Ця стаття є сирим з іншої мови. Можливо, вона створена за допомогою машинного перекладу або перекладачем, який недостатньо володіє обома мовами. |
Нудний мільярд, також відомий як середній протерозой і середньовіччя Землі, — це період часу від 1,8 до 0,8 мільярда років тому, що охоплює середній протерозойський еон, який характеризується більш або менш тектонічною стабільністю, кліматичним стазисом і повільною біологічною еволюцією. Він межує з двома різними подіями оксигенації і льодовикового періоду, але сам Нудний Мільярд мав дуже низький рівень кисню та не мав жодних ознак заледеніння.
Океани, можливо, були бідні на кисень і поживні речовини, а також були сульфідні (евксинія), населені переважно аноксигенними пурпуровими бактеріями, типом фотосинтезуючих бактерій, які використовують сірководень (H2S) замість води та виробляють сірку замість кисню. Це явище відоме як океан Кенфілда. Через такий склад океани стали чорними та молочно-бірюзовими, а не синіми.
Незважаючи на такі несприятливі умови, еукаріоти, можливо, еволюціонували приблизно на початку Нудного Мільярда, і прийняли кілька нових адаптацій, таких як різні органели, багатоклітинність і, можливо, статеве розмноження, і диверсифікувалися в рослини, тварини і гриби в кінці цього проміжку часу. Такі досягнення могли бути важливими попередниками еволюції великого, складного життя пізніше в Едіакарі та Фанерозої. Тим не менш, прокаріотичні ціанобактерії були домінуючими формами життя в цей час і, ймовірно, підримували енергетично бідну харчову мережу з невеликою кількістю протистів на вершині харчового ланцюжка. Суша, ймовірно, була населена прокаріотичними ціанобактеріями та еукаріотичними протолишайниками, причому останні були більш успішними тут, ймовірно, через більшу доступність поживних речовин, ніж у морських водах біля узбережжя.
Опис
У 1995 році геологи Роджер Бьюїк, Девіс Де Маре та Ендрю Нолл проаналізували очевидну відсутність великих біологічних, геологічних і кліматичних подій протягом мезопротерозойської ери 1,6-1 мільярд років тому і, таким чином, описали це як «найнудніший час в історії Землі». Термін «Нудний Мільярд» був закарбований палеонтологом Мартіном Брасьєром для позначення періоду приблизно між 2 і 1 млрд років тому, який характеризувався геохімічним стазисом і льодовиковою стагнацією. У 2013 році геохімік Грант Янг використав термін «Безплідний Мільярд» для позначення періоду замерзання льодовиків і відсутності відхилень ізотопів карбону від 1,8 до 0,8 млрд років. У 2014 році геологи Пітер Кавуд і Кріс Хоксворт назвали час між 1,7 і 0,75 млрд років «Середньовіччям Землі» через відсутність доказів тектонічного руху.
Вважається, що Нудний Мільярд простягається приблизно від 1,8 до 0,8 млрд років тому в межах протерозойського еону, головним чином мезопротерозою. Нудний Мільярд характеризується геологічним, кліматичним і, загалом, еволюційним застоєм, з низьким вмістом поживних речовин.
У період, що передував «Нудному Мільярду», Земля пережила кисневу катастрофу внаслідок еволюції кисневих фотосинтезуючих ціанобактерій, що призвело до Гуронського зледеніння (Земля-сніжка), формування озонового шару, що блокує УФ-випромінювання, і окислення кількох металів. Вважається, що рівень кисню під час Нудного Мільярда був помітно нижчим, ніж під час кисневої катастрофи, можливо, від 0,1 до 10% від сучасних рівнів. Цей період завершився розпадом суперконтиненту Родинія під час тонського періоду (1000–720 млн років), другою подією оксигенації та іншою Землею-сніжкою у кріогенному періоді.
Тектонічний стазис
Еволюція біосфери, атмосфери та гідросфери Землі давно пов’язана з циклом суперконтинентів, коли континенти згруповуються, а потім розходяться. У Нудному Мільярді відбулася еволюція двох суперконтинентів: Колумбії (або Нуни) і Родинії.
Суперконтинент Колумбія сформувався між 2,0 і 1,7 млрд років тому і залишався незмінним принаймні до 1,3 млрд років тому. Геологічні та палеомагнітні докази свідчать про те, що Колумбія зазнала лише незначних змін, щоб перетворитися на суперконтинент Родинію між 1,1 і 0,9 млрд років тому. Палеогеографічні реконструкції свідчать про те, що суперконтинент знаходився в екваторіальних і помірних кліматичних зонах, і є мало або жодних доказів про континентальні фрагменти в полярних зонах.
Через відсутність доказів накопичення відкладів (на пасивних краях), яке могло статися в результаті рифтингу, суперконтинент, ймовірно, не розпався, а був просто сукупністю протоконтинентів і кратонів. Немає доказів рифтингу до утворення Родинії, 1,25 млрд років тому в Північній Лаврентії та 1 млрд років тому у Східній Балтиці та Південному Сибіру. Розпад не відбувся до 0,75 млрд років тому, ознаменувавши кінець Нудного Мільярда. Цей тектонічний застій міг бути пов’язаний з хімією океану та атмосфери.
Цілком можливо, що астеносфера — розплавлений шар земної мантії, по якому, по суті, плавають і рухаються тектонічні плити, — була надто гарячою, щоб у той час підтримувати сучасну тектоніку плит. Замість енергійної переробки плит у зонах субдукції, плити були пов’язані між собою протягом мільярдів років, поки мантія достатньо не охолола. Початку цього компонента тектоніки плит, можливо, сприяло охолодження та потовщення кори, що, як тільки розпочалося, призвело до аномально сильної субдукції плит, що відбулася наприкінці Нудного Мільярда.
Тим не менш, великі магматичні події все ще відбувалися, такі як утворення (шляхом плюму) центральної Австралійської провінції Масгрейва площею 220,000 км² від 1,22 до 1,12 млрд років тому, а також Канадської великої ігнейної провінції Маккензі площею 2,700,000 км² приблизно 1,27 млрд років тому. Тектоніка плит все ще була достатньо активною, щоб створити гори, і в цей час відбувалися декілька орогенезів включаючи Гренвільський орогенез, що відбувався в той час.
Кліматична стабільність
Існує мало доказів значної мінливості клімату протягом цього періоду. Клімат, ймовірно, не був головним чином продиктований сонячною яскравістю, оскільки Сонце було на 5–18% менш яскравим, ніж сьогодні, але немає жодних доказів того, що клімат Землі був значно прохолоднішим. Фактично, Нудний Мільярд, здається, не має жодних доказів тривалих зледенінь, які можна спостерігати з регулярною періодичністю в інших частинах геологічної історії Землі. Високий рівень CO2 не міг бути головною рушійною силою потепління, оскільки рівні мали б бути в 30-100 разів вищими, ніж доіндустріальні рівні, щоб запобігти утворенню льоду та спричинити значне закислення океану, що також не відбувалося. Мезопротерозойські рівні CO2 можуть бути порівняні з рівнями фанерозойського еону, в 7-10 разів вищими від сучасних рівнів. Перші записи про лід за цей період часу було повідомлено в 2020 році з шотландської 1 млрд років тому в групі Торрідон, де утворення дропстоунів, ймовірно, утворилися уламками від рафтингом льоду ; область, розташована тоді між 35-50° пд. ш., була (можливо, високогірним) озером, яке, як вважають, замерзало взимку і тануло влітку, а рафтинг відбувався під час весняного танення.
Вища кількість інших парникових газів, а саме метану, що вироблявся прокаріотами, могла компенсувати низькі рівні CO2 ; майже вільний від льоду світ досягається атмосферної концентрації метану в розмірі 140 частин на мільйон (ppm). Метаногенні прокаріоти не могли виробляти стільки метану, що означає, що якийсь інший парниковий газ, ймовірно, оксид азоту, був підвищений, можливо, до 3 частин на мільйон (у 10 разів перевищує сьогоднішній рівень). Виходячи з передбачуваної концентрації парникових газів, екваторіальна температура в мезопротерозої могла становити приблизно 22–27 °C, у тропіках 17 °C, на 60° паралелі −8–7 °C, а на полюсах −23–2 °C; і глобальна середня температура близько 19 °C, що на 4 °C тепліше, ніж сьогодні. Температури на полюсах взимку опускалися нижче нуля, що призвело до тимчасового утворення морського льоду та снігопаду, але постійних крижаних покривів, ймовірно, не було.
Також було припущено, що через те, що інтенсивність космічних променів позитивно корелює з хмарністю, а хмари відбивають світло у космос і знижують глобальні температури, в цей час через зменшення формування зірок у галактиці призводила до меншої хмарності та запобігала льодовиковим подіям, забезпечуючи теплий клімат. Крім того, певна комбінація інтенсивності вивітрювання, яка призвела б до зниження рівня CO2 шляхом окислення відкритих металів, охолодження мантії та зменшення геотермального тепла та вулканізму, а також підвищення інтенсивності сонячного випромінювання та сонячного тепла, можливо, досягла рівноваги, запобігаючи утворенню льоду.
І навпаки, льодовикові рухи понад мільярд років тому, можливо, не залишили багато залишків сьогодні, і очевидна відсутність доказів може бути наслідком неповноти літопису скам’янілостей, а не відсутностю самого явища. Крім того, низькі рівні кисню і сонячної інтенсивності можуть запобігати формуванню озонового шару, що заважає утримувати парникові гази в атмосфері і нагрівати Землю за допомогою парникового ефекту, що може спричинити льодовикові події. Хоча для підтримки озонового шару не потрібно багато кисню, і рівні під час Нудного мільярда могли бути достатньо високими для цього, Земля могла зазнавати сильнішого бомбардування УФ-випромінюванням, ніж сьогодні.
Океанічний склад
Схоже, що в океанах були низькі концентрації ключових поживних речовин, які вважалися необхідними для складного життя, а саме молібдену, заліза, азоту та фосфору, значною мірою через брак кисню та, як наслідок, окислення, необхідне для цих геохімічних циклів. Поживних речовин могло бути більше в наземних середовищах, таких як озера або прибережні середовища ближче до континентального стоку.
Загалом, океани могли мати насичений киснем поверхневий шар, сульфідний середній шар і субоксигенний нижній шар. Переважно сульфідний склад міг спричинити те, що океани мали чорний і молочно-бірюзовий колір замість синього.
Кисень
Геологічний літопис Землі вказує на дві події, пов’язані зі значним підвищенням рівня кисню на Землі, одна з яких відбулася між 2,4 і 2,1 млрд років тому, відома як киснева катастрофа, а друга – приблизно 0,8 млрд років тому, відома як неопротерозойська подія оксигенації (друга киснева катастрофа). Вважається, що проміжний період, під час Нудного Мільярда, мав низький рівень кисню (з незначними коливаннями), що призвело до широкого поширення безкисневих вод.
Океани могли бути чітко стратифікованими, причому поверхневі води були насичені киснем, а глибокі води були субоксигенними (менше 1 мкМ кисню),. Останній, можливо, підтримувався меншими рівнями викидів водню (H2) та сірководню (H2S) через глибоководні гідротермальні джерела, які в іншому випадку були б хімічно знижені киснем. Навіть у самих мілководних водах значна кількість кисню може бути обмежена в основному районами поблизу узбережжя. Розкладання тонучої органічної речовини також призвело б до вимивання кисню з глибинних вод.
Раптове падіння O2 після кисневої катастрофи, яка за рівнями δ13C свідчить про втрату в 10-20 разів більшого обсягу атмосферного кисню атмосферного кисню, відоме як подія Ломагунді-Ятули та є найвидатнішою подією ізотопів карбону в історії Землі. Рівень кисню міг становити менше 0,1-1% від сучасного рівня, що фактично зупинило б еволюцію складного життя під час Нудного мільярда. Однак, припускається мезопротерозойська подія оксигенації (MOE), під час якої вміст кисню тимчасово підвищувався приблизно до 4% від поточного рівня в атмосфері у різні моменти часу, що тривала від 1,59 до 1,36 млрд років тому. Зокрема, деякі докази з формації Велкеррі в групі Ропер на Північній Території Австралії, формація Калтасі у Волго-Уральському регіоні Росії та формація Сямалінг на півночі Північно-Китайського кратону вказує на помітне оксигенування близько 1,4 млрд років тому, хоча ступінь, до якого це відображає глобальний рівень кисню, невідомий. Кисневі умови стали б домінуючими під час другої кисневої катастрофи, викликаючи поширення аеробної активності над анаеробною, але широко поширені субоксичні та безкисневі умови, ймовірно, тривали приблизно до 0,55 млрд років тому, що відповідає едіакарській біоті та кембрійському вибуху.
Сірка
У 1998 році геолог Дональд Кенфілд запропонував те, що зараз відомо як гіпотеза океану Кенфілда. Кенфілд стверджував, що підвищення рівня кисню в атмосфері під час кисневої катастрофи могло відреагувати з континентальними відкладеннями піриту (FeS2) і окислити їх із сульфатом (SO42−) як побічним продуктом, який переносився в море. Сульфат-відновлюючі мікроорганізми, перетворили його на сірководень (H2S), розділивши океан на поверхневий шар, дещо кисневий, і сульфідний шар, що знаходиться під ним, з аноксигенними бактеріями, які живуть на кордоні, метаболізуючи H2S і створюючи сірку як відходи. Це створило поширені евксинні умови в середніх водах, безкисневий стан з високою концентрацією сірки, який підтримувався бактеріями. Однак більш систематичні геохімічні дослідження середини протерозою вказують на те, що океани були в основному залізистими з тонким поверхневим шаром слабко насичених киснем вод, і евксинія могла відбуватися на відносно невеликих ділянках, можливо, менше 7% морського дна.
Залізо
Серед гірських порід, що датуються Нудним Мільярдом, помітна відсутність смугастих утворень заліза, які утворюються із заліза у верхній товщі води (з походженням з глибин океану), реагуючи з киснем і випадаючи з води. Вони, здається, припиняються в усьому світі після 1,85 млрд років тому. Кенфілд стверджував, що океанічний SO42− зменшує все залізо в безкисневому глибоководному морі. Залізо могло бути метаболізовано аноксигенними бактеріями. Було також припущено, що падіння метеора Садбері 1,85 млрд років тому змішало раніше стратифікований океан шляхом цунамі, взаємодією між випарованою морською водою та насиченою киснем атмосферою, океанічною кавітацією та масивним стоком зруйнованих континентальних узбережжь у море. Отримані внаслідок цього субоксигенні глибинні води (через змішування насиченої киснем поверхневої води з раніше безкисневою глибокою водою) могли б окислити глибоководне залізо, запобігаючи його транспортуванню та відкладенню на околицях континенту.
Тим не менш, багаті залізом води дійсно існували, такі як формація Сямалін в Північному Китаї (1,4 млрд років тому), яка, можливо, живилася глибоководними гідротермальними джерелами. Умови, багаті залізом, також вказують на безкисневу придонну воду в цій області, оскільки кисневі умови окислювали б все залізо.
Форми життя
Низька кількість поживних речовин могла сприяти фотосимбіозу — коли один організм здатний до фотосинтезу, а інший метаболізує відходи — серед прокаріотів (бактерій і архей) і появі еукаріотів. Бактерії, археї та еукаріоти є трьома доменами, найвищим таксономічним рангом. Еукаріоти відрізняються від прокаріотів ядром і мембранними органелами, і майже всі багатоклітинні організми є еукаріотами.
Прокаріоти
Прокаріоти були домінуючими формами життя впродовж Нудного Мільярда. Мікроскам'янілості вказують на присутність ціанобактерій, зелених і фіолетових сірчаних бактерій, архей, що виробляють метан, бактерій, що метаболізують сульфат, архей або бактерій, що метаболізують метан, бактерій, що метаболізують залізо, бактерій, що метаболізують азот, і аноксигенних фотосинтезуючих бактерій.
Вважається, що аноксигенні ціанобактерії були домінуючими фотосинтезаторами, метаболізуючи надлишок H2S в океанах. У водах, багатих залізом, ціанобактерії могли постраждати від отруєння залізом, особливо в морських водах, де багата залізом глибока вода змішується з поверхневими водами, і таким чином їх витісняють інші бактерії, які можуть метаболізувати як залізо, так і H2S. Однак отруєння залізом можна було б зменшити за допомогою води, багатої діоксидом кремнію, або біомінералізацією заліза всередині клітини.
Еукаріоти
Еукаріоти, можливо, виникли приблизно на початку Нудного Мільярда, що збігається з акрецією Колумбії, яка могла певним чином підвищити рівень кисню в океані. Хоча були заявлені записи про еукаріотів ще 2,1 мільярда років тому, вони вважалися сумнівними, причому найдавніші однозначні залишки еукаріот датуються приблизно 1,8-1,6 мільярдами років тому в Китаї. Після цього еволюція еукаріот була досить повільною, можливо, через евксинічні умови океану Кенфілда і брак ключових поживних речовин і металів, що перешкоджало розвитку великого, складного життя з високими потребами в енергії. Евксинні умови також знизили розчинність заліза і молібдену, основних металів у азотфіксації. Відсутність розчиненого азоту сприяла б перевазі прокаріотів над еукаріотами, оскільки перші можуть метаболізувати газоподібний азот. Альтернативна гіпотеза відсутності диверсифікації серед еукаріот припускає високі температури під час Нудного Мільярда, а не низькі рівні кисню, припускаючи, що той факт, що події оксигенації до пізнього неопротерозою не започаткували еволюцію еукаріот, свідчить про те, що це не був основний обмежуючий фактор, який її гальмував.
Тим не менш, диверсифікація еукаріотичних макроорганізмів кронової групи, здається, почалася приблизно 1,6–1 млрд років тому, мабуть, збігаючись зі збільшенням концентрації ключових поживних речовин. Згідно з аналізом молекулярного годинника, рослини відійшли від тварин і грибів приблизно 1,6 млрд років тому; тварини і гриби близько 1,5 млрд років тому; Білатерії та кнідарії (тварини відповідно з двосторонньою симетрією та без неї) близько 1,3 млрд років тому; губки 1,35 млрд років тому; і Аскомікотові гриби і Базидієві (два відділи підцарства вищих грибів 0,97 млрд років тому. Автори статті стверджують, що їхні оцінки часу не узгоджуються з науковим консенсусом.
Скам'янілості пізнього палеопротерозою та раннього мезопротерозою басейну корисних копалин Віндхян в Індії, групи Руян у Китаї та формації Котуйкан на Анабарському масиві в Сибіру вказують на високі темпи (за доедіакарськими стандартами) еукаріотичної диверсифікації між 1,7 і 1,4 млрд років тому, хоча велика частина цього різноманіття представлена раніше невідомими, більше не існуючими кладами еукаріотів. Найдавніші відомі мати червоних водоростей датуються 1,6 млрд років тому. Найдавніший відомий гриб датується 1,01–0,89 млрд років тому з Північної Канади. Багатоклітинні еукаріоти, які вважаються нащадками колоніальних одноклітинних утворень, ймовірно, еволюціонували приблизно 2–1,4 млрд років тому. Подібним чином, ранні багатоклітинні еукаріоти, ймовірно, переважно утворювали строматолітові мати.
Червона водорість Bangiomorpha є найдавнішою відомою формою життя, що розмножується статевим шляхом і мейозом, і еволюціонувала 1,047 млрд років тому. Виходячи з цього, ці адаптації розвинулися між прибл. 2–1,4 млрд років тому. Крім того, вони могли розвинутися задовго до останнього спільного предка еукаріот, враховуючи, що мейоз виконується з використанням одних і тих самих білків у всіх еукаріот, можливо, простягаючись аж до гіпотетичного світу РНК.
Клітинні органели, ймовірно, походять від вільноживучих ціанобактерій (симбіогенез) можливо, після еволюції фагоцитозу (поглинання інших клітин) з видаленням жорсткої клітинної стінки, яка була необхідною лише для нестатевого розмноження. Мітохондрії вже еволюціонували під час кисневої катастрофи, але вважається, що пластиди, які використовувалися в архепластидах для фотосинтезу, з’явилися приблизно 1,6–1,5 млрд років тому. Гістони, ймовірно, з’явилися під час Нудного мільярда, щоб допомогти організувати та упакувати зростаючу кількість ДНК в еукаріотичних клітинах у нуклеосоми. Гідрогеносоми, що використовуються в анаеробній діяльності, могли походити в той час від археону.
Враховуючи орієнтири еволюції, досягнуті еукаріотами, цей період часу можна вважати важливим попередником кембрійського вибуху приблизно 0,54 млрд років тому та еволюції відносно великого, складного життя.
Екологія
Через маргіналізацію великих частинок їжі, таких як водорості, на користь ціанобактерій і прокаріотів, які не передають стільки енергії на вищі трофічні рівні, складна харчова мережа, ймовірно, не сформувалася, і великі форми життя з високими потребами в енергії не могли еволюціонувати. Така харчова мережа, ймовірно, підтримувала лише невелику кількість протистів як, у певному сенсі, хижаків найвищого рівня.
Припускається, що кисневі фотосинтетичні еукаріотичні акрітархи, можливо, тип мікроводоростей, населяли поверхневі води мезопротерозою. Їхня популяція, ймовірно, була обмежена доступністю поживних речовин, а не хижацтвом, оскільки деякі види відомі своєю тривалістю протягом сотень мільйонів років, але після 1 млрд років тривалість видів зменшилась до приблизно 100 млн років, можливо, через збільшене хижацтво ранніх протистів. Це відповідає зменшенню тривалості видів до 10 млн років, які сталися вже після кембрійського вибуху та розширення хижих тварин.
Відносно низькі концентрації молібдену в океані протягом Нудного Мільярду вважаються основним обмежувальним фактором, який утримував популяції мікроорганізмів відкритого океану, що фіксують азот, яким молібден необхідний для виробництва нітрогеназ, на низькому рівні, хоча прісноводні та прибережні середовища, які знаходились біля річкових джерел розчиненого молібдену, можливо, все ще містили значні спільноти фіксаторів азоту. Низький рівень фіксації азоту, що тривав до кріогену з еволюцією планктонних фіксаторів азоту, означав, що вільний амоній був дуже обмеженим протягом цього періоду, що серйозно обмежувало еволюцію та диверсифікацію багатоклітинної біоти.
Життя на суші
Деякі з найдавніших доказів колонізації суші прокаріотами відносяться до 3 млрд років тому, можливо, ще до 3,5 млрд років тому. Під час Нудного Мільярда земля могла бути населена переважно ціанобактеріальними матами. Пил може постачати велику кількість поживних речовин і та слугувати засобом розповсюдження для мікробів, що живуть на поверхні, хоча спільноти мікробів могли також формуватися в печерах і прісноводних озерах і річках. Станом на 1,2 млрд років тому мікробні спільноти могли бути достатньо численними, щоб вплинути на вивітрювання, ерозію, седиментацію та різні геохімічні цикли, а широкі мікробні мати могли вказувати на те, що біологічна ґрунтова кора була у великій кількості.
Найдавнішими наземними еукаріотами, можливо, були лишайникові гриби віком приблизно 1,3 млрд років, які паслися на мікробних матах. Велика кількість еукаріотичних мікроскам'янілостей із прісноводної шотландської групи торрідонів, здається, вказує на домінування еукаріотів у неморських середовищах існування станом на 1 млрд років тому, ймовірно, через збільшення доступності поживних речовин у районах, розташованих ближче до континентів, і континентального стоку. Пізніше ці лишайники певним чином сприяли колонізації рослин 0,75 млрд років тому. Значне збільшення наземної фотосинтетичної біомаси, здається, відбулося приблизно 0,85 млрд років тому, про що свідчить потік земного вуглецю, який, можливо, підвищив рівень кисню, достатнього для підтримки розширення багатоклітинних еукаріот.
Див. також
- Докембрій – історія Землі 4600–539 мільйонів років тому
- Едіакарська біота – усі організми едіакарського періоду (бл. 635–538,8 мільйонів років тому)
- Франсвільська біота – можливі палеопротерозойські багатоклітинні скам’янілості з Габону
- Земля-сніжка – всесвітні епізоди зледеніння протягом протерозойського еону
Примітки
- Mukherjee, I.; Large, R. R.; Corkrey, R.; Danyushevsky, L. V. (2018). The Boring Billion, a slingshot for Complex Life on Earth. Scientific Reports. 8 (4432): 4432. Bibcode:2018NatSR...8.4432M. doi:10.1038/s41598-018-22695-x. PMC 5849639. PMID 29535324.
- Buick, R.; Des Marais, D. J.; (1995). Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall group, northwestern Australia. Chemical Geology. 123 (1–4): 153—171. Bibcode:1995ChGeo.123..153B. doi:10.1016/0009-2541(95)00049-R. PMID 11540130.
- Brasier, M. (2012). Secret Chambers: The Inside Story of Cells and Complex Life. Oxford University Press. с. 211. ISBN .
- Young, Grant M. (2013). Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geoscience Frontiers. 4 (3): 247—261. doi:10.1016/j.gsf.2012.07.003.
- Cawood, Peter A.; Hawkesworth, Chris J. (1 червня 2014). Earth's middle age. Geology (англ.). 42 (6): 503—506. Bibcode:2014Geo....42..503C. doi:10.1130/G35402.1. ISSN 0091-7613.
- Roberts, N. M. W. (2013). The boring billion? – Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geoscience Frontiers. Thematic Section: Antarctica – A window to the far off land. 4 (6): 681—691. doi:10.1016/j.gsf.2013.05.004.
- Holland, Heinrich D. (29 червня 2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society of London B: Biological Sciences (англ.). 361 (1470): 903—915. doi:10.1098/rstb.2006.1838. ISSN 0962-8436. PMC 1578726. PMID 16754606.
- Peng, L.; Yonggang, L.; Yongyun, H.; Yun, Y.; Pisarevsky, S. A. (2019). Warm Climate in the "Boring Billion" Era. Acta Geologica Sinica. 93: 40—43. doi:10.1111/1755-6724.14239.
- Lenton, T.; Watson, A. (2011). The not-so-boring billion. Revolutions that made the Earth. с. 242–261. doi:10.1093/acprof:oso/9780199587049.003.0013. ISBN .
- Planavsky, Noah J.; Cole, Devon B.; Isson, Terry T.; Reinhard, Christopher T.; Crockford, Peter W.; Sheldon, Nathan D.; Lyons, Timothy W. (9 серпня 2018). A case for low atmospheric oxygen levels during Earth's middle history. Emerging Topics in Life Sciences. 2 (2): 149—159. doi:10.1042/etls20170161. ISSN 2397-8554. PMID 32412619.
- Brooke, J. L. (2014). Climate Change and the Course of Global History: A Rough Journey. Cambridge University Press. с. 40–42. ISBN .
- Evans, D. A. D. (2013). Reconstructing pre-Pangean supercontinents. Geological Society of America Bulletin. 125 (11–12): 1735—1751. Bibcode:2013GSAB..125.1735E. doi:10.1130/b30950.1.
- Bradley, Dwight C. (1 грудня 2008). Passive margins through earth history. Earth-Science Reviews. 91 (1–4): 1—26. Bibcode:2008ESRv...91....1B. doi:10.1016/j.earscirev.2008.08.001.
- Gorczyk, W.; Smithies, H.; Korhonen, F.; Howard, H.; de Gromard, R. Q. (2015). Ultra-hot Mesoproterozoic evolution of intracontinental central Australia. Geoscience Frontiers. 6 (1): 23—37. doi:10.1016/j.gsf.2014.03.001.
- Bryan, S. E.; Ferrari, L. (2013). Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. GSA Bulletin. 125 (7–8): 1055. Bibcode:2013GSAB..125.1053B. doi:10.1130/B30820.1.
- Tollo, R. P.; Corriveau, L.; McLelland, J.; Bartholomew, M. J. (2004). Proterozoic tectonic evolution of the Grenville orogen in North America: An introduction. У Tollo, R. P.; Corriveau, L.; McLelland, J.; Bartholomew, M. J. (ред.). Proterozoic tectonic evolution of the Grenville orogen in North America. Geological Society of America Memoir. Т. 197. с. 1—18. ISBN .
- Brasier, M.D. (1998). A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia. Geology. 26 (6): 555—558. Bibcode:1998Geo....26..555B. doi:10.1130/0091-7613(1998)026<0555:ABYOES>2.3.CO;2. PMID 11541449.
- Fiorella, R.; Sheldon, N. (2017). Equable end Mesoproterozoic climate in the absence of high CO2. Geology. 45 (3): 231—234. Bibcode:2017Geo....45..231F. doi:10.1130/G38682.1.
- Veizer, J. (2005). Celestial Climate Driver: A Perspective from Four Billion Years of the Carbon Cycle. Geoscience Canada. 32 (1). ISSN 1911-4850.
- Kah, L. C.; Riding, R. (2007). Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology. 35 (9): 799—802. Bibcode:2007Geo....35..799K. doi:10.1130/G23680A.1.
- Hartley, A.; Kurjanski, B.; Pugsley, J.; Armstrong, J. (2020). Ice-rafting in lakes in the early Neoproterozoic: dropstones in the Diabaig Formation, Torridon Group, NW Scotland. Scottish Journal of Geology. 56: 47—53. doi:10.1144/sjg2019-017.
{{}}
:|hdl-access=
вимагає|hdl=
() - Hren, M. T.; Sheldon, N. D. (2020). Terrestrial microbialites provide constraints on the mesoproterozoic atmosphere. The Depositional Record. 6: 4—20. doi:10.1002/dep2.79.
- Shaviv, Nir J. (2003). The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astronomy. 8 (1): 39—77. arXiv:astro-ph/0209252. Bibcode:2003NewA....8...39S. doi:10.1016/S1384-1076(02)00193-8.
- Planavsky, Noah J.; Reinhard, Christopher T.; Wang, Xiangli; Thomson, Danielle; McGoldrick, Peter; Rainbird, Robert H.; Johnson, Thomas; Fischer, Woodward W.; Lyons, Timothy W. (31 жовтня 2014). Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals (PDF). Science (англ.). 346 (6209): 635—638. Bibcode:2014Sci...346..635P. doi:10.1126/science.1258410. ISSN 0036-8075. PMID 25359975.
- Eyles, N. (2008). Glacio-epochs and the supercontinent cycle after ~ 3.0 Ga: Tectonic boundary conditions for glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology. 258 (1–2): 89—129. Bibcode:2008PPP...258...89E. doi:10.1016/j.palaeo.2007.09.021.
- Kasting, J. F.; Ono, S. (2006). Palaeoclimates: the first two billion years. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 361 (1470): 917—929. doi:10.1098/rstb.2006.1839. ISSN 0962-8436. PMC 1868609. PMID 16754607.
- Catling, D. C.; Kasting, J. F. (2017). Atmospheric Evolution on Inhabited and Lifeless Worlds. Cambridge University Press. с. 291. ISBN .
- Beraldi-Campesi, H. (2013). Early life on land and the first terrestrial ecosystems. Ecological Processes. 2 (1): 1—17. doi:10.1186/2192-1709-2-1.
- Anbar, A. D.; Knoll, A. H. (2002). Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge?. Science. 297 (5584): 1137—1142. Bibcode:2002Sci...297.1137A. CiteSeerX 10.1.1.615.3041. doi:10.1126/science.1069651. ISSN 0036-8075. PMID 12183619.
- Fennel, K.; Follows, M; Falkowski, P. G. (2005). The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. American Journal of Science. 305 (6–8): 526—545. Bibcode:2005AmJS..305..526F. doi:10.2475/ajs.305.6-8.526. ISSN 0002-9599.
- Kipp, M. A.; Stüeken, E. E. (2017). Biomass recycling and Earth's early phosphorus cycle. Science Advances. 3 (11): eaao4795. Bibcode:2017SciA....3O4795K. doi:10.1126/sciadv.aao4795. PMC 5706743. PMID 29202032.
- Parnell, J.; Sprinks, S.; Andrews, S.; Thayalan, W.; Bowden, S. (2015). High Molybdenum availability for evolution in a Mesoproterozoic lacustrine environment. Nature Communications. 6 (6996): 6996. Bibcode:2015NatCo...6.6996P. doi:10.1038/ncomms7996. PMID 25988499.
- Canfield, D. E. (1998). A new model for Proterozoic ocean chemistry. Nature. 396 (6710): 450—453. Bibcode:1998Natur.396..450C. doi:10.1038/24839. ISSN 0028-0836.
- Lyons, Timothy W.; Reinhard, Christopher T.; Planavsky, Noah J. (2014). The rise of oxygen in Earth's early ocean and atmosphere. Nature. 506 (7488): 307—315. Bibcode:2014Natur.506..307L. doi:10.1038/nature13068. PMID 24553238.
- Large, R.; Halpin, J. A.; Danyushevsky, L. V. (2014). Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth and Planetary Science Letters. 389: 209—220. Bibcode:2014E&PSL.389..209L. doi:10.1016/j.epsl.2013.12.020.
- Slack, J. F.; Cannon, W. F. (2009). Extraterrestrial demise of banded iron formations 1.85 billion years ago. Geology. 37 (11): 1011—1014. Bibcode:2009Geo....37.1011S. doi:10.1130/G30259A.1.
- De Baar, H. J. W.; German, C. R.; Elderfield, H; van Gaans, P. (1988). Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochimica et Cosmochimica Acta. 52 (5): 1203—1219. Bibcode:1988GeCoA..52.1203D. doi:10.1016/0016-7037(88)90275-X.
- Gallardo, V. A.; Espinoza, C. (2008). Hoover, Richard B; Levin, Gilbert V; Rozanov, Alexei Y; Davies, Paul C (ред.). (PDF). Proceedings of the International Society for Optical Engineering. Instruments, Methods, and Missions for Astrobiology XI. 7097: 1—7. Bibcode:2008SPIE.7097E..0GG. doi:10.1117/12.794742. Архів оригіналу (PDF) за 9 серпня 2017. Процитовано 30 червня 2023.
- (2014). Oxygen fluctuations stalled life on Earth. Nature. doi:10.1038/nature.2014.15529. Процитовано 24 лютого 2017.
- Doyle, Katherine A.; Poulton, Simon W.; Newton, Robert J.; Podkovyrov, Victor N.; Bekker, Andrey (October 2018). Shallow water anoxia in the Mesoproterozoic ocean: Evidence from the Bashkir Meganticlinorium, Southern Urals. . 317: 196—210. doi:10.1016/j.precamres.2018.09.001. Процитовано 17 грудня 2022.
- Johnston, D. T. (2009). Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age. Proceedings of the National Academy of Sciences. 106 (40): 16925—16929. Bibcode:2009PNAS..10616925J. doi:10.1073/pnas.0909248106. PMC 2753640. PMID 19805080.
- Partin, C. A.; Bekker, A.; Planavsky, N. J.; Scott, C. T.; Gill, B. C.; Li, C.; Podkovyrov, V.; Maslov, A.; Konhauser, K. O. (1 травня 2013). Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth and Planetary Science Letters. 369—370: 284—293. Bibcode:2013E&PSL.369..284P. doi:10.1016/j.epsl.2013.03.031.
- Bekker, A.; Holland, H. D. (1 лютого 2012). Oxygen overshoot and recovery during the early Paleoproterozoic. Earth and Planetary Science Letters. 317—318: 295—304. Bibcode:2012E&PSL.317..295B. doi:10.1016/j.epsl.2011.12.012.
- Schröder, S.; Bekker, A.; Beukes, N. J.; Strauss, H.; Van Niekerk, H. S. (1 квітня 2008). Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ~2.2–2.1 Gyr shallow-marine Lucknow Formation, South Africa. Terra Nova (англ.). 20 (2): 108—117. Bibcode:2008TeNov..20..108S. doi:10.1111/j.1365-3121.2008.00795.x. ISSN 1365-3121.
- Hardisty, Dalton S.; Lu, Zunli; Bekker, Andrey; Diamond, Charles W.; Gill, Benjamin C.; Jiang, Ganqing; Kah, Linda C.; Knoll, Andrew H.; Lloyd, Sean J. (1 квітня 2017). Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. . 463: 159—170. doi:10.1016/j.epsl.2017.01.032.
- Zhang, Shuichang; Wang, Huajian; Wang, Xiaomei; Ye, Yuntao (25 жовтня 2021). The Mesoproterozoic Oxygenation Event. Science China Earth Sciences. 64: 2043—2068. doi:10.1007/s11430-020-9825-x. Процитовано 9 травня 2023.
- Mukherjee, Indrani; Large, Ross R. (August 2016). Pyrite trace element chemistry of the Velkerri Formation, Roper Group, McArthur Basin: Evidence for atmospheric oxygenation during the Boring Billion. . 281: 13—26. doi:10.1016/j.precamres.2016.05.003. Процитовано 8 листопада 2022.
- He, Yuting; Zhu, Xiyan; Qiu, Yifan; Pang, Lanyin; Zhao, Taiping (December 2022). Extreme climate changes influenced early life evolution at ∼ 1.4 Ga: Implications from shales of the Xiamaling Formation, northern North China Craton. Precambrian Research. 383: 106901. doi:10.1016/j.precamres.2022.106901. Процитовано 17 грудня 2022.
- Kah, L. C.; Lyons, T. W.; Frank, T. D. (2004). Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature. 438 (7010): 834—838. Bibcode:2004Natur.431..834K. doi:10.1038/nature02974. PMID 15483609.
- Och, L. M.; Shields-Zhou, G. A. (2012). The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Science Reviews. 110 (1–4): 26—57. Bibcode:2012ESRv..110...26O. doi:10.1016/j.earscirev.2011.09.004.
- Lyons, Timothy W.; Reinhard, Christopher T. (2009). An early productive ocean unfit for aerobics. Proceedings of the National Academy of Sciences. 106 (43): 18045—18046. Bibcode:2009PNAS..10618045L. doi:10.1073/pnas.0910345106. ISSN 0027-8424. PMC 2775325. PMID 19846788.
- Boenigk, J.; Wodniok, S.; Glücksman, E. (2015). Biodiversity and Earth History. Springer. с. 58—59. ISBN .
- Gilleaudeau, Geoffrey J.; Romaniello, Stephen J.; Luo, Genming; Kaufman, Alan J.; Zhang, Feifei; Klaebe, Robert M.; Kah, Linda C.; Azmy, Karem; Bartley, Julie K. (1 вересня 2019). Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans. Earth and Planetary Science Letters (англ.). 521: 150—157. doi:10.1016/j.epsl.2019.06.012. ISSN 0012-821X.
- Planavsky, Noah J.; McGoldrick, Peter; Scott, Clinton T.; Li, Chao; Reinhard, Christopher T.; Kelly, Amy E.; Chu, Xuelei; Bekker, Andrey; Love, Gordon D. (September 2011). Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature (англ.). 477 (7365): 448—451. doi:10.1038/nature10327. ISSN 1476-4687. PMID 21900895.
- ; Zhang, S.; Wang, H.; Wang, X.; Zhao, W.; Su, J.; Bjerrum, C. J.; Haxen, E. R.; Hammarlund, E. U. (2018). A Mesoproterozoic iron formation. Proceedings of the National Academy of Sciences. 115 (17): 3895—3904. Bibcode:2018PNAS..115E3895C. doi:10.1073/pnas.1720529115. PMC 5924912. PMID 29632173.
- Brasier, M. D.; Lindsay, J. F. (1998). A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australia. Geology. 26 (6): 555—558. Bibcode:1998Geo....26..555B. doi:10.1130/0091-7613(1998)026<0555:ABYOES>2.3.CO;2. PMID 11541449.
- Gueneli, N.; McKenna, A. M.; Ohkouchi, N.; Boreham, C. J.; Beghin, J.; Javaux, E. J.; Brocks, J. J. (2018). 1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers. Proceedings of the National Academy of Sciences. 115 (30): 6978—6986. Bibcode:2018PNAS..115E6978G. doi:10.1073/pnas.1803866115. PMC 6064987. PMID 29987033.
- Javaux, E. J.; Lepot, K. (2018). The Paleoproterozoic fossil record: Implications for the evolution of the biosphere during Earth's middle-age. Earth-Science Reviews. 176: 68—86. Bibcode:2018ESRv..176...68J. doi:10.1016/j.earscirev.2017.10.001.
- Fakhraee, Mojtaba; Tarhan, Lidya G.; Reinhard, Christopher T.; Crowe, Sean A.; Lyons, Timothy W.; Planavsky, Noah J. (May 2023). Earth’s surface oxygenation and the rise of eukaryotic life: Relationships to the Lomagundi positive carbon isotope excursion revisited. Earth-Science Reviews (англ.). 240: 104398. doi:10.1016/j.earscirev.2023.104398.
- Reinhard, C. T.; Planavsky, N. J.; Robbins, L. J.; Partin, C. A.; Gill, B. C.; Lalonde, S. V.; Bekker, A.; Konhauser, K. O.; Lyons, T. W. (2013). Proterozoic ocean redox and biogeochemical stasis. Proceedings of the National Academy of Sciences. 110 (14): 5357—5362. Bibcode:2013PNAS..110.5357R. doi:10.1073/pnas.1208622110. ISSN 0027-8424. PMC 3619314. PMID 23515332.
- Anbar, A. D. (2002). Proterozoic ocean chemistry and evolution: a bioinorganic bridge. Science. 297 (5584): 1137—1142. Bibcode:2002Sci...297.1137A. doi:10.1126/science.1069651. PMID 12183619.
- Zhang, Fenglian; Wang, Huaijan; Ye, Yuntao; Liu, Yuke; Lyu, Yitong; Deng, Yan; Lyu, Dan; Wang, Xiaomei; Wu, Huaichun (15 серпня 2022). Did high temperature rather than low O2 hinder the evolution of eukaryotes in the Precambrian?. . 378. doi:10.1016/j.precamres.2022.106755. Процитовано 29 квітня 2023.
- Bengtson, S.; Sallstedt, T.; Belivanova, V.; Whitehouse, M. (2017). Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLOS Biology (англ.). 15 (3): e2000735. doi:10.1371/journal.pbio.2000735. PMC 5349422. PMID 28291791.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Hedges, S. B.; Blair, J. E.; Venturi, M. L.; Shoe, J. L. (2004). A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evolutionary Biology (англ.). 4 (2): 2. doi:10.1186/1471-2148-4-2. PMC 341452. PMID 15005799.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - Bengtson, S.; Belivanova, V.; Rasmussen, B.; Whitehouse, M. (2009). The controversial "Cambrian" fossils of the Vindhyan are real but more than a billion years older. Proceedings of the National Academy of Sciences. 106 (19): 7729—7734. Bibcode:2009PNAS..106.7729B. doi:10.1073/pnas.0812460106. PMC 2683128. PMID 19416859.
- Agić, Heda; Moczydłowska, Małgorzata; Yin, Leiming (August 2017). Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton – A window into the early eukaryote evolution. Precambrian Research. 297: 101—130. doi:10.1016/j.precamres.2017.04.042. Процитовано 13 жовтня 2022.
- Leiming, Yin; Xunlai, Yuan; Fanwei, Meng; Jie, Hu (7 листопада 2005). Protists of the Upper Mesoproterozoic Ruyang Group in Shanxi Province, China. Precambrian Research. 141 (1–2): 49—66. doi:10.1016/j.precamres.2005.08.001. Процитовано 13 жовтня 2022.
- Leiming, Yin; Bian, Lizeng; Xunlai, Yuan (October 2004). Discovery of branched tubular algae and microscopic tubes with annular-helical thickening from the Mesoproterozoic Ruyang Group of Shanxi, North China. Science China Earth Sciences. 47 (10): 880—885. doi:10.1360/02yd0356. Процитовано 13 жовтня 2022.
- Pang, Ke; Tang, Qing; Yuan, Xun-Lai; Wan, Bin; Xiao, Shuhai (September 2015). A biomechanical analysis of the early eukaryotic fossil Valeria and new occurrence of organic-walled microfossils from the Paleo-Mesoproterozoic Ruyang Group. Palaeoworld. 24 (3): 251—262. doi:10.1016/j.palwor.2015.04.002.
- Vorob’eva, Natalya G.; Sergeev, Vladimir N.; Petrov, Peter Y. (January 2015). Kotuikan Formation assemblage: A diverse organic-walled microbiota in the Mesoproterozoic Anabar succession, northern Siberia. Precambrian Research. 256: 201—222. doi:10.1016/j.precamres.2014.11.011. Процитовано 15 жовтня 2022.
- Loron, C. C.; François, C.; Rainbird, R. H.; Turner, E. C.; Borensztajn, S.; Javaux, E. J. (2019). Early fungi from the Proterozoic era in Arctic Canada. Nature. 70 (7760): 232—235. Bibcode:2019Natur.570..232L. doi:10.1038/s41586-019-1217-0. PMID 31118507.
- Cooper, G. M. (2000). The Origin and Evolution of Cells. The Cell: A Molecular Approach (англ.) (вид. 2nd). Sinauer Associates.
- Niklas, K. J. (2014). The evolutionary-developmental origins of multicellularity. American Journal of Botany (англ.). 101 (1): 6—25. doi:10.3732/ajb.1300314. PMID 24363320.
- Bernstein, H.; Bernstein, C.; Michod, R. E. (2012). DNA Repair as the Primary Adaptive Function of Sex in Bacteria and Eukaryotes. У Kimura, S.; Shimizu, S. (ред.). DNA Repair: New Research (англ.). Nova Biomedical. с. 1—49. ISBN .
{{}}
:|archive-url=
вимагає|url=
() - Gibson, Timothy M.; Shih, Patrick M.; Cumming, Vivien M.; Fischer, Woodward W.; Crockford, Peter W.; Hodgskiss, Malcolm S.W.; Wörndle, Sarah; Creaser, Robert A.; Rainbird, Robert H. (8 грудня 2017). Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology (англ.). 46 (2): 135—138. doi:10.1130/g39829.1. ISSN 0091-7613.
- Egel, R.; Penny, D. (2007). On the Origin of Meiosis in Eukaryotic Evolution: Coevolution of Meiosis and Mitosis from Feeble Beginnings. Genome Dynamics and Stability (англ.). 3 (249–288): 249—288. doi:10.1007/7050_2007_036. ISBN .
- Martin, W.; Müller, M. (1998). The hydrogen hypothesis for the first eukaryote. Nature. 392 (6671): 37—41. Bibcode:1998Natur.392...37M. doi:10.1038/32096. ISSN 0028-0836. PMID 9510246.
- Timmis, J. N.; Ayliffe, Michael A.; Huang, C. Y.; Martin, W. (2004). Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Reviews Genetics. 5 (2): 123—135. doi:10.1038/nrg1271. PMID 14735123.
- Mentel, Marek; Martin, William (27 серпня 2008). Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philosophical Transactions of the Royal Society of London B: Biological Sciences (англ.). 363 (1504): 2717—2729. doi:10.1098/rstb.2008.0031. ISSN 0962-8436. PMC 2606767. PMID 18468979.
- Moczydlowska, M.; Landing, E.; Zang, W.; Palacios, T. (2011). Proterozoic phytoplankton and timing of Chlorophyte algae origins. Palaeontology. 54 (4): 721—733. doi:10.1111/j.1475-4983.2011.01054.x.
- Stanley, S. M. (2008). Predation defeats competition on the seafloor. Paleobiology. 31 (1): 12. doi:10.1666/07026.1.
- Sánchez-Baracaldo, Patricia; Ridgwell, Andy; Raven, John A. (17 березня 2014). A Neoproterozoic Transition in the Marine Nitrogen Cycle. Current Biology. 24 (6): 652—657. doi:10.1016/j.cub.2014.01.041. PMID 24583016.
- Homann, M. та ін. (2018). Microbial life and biogeochemical cycling on land 3,220 million years ago (PDF). Nature Geoscience. 11 (9): 665—671. Bibcode:2018NatGe..11..665H. doi:10.1038/s41561-018-0190-9.
- Baumgartner, R. J.; van Kranendonk, M. J. та ін. (2019). Nano−porous pyrite and organic matter in 3.5-billion-year-old stromatolites record primordial life (PDF). Geology. 47 (11): 1039—1043. Bibcode:2019Geo....47.1039B. doi:10.1130/G46365.1.
- Watanabe, Yumiko; Martini, Jacques E. J.; Ohmoto, Hiroshi (30 листопада 2000). Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature. 408 (6812): 574—578. Bibcode:2000Natur.408..574W. doi:10.1038/35046052. ISSN 0028-0836. PMID 11117742.
- Horodyski, R. J.; Knauth, L. P. (1994). Life on land in the precambrian. Science. 263 (5146): 494—498. Bibcode:1994Sci...263..494H. doi:10.1126/science.263.5146.494. ISSN 0036-8075. PMID 17754880.
- Retallack, Gregory J.; Mindszenty, Andrea (1 квітня 1994). Well preserved late Precambrian Paleosols from Northwest Scotland. Journal of Sedimentary Research (англ.). 64 (2a): 264—281. doi:10.1306/D4267D7A-2B26-11D7-8648000102C1865D. ISSN 1527-1404.
- Prave, Anthony Robert (2002). . Geology. 30 (9): 811. Bibcode:2002Geo....30..811P. doi:10.1130/0091-7613(2002)030<0811:LOLITP>2.0.CO;2. Архів оригіналу за 7 березня 2016. Процитовано 5 березня 2016.
- Heckman, D. S.; Geiser, D. M.; Eidell, B. R.; Stauffer, R. L.; Kardos, N. L.; Hedges, S. B. (2001). Molecular Evidence for the Early Colonization of Land by Fungi and Plants. Science. 293 (5532): 494—498. Bibcode:1994Sci...263..494H. doi:10.1126/science.263.5146.494. PMID 17754880.
- Strother, P. K.; Battison, L.; ; Wellman, C. H. (2011). Earth's earliest non-marine eukaryotes. Nature. 473 (7348): 505—509. Bibcode:2011Natur.473..505S. doi:10.1038/nature09943. PMID 21490597.
- Knauth, L. P. (2009). The late Precambrian greening of the Earth. Nature. 460 (7256): 728—732. Bibcode:2009Natur.460..728K. doi:10.1038/nature08213. PMID 19587681.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Cya stattya ye sirim perekladom z inshoyi movi Mozhlivo vona stvorena za dopomogoyu mashinnogo perekladu abo perekladachem yakij nedostatno volodiye oboma movami Bud laska dopomozhit polipshiti pereklad Hronologiya zhittyaP R 4500 4000 3500 3000 2500 2000 1500 1000 500 0 vodaOdnoklitinnifotosintezYaderniBagatoklitinnichlenistonogi molyuskiNazemne zhittyaRosliniDinozavri SsavciKvitiPtahi Primati pervisna Zemlya poyava vodi pervisne zhittya meteoritne bombarduvannya vilnij kisen atmosfernij kisen kisneva katastrofa stateve rozmnozhennya pershi roslini ediakarska biota kembrijskij vibuh tetrapodi gominidiF a n e r o z o jP r o t e r o z o jA r h e jG a d e jGuronZemlya snizhkaChetvertinneZledeninnya Masshtab shkali mln rokiv Divitsya takozh istorichni osi lyudini i prirodi Nudnij milyard takozh vidomij yak serednij proterozoj i serednovichchya Zemli ce period chasu vid 1 8 do 0 8 milyarda rokiv tomu sho ohoplyuye serednij proterozojskij eon yakij harakterizuyetsya bilsh abo mensh tektonichnoyu stabilnistyu klimatichnim stazisom i povilnoyu biologichnoyu evolyuciyeyu Vin mezhuye z dvoma riznimi podiyami oksigenaciyi i lodovikovogo periodu ale sam Nudnij Milyard mav duzhe nizkij riven kisnyu ta ne mav zhodnih oznak zaledeninnya Okeani mozhlivo buli bidni na kisen i pozhivni rechovini a takozh buli sulfidni evksiniya naseleni perevazhno anoksigennimi purpurovimi bakteriyami tipom fotosintezuyuchih bakterij yaki vikoristovuyut sirkovoden H2S zamist vodi ta viroblyayut sirku zamist kisnyu Ce yavishe vidome yak okean Kenfilda Cherez takij sklad okeani stali chornimi ta molochno biryuzovimi a ne sinimi Nezvazhayuchi na taki nespriyatlivi umovi eukarioti mozhlivo evolyucionuvali priblizno na pochatku Nudnogo Milyarda i prijnyali kilka novih adaptacij takih yak rizni organeli bagatoklitinnist i mozhlivo stateve rozmnozhennya i diversifikuvalisya v roslini tvarini i gribi v kinci cogo promizhku chasu Taki dosyagnennya mogli buti vazhlivimi poperednikami evolyuciyi velikogo skladnogo zhittya piznishe v Ediakari ta Fanerozoyi Tim ne mensh prokariotichni cianobakteriyi buli dominuyuchimi formami zhittya v cej chas i jmovirno pidrimuvali energetichno bidnu harchovu merezhu z nevelikoyu kilkistyu protistiv na vershini harchovogo lancyuzhka Susha jmovirno bula naselena prokariotichnimi cianobakteriyami ta eukariotichnimi protolishajnikami prichomu ostanni buli bilsh uspishnimi tut jmovirno cherez bilshu dostupnist pozhivnih rechovin nizh u morskih vodah bilya uzberezhzhya OpisU 1995 roci geologi Rodzher Byuyik Devis De Mare ta Endryu Noll proanalizuvali ochevidnu vidsutnist velikih biologichnih geologichnih i klimatichnih podij protyagom mezoproterozojskoyi eri 1 6 1 milyard rokiv tomu i takim chinom opisali ce yak najnudnishij chas v istoriyi Zemli Termin Nudnij Milyard buv zakarbovanij paleontologom Martinom Brasyerom dlya poznachennya periodu priblizno mizh 2 i 1 mlrd rokiv tomu yakij harakterizuvavsya geohimichnim stazisom i lodovikovoyu stagnaciyeyu U 2013 roci geohimik Grant Yang vikoristav termin Bezplidnij Milyard dlya poznachennya periodu zamerzannya lodovikiv i vidsutnosti vidhilen izotopiv karbonu vid 1 8 do 0 8 mlrd rokiv U 2014 roci geologi Piter Kavud i Kris Hoksvort nazvali chas mizh 1 7 i 0 75 mlrd rokiv Serednovichchyam Zemli cherez vidsutnist dokaziv tektonichnogo ruhu Vvazhayetsya sho Nudnij Milyard prostyagayetsya priblizno vid 1 8 do 0 8 mlrd rokiv tomu v mezhah proterozojskogo eonu golovnim chinom mezoproterozoyu Nudnij Milyard harakterizuyetsya geologichnim klimatichnim i zagalom evolyucijnim zastoyem z nizkim vmistom pozhivnih rechovin U period sho pereduvav Nudnomu Milyardu Zemlya perezhila kisnevu katastrofu vnaslidok evolyuciyi kisnevih fotosintezuyuchih cianobakterij sho prizvelo do Guronskogo zledeninnya Zemlya snizhka formuvannya ozonovogo sharu sho blokuye UF viprominyuvannya i okislennya kilkoh metaliv Vvazhayetsya sho riven kisnyu pid chas Nudnogo Milyarda buv pomitno nizhchim nizh pid chas kisnevoyi katastrofi mozhlivo vid 0 1 do 10 vid suchasnih rivniv Cej period zavershivsya rozpadom superkontinentu Rodiniya pid chas tonskogo periodu 1000 720 mln rokiv drugoyu podiyeyu oksigenaciyi ta inshoyu Zemleyu snizhkoyu u kriogennomu periodi Tektonichnij stazis Evolyuciya biosferi atmosferi ta gidrosferi Zemli davno pov yazana z ciklom superkontinentiv koli kontinenti zgrupovuyutsya a potim rozhodyatsya U Nudnomu Milyardi vidbulasya evolyuciya dvoh superkontinentiv Kolumbiyi abo Nuni i Rodiniyi Superkontinent Kolumbiya sformuvavsya mizh 2 0 i 1 7 mlrd rokiv tomu i zalishavsya nezminnim prinajmni do 1 3 mlrd rokiv tomu Geologichni ta paleomagnitni dokazi svidchat pro te sho Kolumbiya zaznala lishe neznachnih zmin shob peretvoritisya na superkontinent Rodiniyu mizh 1 1 i 0 9 mlrd rokiv tomu Paleogeografichni rekonstrukciyi svidchat pro te sho superkontinent znahodivsya v ekvatorialnih i pomirnih klimatichnih zonah i ye malo abo zhodnih dokaziv pro kontinentalni fragmenti v polyarnih zonah Cherez vidsutnist dokaziv nakopichennya vidkladiv na pasivnih krayah yake moglo statisya v rezultati riftingu superkontinent jmovirno ne rozpavsya a buv prosto sukupnistyu protokontinentiv i kratoniv Nemaye dokaziv riftingu do utvorennya Rodiniyi 1 25 mlrd rokiv tomu v Pivnichnij Lavrentiyi ta 1 mlrd rokiv tomu u Shidnij Baltici ta Pivdennomu Sibiru Rozpad ne vidbuvsya do 0 75 mlrd rokiv tomu oznamenuvavshi kinec Nudnogo Milyarda Cej tektonichnij zastij mig buti pov yazanij z himiyeyu okeanu ta atmosferi Cilkom mozhlivo sho astenosfera rozplavlenij shar zemnoyi mantiyi po yakomu po suti plavayut i ruhayutsya tektonichni pliti bula nadto garyachoyu shob u toj chas pidtrimuvati suchasnu tektoniku plit Zamist energijnoyi pererobki plit u zonah subdukciyi pliti buli pov yazani mizh soboyu protyagom milyardiv rokiv poki mantiya dostatno ne oholola Pochatku cogo komponenta tektoniki plit mozhlivo spriyalo oholodzhennya ta potovshennya kori sho yak tilki rozpochalosya prizvelo do anomalno silnoyi subdukciyi plit sho vidbulasya naprikinci Nudnogo Milyarda Tim ne mensh veliki magmatichni podiyi vse she vidbuvalisya taki yak utvorennya shlyahom plyumu centralnoyi Avstralijskoyi provinciyi Masgrejva plosheyu 220 000 km vid 1 22 do 1 12 mlrd rokiv tomu a takozh Kanadskoyi velikoyi ignejnoyi provinciyi Makkenzi plosheyu 2 700 000 km priblizno 1 27 mlrd rokiv tomu Tektonika plit vse she bula dostatno aktivnoyu shob stvoriti gori i v cej chas vidbuvalisya dekilka orogeneziv vklyuchayuchi Grenvilskij orogenez sho vidbuvavsya v toj chas Klimatichna stabilnistGrafik iz zobrazhennyam serednih temperatur protyagom mezoproterozoyu Sinya liniya zobrazhuye koncentraciyu CO2 u 5 raziv bilshe za suchasnu dobu chervona liniya u 10 raziv a chervona tochka pokazuye serednij diapazon temperatur u tropikah Isnuye malo dokaziv znachnoyi minlivosti klimatu protyagom cogo periodu Klimat jmovirno ne buv golovnim chinom prodiktovanij sonyachnoyu yaskravistyu oskilki Sonce bulo na 5 18 mensh yaskravim nizh sogodni ale nemaye zhodnih dokaziv togo sho klimat Zemli buv znachno proholodnishim Faktichno Nudnij Milyard zdayetsya ne maye zhodnih dokaziv trivalih zledenin yaki mozhna sposterigati z regulyarnoyu periodichnistyu v inshih chastinah geologichnoyi istoriyi Zemli Visokij riven CO2 ne mig buti golovnoyu rushijnoyu siloyu poteplinnya oskilki rivni mali b buti v 30 100 raziv vishimi nizh doindustrialni rivni shob zapobigti utvorennyu lodu ta sprichiniti znachne zakislennya okeanu sho takozh ne vidbuvalosya Mezoproterozojski rivni CO2 mozhut buti porivnyani z rivnyami fanerozojskogo eonu v 7 10 raziv vishimi vid suchasnih rivniv Pershi zapisi pro lid za cej period chasu bulo povidomleno v 2020 roci z shotlandskoyi 1 mlrd rokiv tomu v grupi Torridon de utvorennya dropstouniv jmovirno utvorilisya ulamkami vid raftingom lodu oblast roztashovana todi mizh 35 50 pd sh bula mozhlivo visokogirnim ozerom yake yak vvazhayut zamerzalo vzimku i tanulo vlitku a rafting vidbuvavsya pid chas vesnyanogo tanennya Visha kilkist inshih parnikovih gaziv a same metanu sho viroblyavsya prokariotami mogla kompensuvati nizki rivni CO2 majzhe vilnij vid lodu svit dosyagayetsya atmosfernoyi koncentraciyi metanu v rozmiri 140 chastin na miljon ppm Metanogenni prokarioti ne mogli viroblyati stilki metanu sho oznachaye sho yakijs inshij parnikovij gaz jmovirno oksid azotu buv pidvishenij mozhlivo do 3 chastin na miljon u 10 raziv perevishuye sogodnishnij riven Vihodyachi z peredbachuvanoyi koncentraciyi parnikovih gaziv ekvatorialna temperatura v mezoproterozoyi mogla stanoviti priblizno 22 27 C u tropikah 17 C na 60 paraleli 8 7 C a na polyusah 23 2 C i globalna serednya temperatura blizko 19 C sho na 4 C teplishe nizh sogodni Temperaturi na polyusah vzimku opuskalisya nizhche nulya sho prizvelo do timchasovogo utvorennya morskogo lodu ta snigopadu ale postijnih krizhanih pokriviv jmovirno ne bulo Takozh bulo pripusheno sho cherez te sho intensivnist kosmichnih promeniv pozitivno korelyuye z hmarnistyu a hmari vidbivayut svitlo u kosmos i znizhuyut globalni temperaturi v cej chas cherez zmenshennya formuvannya zirok u galaktici prizvodila do menshoyi hmarnosti ta zapobigala lodovikovim podiyam zabezpechuyuchi teplij klimat Krim togo pevna kombinaciya intensivnosti vivitryuvannya yaka prizvela b do znizhennya rivnya CO2 shlyahom okislennya vidkritih metaliv oholodzhennya mantiyi ta zmenshennya geotermalnogo tepla ta vulkanizmu a takozh pidvishennya intensivnosti sonyachnogo viprominyuvannya ta sonyachnogo tepla mozhlivo dosyagla rivnovagi zapobigayuchi utvorennyu lodu I navpaki lodovikovi ruhi ponad milyard rokiv tomu mozhlivo ne zalishili bagato zalishkiv sogodni i ochevidna vidsutnist dokaziv mozhe buti naslidkom nepovnoti litopisu skam yanilostej a ne vidsutnostyu samogo yavisha Krim togo nizki rivni kisnyu i sonyachnoyi intensivnosti mozhut zapobigati formuvannyu ozonovogo sharu sho zavazhaye utrimuvati parnikovi gazi v atmosferi i nagrivati Zemlyu za dopomogoyu parnikovogo efektu sho mozhe sprichiniti lodovikovi podiyi Hocha dlya pidtrimki ozonovogo sharu ne potribno bagato kisnyu i rivni pid chas Nudnogo milyarda mogli buti dostatno visokimi dlya cogo Zemlya mogla zaznavati silnishogo bombarduvannya UF viprominyuvannyam nizh sogodni Okeanichnij skladShozhe sho v okeanah buli nizki koncentraciyi klyuchovih pozhivnih rechovin yaki vvazhalisya neobhidnimi dlya skladnogo zhittya a same molibdenu zaliza azotu ta fosforu znachnoyu miroyu cherez brak kisnyu ta yak naslidok okislennya neobhidne dlya cih geohimichnih cikliv Pozhivnih rechovin moglo buti bilshe v nazemnih seredovishah takih yak ozera abo priberezhni seredovisha blizhche do kontinentalnogo stoku Zagalom okeani mogli mati nasichenij kisnem poverhnevij shar sulfidnij serednij shar i suboksigennij nizhnij shar Perevazhno sulfidnij sklad mig sprichiniti te sho okeani mali chornij i molochno biryuzovij kolir zamist sinogo Kisen Geologichnij litopis Zemli vkazuye na dvi podiyi pov yazani zi znachnim pidvishennyam rivnya kisnyu na Zemli odna z yakih vidbulasya mizh 2 4 i 2 1 mlrd rokiv tomu vidoma yak kisneva katastrofa a druga priblizno 0 8 mlrd rokiv tomu vidoma yak neoproterozojska podiya oksigenaciyi druga kisneva katastrofa Vvazhayetsya sho promizhnij period pid chas Nudnogo Milyarda mav nizkij riven kisnyu z neznachnimi kolivannyami sho prizvelo do shirokogo poshirennya bezkisnevih vod Okeani mogli buti chitko stratifikovanimi prichomu poverhnevi vodi buli nasicheni kisnem a gliboki vodi buli suboksigennimi menshe 1 mkM kisnyu Ostannij mozhlivo pidtrimuvavsya menshimi rivnyami vikidiv vodnyu H2 ta sirkovodnyu H2S cherez glibokovodni gidrotermalni dzherela yaki v inshomu vipadku buli b himichno znizheni kisnem Navit u samih milkovodnih vodah znachna kilkist kisnyu mozhe buti obmezhena v osnovnomu rajonami poblizu uzberezhzhya Rozkladannya tonuchoyi organichnoyi rechovini takozh prizvelo b do vimivannya kisnyu z glibinnih vod Raptove padinnya O2 pislya kisnevoyi katastrofi yaka za rivnyami d13C svidchit pro vtratu v 10 20 raziv bilshogo obsyagu atmosfernogo kisnyu atmosfernogo kisnyu vidome yak podiya Lomagundi Yatuli ta ye najvidatnishoyu podiyeyu izotopiv karbonu v istoriyi Zemli Riven kisnyu mig stanoviti menshe 0 1 1 vid suchasnogo rivnya sho faktichno zupinilo b evolyuciyu skladnogo zhittya pid chas Nudnogo milyarda Odnak pripuskayetsya mezoproterozojska podiya oksigenaciyi MOE pid chas yakoyi vmist kisnyu timchasovo pidvishuvavsya priblizno do 4 vid potochnogo rivnya v atmosferi u rizni momenti chasu sho trivala vid 1 59 do 1 36 mlrd rokiv tomu Zokrema deyaki dokazi z formaciyi Velkerri v grupi Roper na Pivnichnij Teritoriyi Avstraliyi formaciya Kaltasi u Volgo Uralskomu regioni Rosiyi ta formaciya Syamaling na pivnochi Pivnichno Kitajskogo kratonu vkazuye na pomitne oksigenuvannya blizko 1 4 mlrd rokiv tomu hocha stupin do yakogo ce vidobrazhaye globalnij riven kisnyu nevidomij Kisnevi umovi stali b dominuyuchimi pid chas drugoyi kisnevoyi katastrofi viklikayuchi poshirennya aerobnoyi aktivnosti nad anaerobnoyu ale shiroko poshireni suboksichni ta bezkisnevi umovi jmovirno trivali priblizno do 0 55 mlrd rokiv tomu sho vidpovidaye ediakarskij bioti ta kembrijskomu vibuhu Sirka Shema formuvannya evksinichnih umov U 1998 roci geolog Donald Kenfild zaproponuvav te sho zaraz vidomo yak gipoteza okeanu Kenfilda Kenfild stverdzhuvav sho pidvishennya rivnya kisnyu v atmosferi pid chas kisnevoyi katastrofi moglo vidreaguvati z kontinentalnimi vidkladennyami piritu FeS2 i okisliti yih iz sulfatom SO42 yak pobichnim produktom yakij perenosivsya v more Sulfat vidnovlyuyuchi mikroorganizmi peretvorili jogo na sirkovoden H2S rozdilivshi okean na poverhnevij shar desho kisnevij i sulfidnij shar sho znahoditsya pid nim z anoksigennimi bakteriyami yaki zhivut na kordoni metabolizuyuchi H2S i stvoryuyuchi sirku yak vidhodi Ce stvorilo poshireni evksinni umovi v serednih vodah bezkisnevij stan z visokoyu koncentraciyeyu sirki yakij pidtrimuvavsya bakteriyami Odnak bilsh sistematichni geohimichni doslidzhennya seredini proterozoyu vkazuyut na te sho okeani buli v osnovnomu zalizistimi z tonkim poverhnevim sharom slabko nasichenih kisnem vod i evksiniya mogla vidbuvatisya na vidnosno nevelikih dilyankah mozhlivo menshe 7 morskogo dna Zalizo Sered girskih porid sho datuyutsya Nudnim Milyardom pomitna vidsutnist smugastih utvoren zaliza yaki utvoryuyutsya iz zaliza u verhnij tovshi vodi z pohodzhennyam z glibin okeanu reaguyuchi z kisnem i vipadayuchi z vodi Voni zdayetsya pripinyayutsya v usomu sviti pislya 1 85 mlrd rokiv tomu Kenfild stverdzhuvav sho okeanichnij SO42 zmenshuye vse zalizo v bezkisnevomu glibokovodnomu mori Zalizo moglo buti metabolizovano anoksigennimi bakteriyami Bulo takozh pripusheno sho padinnya meteora Sadberi 1 85 mlrd rokiv tomu zmishalo ranishe stratifikovanij okean shlyahom cunami vzayemodiyeyu mizh viparovanoyu morskoyu vodoyu ta nasichenoyu kisnem atmosferoyu okeanichnoyu kavitaciyeyu ta masivnim stokom zrujnovanih kontinentalnih uzberezhzh u more Otrimani vnaslidok cogo suboksigenni glibinni vodi cherez zmishuvannya nasichenoyi kisnem poverhnevoyi vodi z ranishe bezkisnevoyu glibokoyu vodoyu mogli b okisliti glibokovodne zalizo zapobigayuchi jogo transportuvannyu ta vidkladennyu na okolicyah kontinentu Tim ne mensh bagati zalizom vodi dijsno isnuvali taki yak formaciya Syamalin v Pivnichnomu Kitayi 1 4 mlrd rokiv tomu yaka mozhlivo zhivilasya glibokovodnimi gidrotermalnimi dzherelami Umovi bagati zalizom takozh vkazuyut na bezkisnevu pridonnu vodu v cij oblasti oskilki kisnevi umovi okislyuvali b vse zalizo Formi zhittyaNizka kilkist pozhivnih rechovin mogla spriyati fotosimbiozu koli odin organizm zdatnij do fotosintezu a inshij metabolizuye vidhodi sered prokariotiv bakterij i arhej i poyavi eukariotiv Bakteriyi arheyi ta eukarioti ye troma domenami najvishim taksonomichnim rangom Eukarioti vidriznyayutsya vid prokariotiv yadrom i membrannimi organelami i majzhe vsi bagatoklitinni organizmi ye eukariotami Prokarioti Stromatolit vikom 1 44 mlrd rokiv z Nacionalnogo parku Glejsher Montana Prokarioti buli dominuyuchimi formami zhittya vprodovzh Nudnogo Milyarda Mikroskam yanilosti vkazuyut na prisutnist cianobakterij zelenih i fioletovih sirchanih bakterij arhej sho viroblyayut metan bakterij sho metabolizuyut sulfat arhej abo bakterij sho metabolizuyut metan bakterij sho metabolizuyut zalizo bakterij sho metabolizuyut azot i anoksigennih fotosintezuyuchih bakterij Vvazhayetsya sho anoksigenni cianobakteriyi buli dominuyuchimi fotosintezatorami metabolizuyuchi nadlishok H2S v okeanah U vodah bagatih zalizom cianobakteriyi mogli postrazhdati vid otruyennya zalizom osoblivo v morskih vodah de bagata zalizom gliboka voda zmishuyetsya z poverhnevimi vodami i takim chinom yih vitisnyayut inshi bakteriyi yaki mozhut metabolizuvati yak zalizo tak i H2S Odnak otruyennya zalizom mozhna bulo b zmenshiti za dopomogoyu vodi bagatoyi dioksidom kremniyu abo biomineralizaciyeyu zaliza vseredini klitini Eukarioti Eukarioti mozhlivo vinikli priblizno na pochatku Nudnogo Milyarda sho zbigayetsya z akreciyeyu Kolumbiyi yaka mogla pevnim chinom pidvishiti riven kisnyu v okeani Hocha buli zayavleni zapisi pro eukariotiv she 2 1 milyarda rokiv tomu voni vvazhalisya sumnivnimi prichomu najdavnishi odnoznachni zalishki eukariot datuyutsya priblizno 1 8 1 6 milyardami rokiv tomu v Kitayi Pislya cogo evolyuciya eukariot bula dosit povilnoyu mozhlivo cherez evksinichni umovi okeanu Kenfilda i brak klyuchovih pozhivnih rechovin i metaliv sho pereshkodzhalo rozvitku velikogo skladnogo zhittya z visokimi potrebami v energiyi Evksinni umovi takozh znizili rozchinnist zaliza i molibdenu osnovnih metaliv u azotfiksaciyi Vidsutnist rozchinenogo azotu spriyala b perevazi prokariotiv nad eukariotami oskilki pershi mozhut metabolizuvati gazopodibnij azot Alternativna gipoteza vidsutnosti diversifikaciyi sered eukariot pripuskaye visoki temperaturi pid chas Nudnogo Milyarda a ne nizki rivni kisnyu pripuskayuchi sho toj fakt sho podiyi oksigenaciyi do piznogo neoproterozoyu ne zapochatkuvali evolyuciyu eukariot svidchit pro te sho ce ne buv osnovnij obmezhuyuchij faktor yakij yiyi galmuvav Skam yanilosti Ramathallus vikom 1 6 mlrd rokiv najdavnisha z vidomih chervonih vodorostej Tim ne mensh diversifikaciya eukariotichnih makroorganizmiv kronovoyi grupi zdayetsya pochalasya priblizno 1 6 1 mlrd rokiv tomu mabut zbigayuchis zi zbilshennyam koncentraciyi klyuchovih pozhivnih rechovin Zgidno z analizom molekulyarnogo godinnika roslini vidijshli vid tvarin i gribiv priblizno 1 6 mlrd rokiv tomu tvarini i gribi blizko 1 5 mlrd rokiv tomu Bilateriyi ta knidariyi tvarini vidpovidno z dvostoronnoyu simetriyeyu ta bez neyi blizko 1 3 mlrd rokiv tomu gubki 1 35 mlrd rokiv tomu i Askomikotovi gribi i Bazidiyevi dva viddili pidcarstva vishih gribiv 0 97 mlrd rokiv tomu Avtori statti stverdzhuyut sho yihni ocinki chasu ne uzgodzhuyutsya z naukovim konsensusom Skam yanilosti piznogo paleoproterozoyu ta rannogo mezoproterozoyu basejnu korisnih kopalin Vindhyan v Indiyi grupi Ruyan u Kitayi ta formaciyi Kotujkan na Anabarskomu masivi v Sibiru vkazuyut na visoki tempi za doediakarskimi standartami eukariotichnoyi diversifikaciyi mizh 1 7 i 1 4 mlrd rokiv tomu hocha velika chastina cogo riznomanittya predstavlena ranishe nevidomimi bilshe ne isnuyuchimi kladami eukariotiv Najdavnishi vidomi mati chervonih vodorostej datuyutsya 1 6 mlrd rokiv tomu Najdavnishij vidomij grib datuyetsya 1 01 0 89 mlrd rokiv tomu z Pivnichnoyi Kanadi Bagatoklitinni eukarioti yaki vvazhayutsya nashadkami kolonialnih odnoklitinnih utvoren jmovirno evolyucionuvali priblizno 2 1 4 mlrd rokiv tomu Podibnim chinom ranni bagatoklitinni eukarioti jmovirno perevazhno utvoryuvali stromatolitovi mati Chervona vodorist Bangiomorpha ye najdavnishoyu vidomoyu formoyu zhittya sho rozmnozhuyetsya statevim shlyahom i mejozom i evolyucionuvala 1 047 mlrd rokiv tomu Vihodyachi z cogo ci adaptaciyi rozvinulisya mizh pribl 2 1 4 mlrd rokiv tomu Krim togo voni mogli rozvinutisya zadovgo do ostannogo spilnogo predka eukariot vrahovuyuchi sho mejoz vikonuyetsya z vikoristannyam odnih i tih samih bilkiv u vsih eukariot mozhlivo prostyagayuchis azh do gipotetichnogo svitu RNK Klitinni organeli jmovirno pohodyat vid vilnozhivuchih cianobakterij simbiogenez mozhlivo pislya evolyuciyi fagocitozu poglinannya inshih klitin z vidalennyam zhorstkoyi klitinnoyi stinki yaka bula neobhidnoyu lishe dlya nestatevogo rozmnozhennya Mitohondriyi vzhe evolyucionuvali pid chas kisnevoyi katastrofi ale vvazhayetsya sho plastidi yaki vikoristovuvalisya v arheplastidah dlya fotosintezu z yavilisya priblizno 1 6 1 5 mlrd rokiv tomu Gistoni jmovirno z yavilisya pid chas Nudnogo milyarda shob dopomogti organizuvati ta upakuvati zrostayuchu kilkist DNK v eukariotichnih klitinah u nukleosomi Gidrogenosomi sho vikoristovuyutsya v anaerobnij diyalnosti mogli pohoditi v toj chas vid arheonu Vrahovuyuchi oriyentiri evolyuciyi dosyagnuti eukariotami cej period chasu mozhna vvazhati vazhlivim poperednikom kembrijskogo vibuhu priblizno 0 54 mlrd rokiv tomu ta evolyuciyi vidnosno velikogo skladnogo zhittya Ekologiya Cherez marginalizaciyu velikih chastinok yizhi takih yak vodorosti na korist cianobakterij i prokariotiv yaki ne peredayut stilki energiyi na vishi trofichni rivni skladna harchova merezha jmovirno ne sformuvalasya i veliki formi zhittya z visokimi potrebami v energiyi ne mogli evolyucionuvati Taka harchova merezha jmovirno pidtrimuvala lishe neveliku kilkist protistiv yak u pevnomu sensi hizhakiv najvishogo rivnya Pripuskayetsya sho kisnevi fotosintetichni eukariotichni akritarhi mozhlivo tip mikrovodorostej naselyali poverhnevi vodi mezoproterozoyu Yihnya populyaciya jmovirno bula obmezhena dostupnistyu pozhivnih rechovin a ne hizhactvom oskilki deyaki vidi vidomi svoyeyu trivalistyu protyagom soten miljoniv rokiv ale pislya 1 mlrd rokiv trivalist vidiv zmenshilas do priblizno 100 mln rokiv mozhlivo cherez zbilshene hizhactvo rannih protistiv Ce vidpovidaye zmenshennyu trivalosti vidiv do 10 mln rokiv yaki stalisya vzhe pislya kembrijskogo vibuhu ta rozshirennya hizhih tvarin Vidnosno nizki koncentraciyi molibdenu v okeani protyagom Nudnogo Milyardu vvazhayutsya osnovnim obmezhuvalnim faktorom yakij utrimuvav populyaciyi mikroorganizmiv vidkritogo okeanu sho fiksuyut azot yakim molibden neobhidnij dlya virobnictva nitrogenaz na nizkomu rivni hocha prisnovodni ta priberezhni seredovisha yaki znahodilis bilya richkovih dzherel rozchinenogo molibdenu mozhlivo vse she mistili znachni spilnoti fiksatoriv azotu Nizkij riven fiksaciyi azotu sho trivav do kriogenu z evolyuciyeyu planktonnih fiksatoriv azotu oznachav sho vilnij amonij buv duzhe obmezhenim protyagom cogo periodu sho serjozno obmezhuvalo evolyuciyu ta diversifikaciyu bagatoklitinnoyi bioti Zhittya na sushi Deyaki z najdavnishih dokaziv kolonizaciyi sushi prokariotami vidnosyatsya do 3 mlrd rokiv tomu mozhlivo she do 3 5 mlrd rokiv tomu Pid chas Nudnogo Milyarda zemlya mogla buti naselena perevazhno cianobakterialnimi matami Pil mozhe postachati veliku kilkist pozhivnih rechovin i ta sluguvati zasobom rozpovsyudzhennya dlya mikrobiv sho zhivut na poverhni hocha spilnoti mikrobiv mogli takozh formuvatisya v pecherah i prisnovodnih ozerah i richkah Stanom na 1 2 mlrd rokiv tomu mikrobni spilnoti mogli buti dostatno chislennimi shob vplinuti na vivitryuvannya eroziyu sedimentaciyu ta rizni geohimichni cikli a shiroki mikrobni mati mogli vkazuvati na te sho biologichna gruntova kora bula u velikij kilkosti Najdavnishimi nazemnimi eukariotami mozhlivo buli lishajnikovi gribi vikom priblizno 1 3 mlrd rokiv yaki paslisya na mikrobnih matah Velika kilkist eukariotichnih mikroskam yanilostej iz prisnovodnoyi shotlandskoyi grupi torridoniv zdayetsya vkazuye na dominuvannya eukariotiv u nemorskih seredovishah isnuvannya stanom na 1 mlrd rokiv tomu jmovirno cherez zbilshennya dostupnosti pozhivnih rechovin u rajonah roztashovanih blizhche do kontinentiv i kontinentalnogo stoku Piznishe ci lishajniki pevnim chinom spriyali kolonizaciyi roslin 0 75 mlrd rokiv tomu Znachne zbilshennya nazemnoyi fotosintetichnoyi biomasi zdayetsya vidbulosya priblizno 0 85 mlrd rokiv tomu pro sho svidchit potik zemnogo vuglecyu yakij mozhlivo pidvishiv riven kisnyu dostatnogo dlya pidtrimki rozshirennya bagatoklitinnih eukariot Div takozhDokembrij istoriya Zemli 4600 539 miljoniv rokiv tomu Ediakarska biota usi organizmi ediakarskogo periodu bl 635 538 8 miljoniv rokiv tomu Fransvilska biota mozhlivi paleoproterozojski bagatoklitinni skam yanilosti z Gabonu Zemlya snizhka vsesvitni epizodi zledeninnya protyagom proterozojskogo eonuPrimitkiMukherjee I Large R R Corkrey R Danyushevsky L V 2018 The Boring Billion a slingshot for Complex Life on Earth Scientific Reports 8 4432 4432 Bibcode 2018NatSR 8 4432M doi 10 1038 s41598 018 22695 x PMC 5849639 PMID 29535324 Buick R Des Marais D J 1995 Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall group northwestern Australia Chemical Geology 123 1 4 153 171 Bibcode 1995ChGeo 123 153B doi 10 1016 0009 2541 95 00049 R PMID 11540130 Brasier M 2012 Secret Chambers The Inside Story of Cells and Complex Life Oxford University Press s 211 ISBN 978 0 19 964400 1 Young Grant M 2013 Precambrian supercontinents glaciations atmospheric oxygenation metazoan evolution and an impact that may have changed the second half of Earth history Geoscience Frontiers 4 3 247 261 doi 10 1016 j gsf 2012 07 003 Cawood Peter A Hawkesworth Chris J 1 chervnya 2014 Earth s middle age Geology angl 42 6 503 506 Bibcode 2014Geo 42 503C doi 10 1130 G35402 1 ISSN 0091 7613 Roberts N M W 2013 The boring billion Lid tectonics continental growth and environmental change associated with the Columbia supercontinent Geoscience Frontiers Thematic Section Antarctica A window to the far off land 4 6 681 691 doi 10 1016 j gsf 2013 05 004 Holland Heinrich D 29 chervnya 2006 The oxygenation of the atmosphere and oceans Philosophical Transactions of the Royal Society of London B Biological Sciences angl 361 1470 903 915 doi 10 1098 rstb 2006 1838 ISSN 0962 8436 PMC 1578726 PMID 16754606 Peng L Yonggang L Yongyun H Yun Y Pisarevsky S A 2019 Warm Climate in the Boring Billion Era Acta Geologica Sinica 93 40 43 doi 10 1111 1755 6724 14239 Lenton T Watson A 2011 The not so boring billion Revolutions that made the Earth s 242 261 doi 10 1093 acprof oso 9780199587049 003 0013 ISBN 978 0 19 958704 9 Planavsky Noah J Cole Devon B Isson Terry T Reinhard Christopher T Crockford Peter W Sheldon Nathan D Lyons Timothy W 9 serpnya 2018 A case for low atmospheric oxygen levels during Earth s middle history Emerging Topics in Life Sciences 2 2 149 159 doi 10 1042 etls20170161 ISSN 2397 8554 PMID 32412619 Brooke J L 2014 Climate Change and the Course of Global History A Rough Journey Cambridge University Press s 40 42 ISBN 978 0 521 87164 8 Evans D A D 2013 Reconstructing pre Pangean supercontinents Geological Society of America Bulletin 125 11 12 1735 1751 Bibcode 2013GSAB 125 1735E doi 10 1130 b30950 1 Bradley Dwight C 1 grudnya 2008 Passive margins through earth history Earth Science Reviews 91 1 4 1 26 Bibcode 2008ESRv 91 1B doi 10 1016 j earscirev 2008 08 001 Gorczyk W Smithies H Korhonen F Howard H de Gromard R Q 2015 Ultra hot Mesoproterozoic evolution of intracontinental central Australia Geoscience Frontiers 6 1 23 37 doi 10 1016 j gsf 2014 03 001 Bryan S E Ferrari L 2013 Large igneous provinces and silicic large igneous provinces Progress in our understanding over the last 25 years GSA Bulletin 125 7 8 1055 Bibcode 2013GSAB 125 1053B doi 10 1130 B30820 1 Tollo R P Corriveau L McLelland J Bartholomew M J 2004 Proterozoic tectonic evolution of the Grenville orogen in North America An introduction U Tollo R P Corriveau L McLelland J Bartholomew M J red Proterozoic tectonic evolution of the Grenville orogen in North America Geological Society of America Memoir T 197 s 1 18 ISBN 978 0 8137 1197 3 Brasier M D 1998 A billion years of environmental stability and the emergence of eukaryotes New data from northern Australia Geology 26 6 555 558 Bibcode 1998Geo 26 555B doi 10 1130 0091 7613 1998 026 lt 0555 ABYOES gt 2 3 CO 2 PMID 11541449 Fiorella R Sheldon N 2017 Equable end Mesoproterozoic climate in the absence of high CO2 Geology 45 3 231 234 Bibcode 2017Geo 45 231F doi 10 1130 G38682 1 Veizer J 2005 Celestial Climate Driver A Perspective from Four Billion Years of the Carbon Cycle Geoscience Canada 32 1 ISSN 1911 4850 Kah L C Riding R 2007 Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria Geology 35 9 799 802 Bibcode 2007Geo 35 799K doi 10 1130 G23680A 1 Hartley A Kurjanski B Pugsley J Armstrong J 2020 Ice rafting in lakes in the early Neoproterozoic dropstones in the Diabaig Formation Torridon Group NW Scotland Scottish Journal of Geology 56 47 53 doi 10 1144 sjg2019 017 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite journal title Shablon Cite journal cite journal a hdl access vimagaye hdl dovidka Hren M T Sheldon N D 2020 Terrestrial microbialites provide constraints on the mesoproterozoic atmosphere The Depositional Record 6 4 20 doi 10 1002 dep2 79 Shaviv Nir J 2003 The spiral structure of the Milky Way cosmic rays and ice age epochs on Earth New Astronomy 8 1 39 77 arXiv astro ph 0209252 Bibcode 2003NewA 8 39S doi 10 1016 S1384 1076 02 00193 8 Planavsky Noah J Reinhard Christopher T Wang Xiangli Thomson Danielle McGoldrick Peter Rainbird Robert H Johnson Thomas Fischer Woodward W Lyons Timothy W 31 zhovtnya 2014 Low Mid Proterozoic atmospheric oxygen levels and the delayed rise of animals PDF Science angl 346 6209 635 638 Bibcode 2014Sci 346 635P doi 10 1126 science 1258410 ISSN 0036 8075 PMID 25359975 Eyles N 2008 Glacio epochs and the supercontinent cycle after 3 0 Ga Tectonic boundary conditions for glaciation Palaeogeography Palaeoclimatology Palaeoecology 258 1 2 89 129 Bibcode 2008PPP 258 89E doi 10 1016 j palaeo 2007 09 021 Kasting J F Ono S 2006 Palaeoclimates the first two billion years Philosophical Transactions of the Royal Society of London B Biological Sciences 361 1470 917 929 doi 10 1098 rstb 2006 1839 ISSN 0962 8436 PMC 1868609 PMID 16754607 Catling D C Kasting J F 2017 Atmospheric Evolution on Inhabited and Lifeless Worlds Cambridge University Press s 291 ISBN 978 1 316 82452 8 Beraldi Campesi H 2013 Early life on land and the first terrestrial ecosystems Ecological Processes 2 1 1 17 doi 10 1186 2192 1709 2 1 Anbar A D Knoll A H 2002 Proterozoic Ocean Chemistry and Evolution A Bioinorganic Bridge Science 297 5584 1137 1142 Bibcode 2002Sci 297 1137A CiteSeerX 10 1 1 615 3041 doi 10 1126 science 1069651 ISSN 0036 8075 PMID 12183619 Fennel K Follows M Falkowski P G 2005 The co evolution of the nitrogen carbon and oxygen cycles in the Proterozoic ocean American Journal of Science 305 6 8 526 545 Bibcode 2005AmJS 305 526F doi 10 2475 ajs 305 6 8 526 ISSN 0002 9599 Kipp M A Stueken E E 2017 Biomass recycling and Earth s early phosphorus cycle Science Advances 3 11 eaao4795 Bibcode 2017SciA 3O4795K doi 10 1126 sciadv aao4795 PMC 5706743 PMID 29202032 Parnell J Sprinks S Andrews S Thayalan W Bowden S 2015 High Molybdenum availability for evolution in a Mesoproterozoic lacustrine environment Nature Communications 6 6996 6996 Bibcode 2015NatCo 6 6996P doi 10 1038 ncomms7996 PMID 25988499 Canfield D E 1998 A new model for Proterozoic ocean chemistry Nature 396 6710 450 453 Bibcode 1998Natur 396 450C doi 10 1038 24839 ISSN 0028 0836 Lyons Timothy W Reinhard Christopher T Planavsky Noah J 2014 The rise of oxygen in Earth s early ocean and atmosphere Nature 506 7488 307 315 Bibcode 2014Natur 506 307L doi 10 1038 nature13068 PMID 24553238 Large R Halpin J A Danyushevsky L V 2014 Trace element content of sedimentary pyrite as a new proxy for deep time ocean atmosphere evolution Earth and Planetary Science Letters 389 209 220 Bibcode 2014E amp PSL 389 209L doi 10 1016 j epsl 2013 12 020 Slack J F Cannon W F 2009 Extraterrestrial demise of banded iron formations 1 85 billion years ago Geology 37 11 1011 1014 Bibcode 2009Geo 37 1011S doi 10 1130 G30259A 1 De Baar H J W German C R Elderfield H van Gaans P 1988 Rare earth element distributions in anoxic waters of the Cariaco Trench Geochimica et Cosmochimica Acta 52 5 1203 1219 Bibcode 1988GeCoA 52 1203D doi 10 1016 0016 7037 88 90275 X Gallardo V A Espinoza C 2008 Hoover Richard B Levin Gilbert V Rozanov Alexei Y Davies Paul C red PDF Proceedings of the International Society for Optical Engineering Instruments Methods and Missions for Astrobiology XI 7097 1 7 Bibcode 2008SPIE 7097E 0GG doi 10 1117 12 794742 Arhiv originalu PDF za 9 serpnya 2017 Procitovano 30 chervnya 2023 2014 Oxygen fluctuations stalled life on Earth Nature doi 10 1038 nature 2014 15529 Procitovano 24 lyutogo 2017 Doyle Katherine A Poulton Simon W Newton Robert J Podkovyrov Victor N Bekker Andrey October 2018 Shallow water anoxia in the Mesoproterozoic ocean Evidence from the Bashkir Meganticlinorium Southern Urals 317 196 210 doi 10 1016 j precamres 2018 09 001 Procitovano 17 grudnya 2022 Johnston D T 2009 Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth s middle age Proceedings of the National Academy of Sciences 106 40 16925 16929 Bibcode 2009PNAS 10616925J doi 10 1073 pnas 0909248106 PMC 2753640 PMID 19805080 Partin C A Bekker A Planavsky N J Scott C T Gill B C Li C Podkovyrov V Maslov A Konhauser K O 1 travnya 2013 Large scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales Earth and Planetary Science Letters 369 370 284 293 Bibcode 2013E amp PSL 369 284P doi 10 1016 j epsl 2013 03 031 Bekker A Holland H D 1 lyutogo 2012 Oxygen overshoot and recovery during the early Paleoproterozoic Earth and Planetary Science Letters 317 318 295 304 Bibcode 2012E amp PSL 317 295B doi 10 1016 j epsl 2011 12 012 Schroder S Bekker A Beukes N J Strauss H Van Niekerk H S 1 kvitnya 2008 Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion evidence from sulphate evaporites in the 2 2 2 1 Gyr shallow marine Lucknow Formation South Africa Terra Nova angl 20 2 108 117 Bibcode 2008TeNov 20 108S doi 10 1111 j 1365 3121 2008 00795 x ISSN 1365 3121 Hardisty Dalton S Lu Zunli Bekker Andrey Diamond Charles W Gill Benjamin C Jiang Ganqing Kah Linda C Knoll Andrew H Lloyd Sean J 1 kvitnya 2017 Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate 463 159 170 doi 10 1016 j epsl 2017 01 032 Zhang Shuichang Wang Huajian Wang Xiaomei Ye Yuntao 25 zhovtnya 2021 The Mesoproterozoic Oxygenation Event Science China Earth Sciences 64 2043 2068 doi 10 1007 s11430 020 9825 x Procitovano 9 travnya 2023 Mukherjee Indrani Large Ross R August 2016 Pyrite trace element chemistry of the Velkerri Formation Roper Group McArthur Basin Evidence for atmospheric oxygenation during the Boring Billion 281 13 26 doi 10 1016 j precamres 2016 05 003 Procitovano 8 listopada 2022 He Yuting Zhu Xiyan Qiu Yifan Pang Lanyin Zhao Taiping December 2022 Extreme climate changes influenced early life evolution at 1 4 Ga Implications from shales of the Xiamaling Formation northern North China Craton Precambrian Research 383 106901 doi 10 1016 j precamres 2022 106901 Procitovano 17 grudnya 2022 Kah L C Lyons T W Frank T D 2004 Low marine sulphate and protracted oxygenation of the Proterozoic biosphere Nature 438 7010 834 838 Bibcode 2004Natur 431 834K doi 10 1038 nature02974 PMID 15483609 Och L M Shields Zhou G A 2012 The Neoproterozoic oxygenation event Environmental perturbations and biogeochemical cycling Earth Science Reviews 110 1 4 26 57 Bibcode 2012ESRv 110 26O doi 10 1016 j earscirev 2011 09 004 Lyons Timothy W Reinhard Christopher T 2009 An early productive ocean unfit for aerobics Proceedings of the National Academy of Sciences 106 43 18045 18046 Bibcode 2009PNAS 10618045L doi 10 1073 pnas 0910345106 ISSN 0027 8424 PMC 2775325 PMID 19846788 Boenigk J Wodniok S Glucksman E 2015 Biodiversity and Earth History Springer s 58 59 ISBN 978 3 662 46394 9 Gilleaudeau Geoffrey J Romaniello Stephen J Luo Genming Kaufman Alan J Zhang Feifei Klaebe Robert M Kah Linda C Azmy Karem Bartley Julie K 1 veresnya 2019 Uranium isotope evidence for limited euxinia in mid Proterozoic oceans Earth and Planetary Science Letters angl 521 150 157 doi 10 1016 j epsl 2019 06 012 ISSN 0012 821X Planavsky Noah J McGoldrick Peter Scott Clinton T Li Chao Reinhard Christopher T Kelly Amy E Chu Xuelei Bekker Andrey Love Gordon D September 2011 Widespread iron rich conditions in the mid Proterozoic ocean Nature angl 477 7365 448 451 doi 10 1038 nature10327 ISSN 1476 4687 PMID 21900895 Zhang S Wang H Wang X Zhao W Su J Bjerrum C J Haxen E R Hammarlund E U 2018 A Mesoproterozoic iron formation Proceedings of the National Academy of Sciences 115 17 3895 3904 Bibcode 2018PNAS 115E3895C doi 10 1073 pnas 1720529115 PMC 5924912 PMID 29632173 Brasier M D Lindsay J F 1998 A billion years of environmental stability and the emergence of eukaryotes new data from northern Australia Geology 26 6 555 558 Bibcode 1998Geo 26 555B doi 10 1130 0091 7613 1998 026 lt 0555 ABYOES gt 2 3 CO 2 PMID 11541449 Gueneli N McKenna A M Ohkouchi N Boreham C J Beghin J Javaux E J Brocks J J 2018 1 1 billion year old porphyrins establish a marine ecosystem dominated by bacterial primary producers Proceedings of the National Academy of Sciences 115 30 6978 6986 Bibcode 2018PNAS 115E6978G doi 10 1073 pnas 1803866115 PMC 6064987 PMID 29987033 Javaux E J Lepot K 2018 The Paleoproterozoic fossil record Implications for the evolution of the biosphere during Earth s middle age Earth Science Reviews 176 68 86 Bibcode 2018ESRv 176 68J doi 10 1016 j earscirev 2017 10 001 Fakhraee Mojtaba Tarhan Lidya G Reinhard Christopher T Crowe Sean A Lyons Timothy W Planavsky Noah J May 2023 Earth s surface oxygenation and the rise of eukaryotic life Relationships to the Lomagundi positive carbon isotope excursion revisited Earth Science Reviews angl 240 104398 doi 10 1016 j earscirev 2023 104398 Reinhard C T Planavsky N J Robbins L J Partin C A Gill B C Lalonde S V Bekker A Konhauser K O Lyons T W 2013 Proterozoic ocean redox and biogeochemical stasis Proceedings of the National Academy of Sciences 110 14 5357 5362 Bibcode 2013PNAS 110 5357R doi 10 1073 pnas 1208622110 ISSN 0027 8424 PMC 3619314 PMID 23515332 Anbar A D 2002 Proterozoic ocean chemistry and evolution a bioinorganic bridge Science 297 5584 1137 1142 Bibcode 2002Sci 297 1137A doi 10 1126 science 1069651 PMID 12183619 Zhang Fenglian Wang Huaijan Ye Yuntao Liu Yuke Lyu Yitong Deng Yan Lyu Dan Wang Xiaomei Wu Huaichun 15 serpnya 2022 Did high temperature rather than low O2 hinder the evolution of eukaryotes in the Precambrian 378 doi 10 1016 j precamres 2022 106755 Procitovano 29 kvitnya 2023 Bengtson S Sallstedt T Belivanova V Whitehouse M 2017 Three dimensional preservation of cellular and subcellular structures suggests 1 6 billion year old crown group red algae PLOS Biology angl 15 3 e2000735 doi 10 1371 journal pbio 2000735 PMC 5349422 PMID 28291791 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite journal title Shablon Cite journal cite journal a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Hedges S B Blair J E Venturi M L Shoe J L 2004 A molecular timescale of eukaryote evolution and the rise of complex multicellular life BMC Evolutionary Biology angl 4 2 2 doi 10 1186 1471 2148 4 2 PMC 341452 PMID 15005799 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite journal title Shablon Cite journal cite journal a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Bengtson S Belivanova V Rasmussen B Whitehouse M 2009 The controversial Cambrian fossils of the Vindhyan are real but more than a billion years older Proceedings of the National Academy of Sciences 106 19 7729 7734 Bibcode 2009PNAS 106 7729B doi 10 1073 pnas 0812460106 PMC 2683128 PMID 19416859 Agic Heda Moczydlowska Malgorzata Yin Leiming August 2017 Diversity of organic walled microfossils from the early Mesoproterozoic Ruyang Group North China Craton A window into the early eukaryote evolution Precambrian Research 297 101 130 doi 10 1016 j precamres 2017 04 042 Procitovano 13 zhovtnya 2022 Leiming Yin Xunlai Yuan Fanwei Meng Jie Hu 7 listopada 2005 Protists of the Upper Mesoproterozoic Ruyang Group in Shanxi Province China Precambrian Research 141 1 2 49 66 doi 10 1016 j precamres 2005 08 001 Procitovano 13 zhovtnya 2022 Leiming Yin Bian Lizeng Xunlai Yuan October 2004 Discovery of branched tubular algae and microscopic tubes with annular helical thickening from the Mesoproterozoic Ruyang Group of Shanxi North China Science China Earth Sciences 47 10 880 885 doi 10 1360 02yd0356 Procitovano 13 zhovtnya 2022 Pang Ke Tang Qing Yuan Xun Lai Wan Bin Xiao Shuhai September 2015 A biomechanical analysis of the early eukaryotic fossil Valeria and new occurrence of organic walled microfossils from the Paleo Mesoproterozoic Ruyang Group Palaeoworld 24 3 251 262 doi 10 1016 j palwor 2015 04 002 Vorob eva Natalya G Sergeev Vladimir N Petrov Peter Y January 2015 Kotuikan Formation assemblage A diverse organic walled microbiota in the Mesoproterozoic Anabar succession northern Siberia Precambrian Research 256 201 222 doi 10 1016 j precamres 2014 11 011 Procitovano 15 zhovtnya 2022 Loron C C Francois C Rainbird R H Turner E C Borensztajn S Javaux E J 2019 Early fungi from the Proterozoic era in Arctic Canada Nature 70 7760 232 235 Bibcode 2019Natur 570 232L doi 10 1038 s41586 019 1217 0 PMID 31118507 Cooper G M 2000 The Origin and Evolution of Cells The Cell A Molecular Approach angl vid 2nd Sinauer Associates Niklas K J 2014 The evolutionary developmental origins of multicellularity American Journal of Botany angl 101 1 6 25 doi 10 3732 ajb 1300314 PMID 24363320 Bernstein H Bernstein C Michod R E 2012 DNA Repair as the Primary Adaptive Function of Sex in Bacteria and Eukaryotes U Kimura S Shimizu S red DNA Repair New Research angl Nova Biomedical s 1 49 ISBN 978 1 62100 756 2 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite book title Shablon Cite book cite book a archive url vimagaye url dovidka Gibson Timothy M Shih Patrick M Cumming Vivien M Fischer Woodward W Crockford Peter W Hodgskiss Malcolm S W Worndle Sarah Creaser Robert A Rainbird Robert H 8 grudnya 2017 Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis Geology angl 46 2 135 138 doi 10 1130 g39829 1 ISSN 0091 7613 Egel R Penny D 2007 On the Origin of Meiosis in Eukaryotic Evolution Coevolution of Meiosis and Mitosis from Feeble Beginnings Genome Dynamics and Stability angl 3 249 288 249 288 doi 10 1007 7050 2007 036 ISBN 978 3 540 68983 6 Martin W Muller M 1998 The hydrogen hypothesis for the first eukaryote Nature 392 6671 37 41 Bibcode 1998Natur 392 37M doi 10 1038 32096 ISSN 0028 0836 PMID 9510246 Timmis J N Ayliffe Michael A Huang C Y Martin W 2004 Endosymbiotic gene transfer organelle genomes forge eukaryotic chromosomes Nature Reviews Genetics 5 2 123 135 doi 10 1038 nrg1271 PMID 14735123 Mentel Marek Martin William 27 serpnya 2008 Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry Philosophical Transactions of the Royal Society of London B Biological Sciences angl 363 1504 2717 2729 doi 10 1098 rstb 2008 0031 ISSN 0962 8436 PMC 2606767 PMID 18468979 Moczydlowska M Landing E Zang W Palacios T 2011 Proterozoic phytoplankton and timing of Chlorophyte algae origins Palaeontology 54 4 721 733 doi 10 1111 j 1475 4983 2011 01054 x Stanley S M 2008 Predation defeats competition on the seafloor Paleobiology 31 1 12 doi 10 1666 07026 1 Sanchez Baracaldo Patricia Ridgwell Andy Raven John A 17 bereznya 2014 A Neoproterozoic Transition in the Marine Nitrogen Cycle Current Biology 24 6 652 657 doi 10 1016 j cub 2014 01 041 PMID 24583016 Homann M ta in 2018 Microbial life and biogeochemical cycling on land 3 220 million years ago PDF Nature Geoscience 11 9 665 671 Bibcode 2018NatGe 11 665H doi 10 1038 s41561 018 0190 9 Baumgartner R J van Kranendonk M J ta in 2019 Nano porous pyrite and organic matter in 3 5 billion year old stromatolites record primordial life PDF Geology 47 11 1039 1043 Bibcode 2019Geo 47 1039B doi 10 1130 G46365 1 Watanabe Yumiko Martini Jacques E J Ohmoto Hiroshi 30 listopada 2000 Geochemical evidence for terrestrial ecosystems 2 6 billion years ago Nature 408 6812 574 578 Bibcode 2000Natur 408 574W doi 10 1038 35046052 ISSN 0028 0836 PMID 11117742 Horodyski R J Knauth L P 1994 Life on land in the precambrian Science 263 5146 494 498 Bibcode 1994Sci 263 494H doi 10 1126 science 263 5146 494 ISSN 0036 8075 PMID 17754880 Retallack Gregory J Mindszenty Andrea 1 kvitnya 1994 Well preserved late Precambrian Paleosols from Northwest Scotland Journal of Sedimentary Research angl 64 2a 264 281 doi 10 1306 D4267D7A 2B26 11D7 8648000102C1865D ISSN 1527 1404 Prave Anthony Robert 2002 Geology 30 9 811 Bibcode 2002Geo 30 811P doi 10 1130 0091 7613 2002 030 lt 0811 LOLITP gt 2 0 CO 2 Arhiv originalu za 7 bereznya 2016 Procitovano 5 bereznya 2016 Heckman D S Geiser D M Eidell B R Stauffer R L Kardos N L Hedges S B 2001 Molecular Evidence for the Early Colonization of Land by Fungi and Plants Science 293 5532 494 498 Bibcode 1994Sci 263 494H doi 10 1126 science 263 5146 494 PMID 17754880 Strother P K Battison L Wellman C H 2011 Earth s earliest non marine eukaryotes Nature 473 7348 505 509 Bibcode 2011Natur 473 505S doi 10 1038 nature09943 PMID 21490597 Knauth L P 2009 The late Precambrian greening of the Earth Nature 460 7256 728 732 Bibcode 2009Natur 460 728K doi 10 1038 nature08213 PMID 19587681