyle F X displaystyle X mnozhina vsih linijnih vidobrazhen ϕ X F displaystyle phi colon X to F a tretij element bilinijna forma X X F ϕ x ϕ x displaystyle X times X to F colon phi x mapsto phi x Boţ Wanka Grad 2009 Csetnek 2010 Zălinescu 2002 s 106 113 Borwein Zhu 2005 Ahuja Magnanti Orlin 1993 Bertsekas Nedic Ozdaglar 2003 Bertsekas 1999 Bertsekas 2009 Bonnans Gilbert Lemarechal Sagastizabal 2006 s xiv 490 Hiriart Urruty Lemarechal 1993 s xviii 417 Hiriart Urruty Lemarechal 1993 s xviii 346 Lasdon 2002 s xiii 523 Lemarechal 2001 s 112 156 Minoux 1986 s xxviii 489 Shapiro 1979 s xvi 388 Geoffrion 1971 s 1 37 Nering Tucker 1993 s peredmova Danciga LiteraturaKnigi Jean Baptiste Hiriart Urruty Claude Lemarechal Convex analysis and minimization algorithms Chast I Fundamentals Berlin Springer Verlag 1993 T 305 S xviii 417 Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences ISBN 3 540 56850 6 Jean Baptiste Hiriart Urruty Claude Lemarechal 14 Duality for Practitioners Convex analysis and minimization algorithms Chastina II Advanced theory and bundle methods Berlin Springer Verlag 1993 T 306 S xviii 346 Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences ISBN 3 540 56852 2 Leon S Lasdon Optimization theory for large systems Reprint of the 1970 Macmillan Mineola New York Dover Publications Inc 2002 S xiii 523 ISBN 978 0 486 41999 2 Claude Lemarechal Lagrangian relaxation Computational combinatorial optimization Papers from the Spring School held in Schloss Dagstuhl May 15 19 2000 Berlin Springer Verlag 2001 T 2241 S 112 156 Lecture Notes in Computer Science LNCS ISBN 3 540 42877 1 DOI 10 1007 3 540 45586 8 4 Michel Minoux Mathematical programming Theory and algorithms Chichester A Wiley Interscience Publication John Wiley amp Sons Ltd 1986 S xxviii 489 ISBN 0 471 90170 9 M Minu Matematicheskoe programmirovanie Teoriya i algoritmy Evar D Nering Albert W Tucker Linear Programming and Related Problems Boston MA Academic Press 1993 ISBN 978 0 12 515440 6 Stephen P Boyd Lieven Vandenberghe Convex Optimization Cambridge University Press 2004 ISBN 978 0 521 83378 3 z dzherela 13 lipnya 2017 Radu Ioan Boţ Gert Wanka Sorin Mihai Grad Duality in Vector Optimization Springer 2009 ISBN 978 3 642 02885 4 Erno Robert Csetnek Overcoming the failure of the classical generalized interior point regularity conditions in convex optimization Applications of the duality theory to enlargements of maximal monotone operators Logos Verlag Berlin GmbH 2010 ISBN 978 3 8325 2503 3 Constantin Zălinescu Convex analysis in general vector spaces River Edge NJ World Scientific Publishing Co Inc 2002 S 106 113 ISBN 981 238 067 1 Ravindra K Ahuja Thomas L Magnanti James B Orlin Network Flows Theory Algorithms and Applications Prentice Hall 1993 ISBN 0 13 617549 X Dimitri Bertsekas Angelia Nedic Asuman Ozdaglar Convex Analysis and Optimization Athena Scientific 2003 ISBN 1 886529 45 0 Dimitri P Bertsekas Nonlinear Programming 2nd Athena Scientific 1999 ISBN 1 886529 00 0 Dimitri P Bertsekas Convex Optimization Theory Athena Scientific 2009 ISBN 978 1 886529 31 1 J Frederic Bonnans J Charles Gilbert Claude Lemarechal Claudia A Sagastizabal Numerical optimization Theoretical and practical aspects Second revised ed of translation of 1997 Berlin Springer Verlag 2006 S xiv 490 Universitext ISBN 3 540 35445 X DOI 10 1007 978 3 540 35447 5 z dzherela 19 lipnya 2013 Jeremy F Shapiro Mathematical programming Structures and algorithms New York Wiley Interscience John Wiley amp Sons 1979 S xvi 388 ISBN 0 471 77886 9 Jonathan Borwein Qiji Zhu Techniques of Variational Analysis Springer 2005 ISBN 978 1 4419 2026 3 Statti Duality in Linear Programming 23 kvitnya 2021 u Wayback Machine Gary D Knott angl Arthur M Geoffrion Duality in Nonlinear Programming A Simplified Applications Oriented Development SIAM Review 1971 T 13 vip 1 DOI 10 1137 1013001 Dodatkova literaturaWilliam J Cook William H Cunningham William R Pulleyblank Alexander Schrijver Combinatorial Optimization 1st John Wiley amp Sons 1997 ISBN 0 471 55894 X Xugang Ye Shih Ping Han Anhua Lin A Note on the Connection between Primal Dual and the A Algorithms International Journal of Operations Research and Information Systems 2010 T 1 vip 1 S 73 85 z dzherela 3 sichnya 2017 Procitovano 27 kvitnya 2022 George B Dantzig Linear Programming and Extensions Princeton NJ Princeton University Press 1963 Eugene Lawler 4 5 Combinatorial Implications of Max Flow Min Cut Theorem 4 6 Linear Programming Interpretation of Max Flow Min Cut Theorem Combinatorial Optimization Networks and Matroids Dover 2001 S 117 120 ISBN 0 486 41453 1 Andrzej Piotr Ruszczynski Nonlinear Optimization Princeton NJ Princeton University Press 2006 S xii 454 ISBN 978 0691119151 Christos H Papadimitriou Kenneth Steiglitz Combinatorial Optimization Algorithms and Complexity Dover 1998 ISBN 0 486 40258 4 Krzysztof C Kiwiel Torbjorn Larsson P O Lindberg Lagrangian relaxation via ballstep subgradient methods Mathematics of Operations Research 2007 T 32 vip 3 August S 669 686 DOI 10 1287 moor 1070 0261 z dzherela 26 lipnya 2011 Procitovano 27 kvitnya 2022
Топ