Двадцяткова система числення - позиційна система числення з основою 20 для позначення будь-якого дійсного числа. Часто поєднується з п'ятірковою системою числення. Використовуються або арабські цифри або будь-які інші графічні символи для позначення від "0" до "19".
Вважається, що, як і десяткова система числення, може бути пов'язана з рахунком на пальцях рук. Двадцять - кількість пальців рук і ніг. Мовою ескімосів 20 означає: ціла людина. Двадцяткова система використовується в багатьох мовах, зокрема в йоруба, серед тлінкітів, які використовують систему майя, у деяких кавказьких та азійських мовах. Також у європейських мовах основа 20 збереглася в деяких мовних конструкціях для деяких чисел. Французькою мовою vingt (20), quatre-vingts, 4 x 20 (80). Данською tyve (скорочення від tresindstyve), що означає 3 x 20 (60). Валлійською uagain (20), deugain, 2 x 20 (40). Баскською мовою, наприклад, 57 називається berrogeita hamazazpi або berrogei («дві двадцятки»), eta («і») і hamazazpi («сімнадцять»). Грузинською мовою, ოცდაათი (двадцять і десять (30)), ორმოცი (два двадцять (40)). На одному із грузинських гірських діалектів 120 - "шість двадцять", 140 - "сім двадцять".
Подання чисел
Є різні способи представлення числа у двадцятковій системі. Наприклад, один з них, з використанням арабських цифр, передбачає позначення від 0 до 19, при якому двозначні ряди відокремлюються крапками, кожен ряд має дві цифри для подачі 19 одиниць. Вищий ряд (справа наліво) множиться на 20. Після одиниць від 1 до 19, другий ряд побудований на основі числа 20, третій ряд базується на числі 400, четвертий - 8 000, п'ятий - 160 000, шостий - 3 200 000, сьомий - 64 000 000... Значення кожного ряду множиться на число, подане від 1 до 19. Дроби, після цілих чисел, виділяються комою. У позиційній системі цивілізації майя оник представлений мушлею. У різних місцях Мезоамерики знайдені зразки, які доводять, що мезоамериканські культури мали спільну спадщину. Двадцяткова система лічби є частиною цієї спільної спадщини .
Як і в десятковій системі, у двадцятковій число читається, починаючи з ряду з найбільшим значенням і закінчуючи одиницями, тобто - зліва направо, якщо запис вертикальний - зверху вниз. Запис числа у двадцятковій системі лічби може мати вигляд 00.00.00.00.00.00.00, де, зліва направо: 1-19х64000000.1-19х3200000.1-19х160000.1-19х8000.1-19х400.1-19х20.1-19. Таким чином, десяткові 112 000 000 буде: 01.15.00.00.00.00.00, тобто 1 х 64 000 000, 15 х 3 200 000, нульовий ряд з 160 000, нульовий ряд з 8000, нульовий ряд з 400, нульовий ряд з 20 і нуль одиниць (64 000 000 + 15 х 3 200 00 = 112 000 000). Десяткове число дві тисячі двадцять три (2023) у двадцятковій системі (з використанням арабських цифр) буде записане: 05.01.03. Тобто 5 по 400, 1 по 20, 3 одиниці. 2023 = (5 X 400) + (1 X 20) + 3 одиниці.
Запис деяких чисел і їхні назви мовами майя, науатль (сучасна) і науатль (класична) | |||||||||
---|---|---|---|---|---|---|---|---|---|
20 (01.00) | 40 (02.00) | 60 (03.00) | 80 (04.00) | 100 (05.00) | 120 (06.00) | 140 (07.00) | 160 (08.00) | 180 (09.00) | 200 (10.00) |
Hun k'áal | Ka' k'áal | Óox k'áal | Kan k'áal | Ho' k'áal | Wak k'áal | Uk k'áal | Waxak k'áal | Bolon k'áal | Lahun k'áal |
Sempouali | Ompouali | Yepouali | Naupouali | Makuilpouali | Chikuasempouali | Chikompouali | Chikuepouali | Chiknaupouali | Majtlakpouali |
Cempohualli | Ompohualli | Yeipohualli | Nauhpohualli | Macuilpohualli | Chicuacepohualli | Chicomepohualli | Chicueipohualli | Chicnahuipohualli | Matlacpohualli |
220 (11.00) | 240 (12.00) | 260 (13.00) | 280 (14.00) | 300 (15.00) | 320 (16.00) | 340 (17.00) | 360 (18.00) | 380 (19.00) | 400 (1.00.00) |
Buluk k'áal | Lahka'a k'áal | Óox lahun k'áal | Kan lahun k'áal | Ho' lahun k'áal | Wak lahun k'áal | Uk lahun k'áal | Waxak lahun k'áal | Bolon lahun k'áal | Hun bak |
Majtlaktli onse pouali | Majtlaktli omome pouali | Majtlaktli omeyi pouali | Majtlaktli onnaui pouali | Kaxtolpouali | Kaxtolli onse pouali | Kaxtolli omome pouali | Kaxtolli omeyi pouali | Kaxtolli onnaui pouali | Sentsontli |
Matlactli huan ce pohualli | Matlactli huan ome pohualli | Matlactli huan yei pohualli | Matlactli huan nahui pohualli | Caxtolpohualli | Caxtolli huan ce pohualli | Caxtolli huan ome pohualli | Caxtolli huan yei pohualli | Caxtolli huan nahui pohualli | Centzontli |
Зображення чисел у деяких народів може подаватися гліфами. Ацтеки записували число у стовпчик, у якому найменші значення подавалися внизу. Також народи Америки використовували прапор для позначення числа 20, перо - для зображення ряду на основі числа 400, мішок - для представлення ряду на основі числа 8000.
- 20
- 400
- 8000
Гліф повторюється кілька разів, подібно до повторення крапок для позначення множини одиниць.
Носії мови науатль використовували слово pohualli для позначення ряду на основі числа 20: Cempohualli (20), ompohualli (40), epohualli (60), nauhpohualli (80), macuilpohualli (100)... У наведених числівниках ce(m) - '1', om(e)-/on- - '2', e(i) - '3', nahui > nauh - '4'... Словом tzontli називали ряд, заснований на числі чотириста: Centzontli (400), ontzontli (800), etzontli (1200)... Слово xiquipilli позначало ряд на основі числа 8000: Cenxiquipilli (8000), onxiquipilli (16000), exiquipilli (24000)... Іншими словами були poalxiquipilli (8 000 X 20 = 160 000), tzonxiquipilli (160 000 X 20 = 3 200 000), poaltzonxiquipilli (3 200 000 X 20 = 64 000 000)... Вимовляючи число, між рядами вставляли прийменник «іпан» (на), відповідно до зображення вищого ряду над меншим. Помножити 4 одиниці на 2 одиниці, вимовлялося як nappa ome (чотири помножити на два). Поділити 4 одиниці на 2 - nahui itzalan ome (чотири на два). Додати 4 і 2 - nahui ihuan ome (чотири додати два). Відняти від 4 два - nahui iyoh ome (чотири відняти два. Сказати "4 кома два" - nahui ica ome (чотири з двома). Знак "дорівнює" (=) був названий inamic». 16 + 42 = 58 → ihuan ompohualli omome inamic ompohualli ipan caxtolli omeyi.
Запис чисел з використанням цифр і літер
Є й інший спосіб запису числа у двадцятковій системі. Для того, щоб використовувати арабські цифри і кожен ряд позначати одним символом, а не двама, до десяти цифр ще додають дев'ять літер. Це можуть бути букви української абетки - А (10), Б (11), В (12), Г (13), Ґ (14), Д (15), Е (16), Є (17), Ж (18), З (19) - або латинські - А (10), В (11), С (12), D (13), E (14), F (15), G (16), Н (17), І (18), J (19) - або будь-які інші прийнятні і зрозумілі для загалу графічні символи. В такому випадку крапки між рядами не ставлять . Тоді, десяткове число, скажімо, 587 433 221 може мати вигляд: 93B9311 (09.03.11.09.03.01.01).
Open Location Code використовує для своїх геокодів безпечну версію основи 20. Символи цього алфавіту вибрано так, щоб уникнути випадкового утворення слів. Розробники оцінили всі можливі набори з 20 букв тридцятьма різними мовами на ймовірність утворення слів і вибрали набір, який утворював якомога менше впізнаваних слів. Алфавіт також призначений для зменшення друкарських помилок, уникнення візуально подібних цифр .
Основа 20 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Цифрові коди | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | C | F | G | H | J | M | P | Q | R | V | W | X |
Двадцяткова система в календарі Мезоамерики
У майя місяць мав 20 днів. У році їх було 18 (360 діб). Тиждень складався з 5 днів, а місяць поділявся на чотири тижні по 5 днів .
Обрахунки у двадцятковій системі лічби
Додавання чисел, написаних у стовпчик чи в рядок, починається з одиниць. Щоб додати 25 (1,05) і 25 (1,05), результатом якого є 50 (2,10), треба .05 + .05 = 10 (десять одиниць). Потім 01 + 01 = 02 (два рази по двадцять). 75 + 75 = 150, 03.15+03.15=07.10. Спочатку додаються одиниці (15 + 15 = 30). Оскільки 30 більше, ніж 20 на 10, залишаємо 10 одиниць, а решту 20 (одну одиницю) переносимо в наступний, вищий "двадцятковий", ряд. У другому ряді додаємо 03 + 03 = 06, доплюсовуємо ще одну одиницю, з нижчого ряду, 06 + 01 = 07. 7 X 20 + 10 = 140 + 10 = 150. 327+852=1179: 16.07+02.02.12=02.18.19.
Віднімаємо, 150 - 75 = 75: 07.10-03.15=03.15. Починаємо з одиниць (.10-.15). До 10 одиниць додаємо 20 одиниць, тому що 10 менше, ніж 15: 30 - 15 = 15, і переносимо одне число з 20 одиниць до наступного, двадцяткового ряду (03 + 01 = 04). Віднімаємо: 07 -04 = 03. Інший приклад 180-65 = 115 (09.00-03.05=05.15): до .00 додаємо 20, віднімаємо 05 і отримуємо 15. У двадцятковому ряді додаємо 03 + 01 = 04 і віднімаємо: 09 -04 = 05.
Множення. Щоб помножити 25 (01,05) на чотири (04), результатом якого є 100 (05,00), потрібно почати з одиниць: 05×4=20. 20, як одиниця, переноситься до вищого, двадцяткового ряду. Потім 04 X 01=04, додається 1, результат - 05.00. Коли помножити 19.01 (381 у десятковій системі) на два, отримаємо 01.18.02 (762 у десятковій системі). Тобто, 01×2=02, 19×2=38, 18 залишається у двадцятковому ряді, а 20, як одиниця, переноситься у вищий ряд. 400 + 360 + 2. 19.01 X 02 = 01.18.02. Помноживши 19.01 (381 у десятковій системі) на три, ми отримаємо 02.17.03 (1 143 у десятковій системі). Починаємо з множення одиниць 3 X 01=03. Множимо у наступному ряді 3 X 19 = 57. У двадцятковому ряді записуємо 17, а 40, як дві одиниці, переносимо у вищий ряд, 02.17.03. Тобто 800 + 340 + 3 = 1 143.
Таблиця множення у двадцятковій системі лічби
X | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
01 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
02 | 02 | 04 | 06 | 08 | 10 | 12 | 14 | 16 | 18 | 01.00 | 01.02 | 01.04 | 01.06 | 01.08 | 01.10 | 01.12 | 01.14 | 01.16 | 01.18 |
03 | 03 | 06 | 09 | 12 | 15 | 18 | 01.01 | 01.04 | 01.07 | 01.10 | 01.13 | 01.16 | 01.19 | 02.02 | 02.05 | 02.08 | 02.11 | 02.14 | 02.17 |
04 | 04 | 08 | 12 | 16 | 01.00 | 01.04 | 01.08 | 01.12 | 01.16 | 02.00 | 02.04 | 02.08 | 02.12 | 02.16 | 03.00 | 03.04 | 03.08 | 03.12 | 03.16 |
05 | 05 | 10 | 15 | 01.00 | 01.05 | 01.10 | 01.15 | 02.00 | 02.05 | 02.10 | 02.15 | 03.00 | 03.05 | 03.10 | 03.15 | 04.00 | 04.05 | 04.10 | 04.15 |
06 | 06 | 12 | 18 | 01.04 | 01.10 | 01.16 | 02.01 | 02.08 | 02.14 | 03.00 | 03.06 | 03.12 | 03.18 | 04.04 | 04.10 | 04.16 | 05.02 | 05.08 | 05.14 |
07 | 07 | 14 | 01.01 | 01.08 | 01.15 | 02.02 | 02.09 | 02.16 | 03.03 | 03.10 | 03.17 | 04.04 | 04.11 | 04.18 | 05.05 | 05.12 | 05.19 | 06.06 | 06.13 |
08 | 08 | 16 | 01.04 | 01.12 | 02.00 | 02.08 | 02.16 | 03.04 | 03.12 | 04.00 | 04.08 | 04.16 | 05.04 | 05.12 | 06.00 | 06.08 | 06.16 | 07.04 | 07.12 |
09 | 09 | 18 | 01.07 | 01.16 | 02.05 | 02.14 | 03.03 | 03.12 | 04.01 | 04.10 | 04.19 | 05.08 | 05.17 | 06.06 | 06.15 | 07.04 | 07.13 | 08.02 | 08.11 |
10 | 10 | 01.00 | 01.10 | 02.00 | 02.10 | 03.00 | 03.10 | 04.00 | 04.10 | 05.00 | 05.10 | 06.00 | 06.10 | 07.00 | 07.10 | 08.00 | 08.10 | 09.00 | 09.10 |
11 | 11 | 01.02 | 01.13 | 02.04 | 02.15 | 03.06 | 03.17 | 04.08 | 04.19 | 05.10 | 06.11 | 06.12 | 07.03 | 07.14 | 08.05 | 08.16 | 09.07 | 09.18 | 10.09 |
12 | 12 | 01.04 | 01.16 | 02.08 | 03.00 | 03.12 | 04.04 | 04.16 | 05.08 | 06.00 | 06.12 | 07.04 | 07.16 | 08.08 | 09.00 | 09.12 | 10.04 | 10.06 | 11.08 |
13 | 13 | 01.06 | 01.19 | 02.12 | 03.05 | 03.18 | 04.11 | 05.04 | 05.17 | 06.10 | 07.03 | 07.16 | 08.09 | 09.02 | 09.15 | 10.08 | 11.01 | 11.14 | 12.07 |
14 | 14 | 01.08 | 02.02 | 02.16 | 03.10 | 04.04 | 04.18 | 05.12 | 06.06 | 07.00 | 07.14 | 08.08 | 09.02 | 09.16 | 10.10 | 11.04 | 11.18 | 12.12 | 13.06 |
15 | 15 | 01.10 | 02.05 | 03.00 | 03.15 | 04.10 | 05.05 | 06.00 | 06.15 | 07.10 | 08.05 | 09.00 | 09.15 | 10.10 | 11.05 | 12.00 | 12.15 | 13.10 | 14.05 |
16 | 16 | 01.12 | 02.08 | 03.04 | 04.00 | 04.16 | 05.12 | 06.08 | 07.04 | 08.00 | 08.16 | 09.12 | 10.08 | 11.04 | 12.00 | 12.16 | 13.12 | 14.08 | 15.04 |
17 | 17 | 01.14 | 02.11 | 03.08 | 04.05 | 05.02 | 05.19 | 06.16 | 07.13 | 08.10 | 09.07 | 10.04 | 11.01 | 12.18 | 12.15 | 13.12 | 14.09 | 15.06 | 16.03 |
18 | 18 | 01.16 | 02.14 | 06.12 | 04.10 | 05.08 | 06.06 | 07.04 | 08.02 | 09.00 | 09.18 | 10.16 | 11.04 | 12.12 | 13.10 | 14.08 | 15.06 | 16.04 | 17.02 |
19 | 19 | 01.18 | 02.17 | 03.16 | 04.15 | 05.14 | 06.13 | 07.12 | 08.11 | 09.10 | 10.09 | 11.08 | 12.07 | 13.06 | 14.05 | 15.04 | 16.03 | 17.02 | 18.01 |
Ділення розв’язується так само, як в десятковій системі, але є особливість виконання дій у десятковій частині, яка відокремлена комою. 77,5 : 25 (03.17,10 : 01.05 = 03,02). У двадцятковій системі одиниця ділиться на 20 частин, тому 0,10 становить половину одиниці (0,5), 00.10 + 00.10 дає 01.00.
Дроби
Перетворення дробів десяткової системи у двадцяткову пов'язане з тим, що у двадцятковій половина (0,5) записується: 00,10. Тобто, десяті частини дробу перемножуємо на 2. На кожну соту цифру у дробах десяткової системи припадає чотири у двадцятковій системі, тому множимо на чотири. На кожну тисячну в десятковій системі припадає вісім у двадцятковій системі, отже, множимо на 8.
Десяткова смстема Множник Двадцяткова смстема 0,1 X 2 00,02 0,01 X 4 00,00.04 0,001 X 8 00,00.00.08 0,0001 X 16 00,00.00.00.16 0,00001 X 32 00,00.00.00.01.12 ... ... ...
Дріб 0,98 (з десяткової системи), ми можемо легко перетворити у двадцяткову систему:
а) беремо останню цифру після коми, 8, і множимо її на 4 (= 32), розкладаємо на 20 і 12, записуємо «.12», 20 - одиниця вищого ряду.
б) цифру 9 множимо на 2 (= 18) і додаємо перенесене (18 + 1 = 19) і записуємо: «00,19,12».
Отже, якщо ми хочемо поділити 55/4 (= 13,75), ми можемо представити це так: 02,15/04 = 13,15 у двадцятковій системі. Дроби в десятковій системі числення складаються з кількох цифр, які представляють десяті, соті, тисячні... На кожну одиницю десяткової системи припадає дві одиниці двадцяткової системи, адже одиниця десяткової системи числення має 10 одиниць, а двадцяткової — 20.
Таблиця дробів
Дроби десяткової системи Десяткові дроби Дроби двадцяткової системи Десяткові дроби 1/100 0,01 01/05.00 00,00.04 2/100 0,02 02/05.00 00,00.08 3/100 0,03 03/05.00 00,00.12 4/100 0.04 04/05.00 00,00.16 5/100 0.05 05/05.00 00,01 6/100 0,06 06/05.00 00,01.04 7/100 0,07 07/05.00 00,01.08 8/100 0,08 08/05.00 00,01.12 9/100 0.09 09/05.00 00,01.16 10/100 0,10 10/05.00 00,02 11/100 0,11 11/05.00 00,02.04 12/100 0.12 12/05.00 00,02.08 13/100 0,13 13/05.00 00.02.12 14/100 0,14 14/05.00 00,02.16 15/100 0,15 15/05.00 00.03 16/100 0,16 16/05.00 00,03.04 17/100 0,17 17/05.00 00,03.08 18/100 0,18 18/05.00 00,03.12 19/100 0,19 19/05.00 00,03.16 20/100 0,20 01.00/05.00 00,04 21/100 0,21 01.01/05.00 00.04.04 22/100 0,22 01.02/05.00 00,04.08 23/100 0,23 01.03/05.00 00,04.12 24/100 0,24 01.04/05.00 00,04.16 25/100 0,25 01.05/05.00 00,05 26/100 0,26 01.06/05.00 00,05.04 27/100 0,27 01.07/05.00 00,05.08 28/100 0,28 01.08/05.00 00,05.12 29/100 0,29 01.09/05.00 00,05.16 30/100 0,30 01.10/05.00 00,06 31/100 0,31 01.11/05.00 00,06.04 32/100 0,32 01.12/05.00 00,06.08 ... ... ... ... 60/100 0,60 03.00/05.00 00,12 61/100 0,61 03.01/05.00 00,12.04 62/100 0,62 03.02/05.00 00,12.08 ... ... .. ... 72/100 0,72 03.12/05.00 00,14.08 ... ... .. ... 82/100 0,82 04.02/05.00 00,16.08 ... ... .. ... 85/100 0,85 04.05/05.00 00,18 ... ... .. ... 95/100 0,95 04.15/05.00 00,19 96/100 0,96 04.16/05.00 00,19.04 97/100 0,97 04.17/05.00 00,19.08 98/100 0,98 04.18/05.00 00,19.12 99/100 0,99 04.19/05.00 00,19.16 100/100 1,00 05.00/05.00 01,00
Ірраціональні числа | В десятковій | У двадцятковій |
---|---|---|
√ 2 (довжина діагоналі квадрата) | 1,41421356237309... | 1.08.05.13.14.03.07.19.16.15.00.09.17.06... |
√ 3 (довжина діагоналі куба) | 1,73205080756887... | 1. 14.12.16.08.02.11.13.13.15.05.06.01.07... |
√ 5 (довжина просторової діагоналі прямокутника) | 2,2360679774997... | 2.04.14.08.10.17.10.11.03.19.17.16.18.11... |
φ (золотий перетин) | 1,6180339887498... | 1. 12.07.04.05.08.15.05.11.19.18.18.09.05... |
трансцендентні числа | Десяткова | Двадцяткова |
π (відношення довжини кола до проміру)) | 3,14159265358979... | 3.02.16.12.14.16.09.16.11.17.19.09.13.02... |
E (основа логарифма) | 2,7182818284590452... | 2. 14.07.06.05.01.17.00.08.11.00.12.09.05... |
γ (гранична різниця між гармонійним рядом і натуральним логарифмом) | 0,5772156649015328606... | 0. 11.10.17.14.10.02.11.01.09.11.13.18.11.18... |
Переведення чисел з десяткової і двадцяткової систем лічби
Щоб перетворити десяткове число у двадцяткову систему лічби, треба на величину, яка представляє ряд, ділити число, заокруглене відповідно до показника ряду, що не перевищує її у 20 разів і не є меншим цієї величини, щоб остача ділилася на величину нижчого ряду. Наприклад, 587 433 221. 580 000 000 (заокруглене число, менше, аніж 1 280 000 000, але більше, ніж 64 000 000) : 64 000 000 = 9 (09.), залишок 4 000 000 ділимо на величину нижчого ряду - 3 200 000, буде 1 (01.), 800 000 ділимо на 160 000, отримаємо 5 (05.). Отже, 580 000 000 у двадцятковій системі - 09.01.05.00.00.00.00. 7 400 000 : 3 200 00 = 2 (02.), 1 000 000:160 000=6 (06.), 40 000:8 000=5 (05.). Отже, 7 400 000 - 02.06.05.00.00.00. Тобто, 7 400 000 - 02.06.05.00.00.00. Додаємо два значення: 09.01.05.00.00.00.00+02.06.05.00.00.00 =09.03.11.05.00.00.00 - запис числа 587 400 000. 33 000:8 000=4 (04.), 1000:400=2 (02.), 200:20=10, 04.02.10 - запис числа 33 000. 220:20=11 (11.), найнижчий ряд - 1, 11.01 - запис числа 221. Додаємо: 04.02.10+11.01=04.03.01.01 - 33 221. 04.03.01.01+09.03.11.05.00.00.00=09.03.11.09.03.01.01.
Отже, 587 433 221 = 09.03.11.09.03.01.01.
Двадцяткове число перетворюється у десяткову систему перемножуванням величин рядів і додаванням. 09.03.11.09.03.01.01 09х64 000 000+03×3 200 000+11×160 000+09×8 000+03×400+01×20+01= 576 000 000+9 600 000+1 760 000+72 000+1200+20+1= 587 433 221.
Див.також
- Позиційна система числення
- Непозиційні системи числення
- Нега-позиційна система числення
- Єгипетська система числення
- Арабська система числення
- Старослов'янська система числення
- Римська система числення
- Двійкова система числення
- Трійкова система числення
- Четвіркова система числення
- П'ятіркова система числення
- Шісткова система числення
- Вісімкова система числення
- Десяткова система числення
- Дванадцяткова система числення
- Шістнадцяткова система числення
- Шістдесяткова система числення
- Числова система залишків
- Система числення Фібоначчі
Література
- Karl Menninger: Number words and number symbols: a cultural history of numbers; translated by Paul Broneer from the revised German edition. Cambridge, Mass.: M.I.T. Press, 1969 (also available in paperback: New York: Dover, 1992 )
- Levi Leonard Conant: The Number Concept: Its Origin and Development; New York, New York: MacMillon & Co, 1931. Project Gutenberg EBook
- : Number words and number symbols: a cultural history of numbers; translated by Paul Broneer from the revised German edition. Cambridge, Mass.: M.I.T. Press, 1969 (also available in paperback: New York: Dover, 1992 )
Примітки
- https://pueblosoriginarios.com/meso/valle/teotihuacan/escritura.html
- Конвертор [1]
- Open Location Code: An Open Source Standard for Addresses, Independent of Building Numbers And Street Names. github.com. Процитовано 25 серпня 2020.
- Sylvanus G. Morley, La Civilización Maya, p. 253, Fondo de Cultura Económica, México, 1975.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Dvadcyatkova sistema chislennya pozicijna sistema chislennya z osnovoyu 20 dlya poznachennya bud yakogo dijsnogo chisla Chasto poyednuyetsya z p yatirkovoyu sistemoyu chislennya Vikoristovuyutsya abo arabski cifri abo bud yaki inshi grafichni simvoli dlya poznachennya vid 0 do 19 Cifri dvadcyatkovoyi sistemi narodu Alyaski inup yak kaktovik inupiaq Vvazhayetsya sho yak i desyatkova sistema chislennya mozhe buti pov yazana z rahunkom na palcyah ruk Dvadcyat kilkist palciv ruk i nig Movoyu eskimosiv 20 oznachaye cila lyudina Dvadcyatkova sistema vikoristovuyetsya v bagatoh movah zokrema v joruba sered tlinkitiv yaki vikoristovuyut sistemu majya u deyakih kavkazkih ta azijskih movah Takozh u yevropejskih movah osnova 20 zbereglasya v deyakih movnih konstrukciyah dlya deyakih chisel Francuzkoyu movoyu vingt 20 quatre vingts 4 x 20 80 Danskoyu tyve skorochennya vid tresindstyve sho oznachaye 3 x 20 60 Vallijskoyu uagain 20 deugain 2 x 20 40 Baskskoyu movoyu napriklad 57 nazivayetsya berrogeita hamazazpi abo berrogei dvi dvadcyatki eta i i hamazazpi simnadcyat Gruzinskoyu movoyu ოცდაათი dvadcyat i desyat 30 ორმოცი dva dvadcyat 40 Na odnomu iz gruzinskih girskih dialektiv 120 shist dvadcyat 140 sim dvadcyat Podannya chiselPoznachennya cifr dvadcyatkovoyi sistemi obchislennya majya z p yatirkovoyu pidosnovoyu Ye rizni sposobi predstavlennya chisla u dvadcyatkovij sistemi Napriklad odin z nih z vikoristannyam arabskih cifr peredbachaye poznachennya vid 0 do 19 pri yakomu dvoznachni ryadi vidokremlyuyutsya krapkami kozhen ryad maye dvi cifri dlya podachi 19 odinic Vishij ryad sprava nalivo mnozhitsya na 20 Pislya odinic vid 1 do 19 drugij ryad pobudovanij na osnovi chisla 20 tretij ryad bazuyetsya na chisli 400 chetvertij 8 000 p yatij 160 000 shostij 3 200 000 somij 64 000 000 Znachennya kozhnogo ryadu mnozhitsya na chislo podane vid 1 do 19 Drobi pislya cilih chisel vidilyayutsya komoyu U pozicijnij sistemi civilizaciyi majya onik predstavlenij mushleyu U riznih miscyah Mezoameriki znajdeni zrazki yaki dovodyat sho mezoamerikanski kulturi mali spilnu spadshinu Dvadcyatkova sistema lichbi ye chastinoyu ciyeyi spilnoyi spadshini Yak i v desyatkovij sistemi u dvadcyatkovij chislo chitayetsya pochinayuchi z ryadu z najbilshim znachennyam i zakinchuyuchi odinicyami tobto zliva napravo yaksho zapis vertikalnij zverhu vniz Zapis chisla u dvadcyatkovij sistemi lichbi mozhe mati viglyad 00 00 00 00 00 00 00 de zliva napravo 1 19h64000000 1 19h3200000 1 19h160000 1 19h8000 1 19h400 1 19h20 1 19 Takim chinom desyatkovi 112 000 000 bude 01 15 00 00 00 00 00 tobto 1 h 64 000 000 15 h 3 200 000 nulovij ryad z 160 000 nulovij ryad z 8000 nulovij ryad z 400 nulovij ryad z 20 i nul odinic 64 000 000 15 h 3 200 00 112 000 000 Desyatkove chislo dvi tisyachi dvadcyat tri 2023 u dvadcyatkovij sistemi z vikoristannyam arabskih cifr bude zapisane 05 01 03 Tobto 5 po 400 1 po 20 3 odinici 2023 5 X 400 1 X 20 3 odinici Zapis deyakih chisel i yihni nazvi movami majya nauatl suchasna i nauatl klasichna 20 01 00 40 02 00 60 03 00 80 04 00 100 05 00 120 06 00 140 07 00 160 08 00 180 09 00 200 10 00 Hun k aal Ka k aal oox k aal Kan k aal Ho k aal Wak k aal Uk k aal Waxak k aal Bolon k aal Lahun k aalSempouali Ompouali Yepouali Naupouali Makuilpouali Chikuasempouali Chikompouali Chikuepouali Chiknaupouali MajtlakpoualiCempohualli Ompohualli Yeipohualli Nauhpohualli Macuilpohualli Chicuacepohualli Chicomepohualli Chicueipohualli Chicnahuipohualli Matlacpohualli220 11 00 240 12 00 260 13 00 280 14 00 300 15 00 320 16 00 340 17 00 360 18 00 380 19 00 400 1 00 00 Buluk k aal Lahka a k aal oox lahun k aal Kan lahun k aal Ho lahun k aal Wak lahun k aal Uk lahun k aal Waxak lahun k aal Bolon lahun k aal Hun bakMajtlaktli onse pouali Majtlaktli omome pouali Majtlaktli omeyi pouali Majtlaktli onnaui pouali Kaxtolpouali Kaxtolli onse pouali Kaxtolli omome pouali Kaxtolli omeyi pouali Kaxtolli onnaui pouali SentsontliMatlactli huan ce pohualli Matlactli huan ome pohualli Matlactli huan yei pohualli Matlactli huan nahui pohualli Caxtolpohualli Caxtolli huan ce pohualli Caxtolli huan ome pohualli Caxtolli huan yei pohualli Caxtolli huan nahui pohualli Centzontli Zobrazhennya chisel u deyakih narodiv mozhe podavatisya glifami Acteki zapisuvali chislo u stovpchik u yakomu najmenshi znachennya podavalisya vnizu Takozh narodi Ameriki vikoristovuvali prapor dlya poznachennya chisla 20 pero dlya zobrazhennya ryadu na osnovi chisla 400 mishok dlya predstavlennya ryadu na osnovi chisla 8000 20 400 8000 Glif povtoryuyetsya kilka raziv podibno do povtorennya krapok dlya poznachennya mnozhini odinic Nosiyi movi nauatl vikoristovuvali slovo pohualli dlya poznachennya ryadu na osnovi chisla 20 Cempohualli 20 ompohualli 40 epohualli 60 nauhpohualli 80 macuilpohualli 100 U navedenih chislivnikah ce m 1 om e on 2 e i 3 nahui gt nauh 4 Slovom tzontli nazivali ryad zasnovanij na chisli chotirista Centzontli 400 ontzontli 800 etzontli 1200 Slovo xiquipilli poznachalo ryad na osnovi chisla 8000 Cenxiquipilli 8000 onxiquipilli 16000 exiquipilli 24000 Inshimi slovami buli poalxiquipilli 8 000 X 20 160 000 tzonxiquipilli 160 000 X 20 3 200 000 poaltzonxiquipilli 3 200 000 X 20 64 000 000 Vimovlyayuchi chislo mizh ryadami vstavlyali prijmennik ipan na vidpovidno do zobrazhennya vishogo ryadu nad menshim Pomnozhiti 4 odinici na 2 odinici vimovlyalosya yak nappa ome chotiri pomnozhiti na dva Podiliti 4 odinici na 2 nahui itzalan ome chotiri na dva Dodati 4 i 2 nahui ihuan ome chotiri dodati dva Vidnyati vid 4 dva nahui iyoh ome chotiri vidnyati dva Skazati 4 koma dva nahui ica ome chotiri z dvoma Znak dorivnyuye buv nazvanij inamic 16 42 58 ihuan ompohualli omome inamic ompohualli ipan caxtolli omeyi Zapis chisel z vikoristannyam cifr i liter Ye j inshij sposib zapisu chisla u dvadcyatkovij sistemi Dlya togo shob vikoristovuvati arabski cifri i kozhen ryad poznachati odnim simvolom a ne dvama do desyati cifr she dodayut dev yat liter Ce mozhut buti bukvi ukrayinskoyi abetki A 10 B 11 V 12 G 13 G 14 D 15 E 16 Ye 17 Zh 18 Z 19 abo latinski A 10 V 11 S 12 D 13 E 14 F 15 G 16 N 17 I 18 J 19 abo bud yaki inshi prijnyatni i zrozumili dlya zagalu grafichni simvoli V takomu vipadku krapki mizh ryadami ne stavlyat Todi desyatkove chislo skazhimo 587 433 221 mozhe mati viglyad 93B9311 09 03 11 09 03 01 01 Open Location Code vikoristovuye dlya svoyih geokodiv bezpechnu versiyu osnovi 20 Simvoli cogo alfavitu vibrano tak shob uniknuti vipadkovogo utvorennya sliv Rozrobniki ocinili vsi mozhlivi nabori z 20 bukv tridcyatma riznimi movami na jmovirnist utvorennya sliv i vibrali nabir yakij utvoryuvav yakomoga menshe vpiznavanih sliv Alfavit takozh priznachenij dlya zmenshennya drukarskih pomilok uniknennya vizualno podibnih cifr Vikoristannya dvadcyatkovoyi sistemi u Open Location Code Osnova 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Cifrovi kodi 2 3 4 5 6 7 8 9 C F G H J M P Q R V W XDvadcyatkova sistema v kalendari MezoamerikiU majya misyac mav 20 dniv U roci yih bulo 18 360 dib Tizhden skladavsya z 5 dniv a misyac podilyavsya na chotiri tizhni po 5 dniv Obrahunki u dvadcyatkovij sistemi lichbiDodavannya chisel napisanih u stovpchik chi v ryadok pochinayetsya z odinic Shob dodati 25 1 05 i 25 1 05 rezultatom yakogo ye 50 2 10 treba 05 05 10 desyat odinic Potim 01 01 02 dva razi po dvadcyat 75 75 150 03 15 03 15 07 10 Spochatku dodayutsya odinici 15 15 30 Oskilki 30 bilshe nizh 20 na 10 zalishayemo 10 odinic a reshtu 20 odnu odinicyu perenosimo v nastupnij vishij dvadcyatkovij ryad U drugomu ryadi dodayemo 03 03 06 doplyusovuyemo she odnu odinicyu z nizhchogo ryadu 06 01 07 7 X 20 10 140 10 150 327 852 1179 16 07 02 02 12 02 18 19 Vidnimayemo 150 75 75 07 10 03 15 03 15 Pochinayemo z odinic 10 15 Do 10 odinic dodayemo 20 odinic tomu sho 10 menshe nizh 15 30 15 15 i perenosimo odne chislo z 20 odinic do nastupnogo dvadcyatkovogo ryadu 03 01 04 Vidnimayemo 07 04 03 Inshij priklad 180 65 115 09 00 03 05 05 15 do 00 dodayemo 20 vidnimayemo 05 i otrimuyemo 15 U dvadcyatkovomu ryadi dodayemo 03 01 04 i vidnimayemo 09 04 05 Mnozhennya Shob pomnozhiti 25 01 05 na chotiri 04 rezultatom yakogo ye 100 05 00 potribno pochati z odinic 05 4 20 20 yak odinicya perenositsya do vishogo dvadcyatkovogo ryadu Potim 04 X 01 04 dodayetsya 1 rezultat 05 00 Koli pomnozhiti 19 01 381 u desyatkovij sistemi na dva otrimayemo 01 18 02 762 u desyatkovij sistemi Tobto 01 2 02 19 2 38 18 zalishayetsya u dvadcyatkovomu ryadi a 20 yak odinicya perenositsya u vishij ryad 400 360 2 19 01 X 02 01 18 02 Pomnozhivshi 19 01 381 u desyatkovij sistemi na tri mi otrimayemo 02 17 03 1 143 u desyatkovij sistemi Pochinayemo z mnozhennya odinic 3 X 01 03 Mnozhimo u nastupnomu ryadi 3 X 19 57 U dvadcyatkovomu ryadi zapisuyemo 17 a 40 yak dvi odinici perenosimo u vishij ryad 02 17 03 Tobto 800 340 3 1 143 Tablicya mnozhennya u dvadcyatkovij sistemi lichbi X 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 1901 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 1902 02 04 06 08 10 12 14 16 18 01 00 01 02 01 04 01 06 01 08 01 10 01 12 01 14 01 16 01 1803 03 06 09 12 15 18 01 01 01 04 01 07 01 10 01 13 01 16 01 19 02 02 02 05 02 08 02 11 02 14 02 1704 04 08 12 16 01 00 01 04 01 08 01 12 01 16 02 00 02 04 02 08 02 12 02 16 03 00 03 04 03 08 03 12 03 1605 05 10 15 01 00 01 05 01 10 01 15 02 00 02 05 02 10 02 15 03 00 03 05 03 10 03 15 04 00 04 05 04 10 04 1506 06 12 18 01 04 01 10 01 16 02 01 02 08 02 14 03 00 03 06 03 12 03 18 04 04 04 10 04 16 05 02 05 08 05 1407 07 14 01 01 01 08 01 15 02 02 02 09 02 16 03 03 03 10 03 17 04 04 04 11 04 18 05 05 05 12 05 19 06 06 06 1308 08 16 01 04 01 12 02 00 02 08 02 16 03 04 03 12 04 00 04 08 04 16 05 04 05 12 06 00 06 08 06 16 07 04 07 1209 09 18 01 07 01 16 02 05 02 14 03 03 03 12 04 01 04 10 04 19 05 08 05 17 06 06 06 15 07 04 07 13 08 02 08 1110 10 01 00 01 10 02 00 02 10 03 00 03 10 04 00 04 10 05 00 05 10 06 00 06 10 07 00 07 10 08 00 08 10 09 00 09 1011 11 01 02 01 13 02 04 02 15 03 06 03 17 04 08 04 19 05 10 06 11 06 12 07 03 07 14 08 05 08 16 09 07 09 18 10 0912 12 01 04 01 16 02 08 03 00 03 12 04 04 04 16 05 08 06 00 06 12 07 04 07 16 08 08 09 00 09 12 10 04 10 06 11 0813 13 01 06 01 19 02 12 03 05 03 18 04 11 05 04 05 17 06 10 07 03 07 16 08 09 09 02 09 15 10 08 11 01 11 14 12 0714 14 01 08 02 02 02 16 03 10 04 04 04 18 05 12 06 06 07 00 07 14 08 08 09 02 09 16 10 10 11 04 11 18 12 12 13 0615 15 01 10 02 05 03 00 03 15 04 10 05 05 06 00 06 15 07 10 08 05 09 00 09 15 10 10 11 05 12 00 12 15 13 10 14 0516 16 01 12 02 08 03 04 04 00 04 16 05 12 06 08 07 04 08 00 08 16 09 12 10 08 11 04 12 00 12 16 13 12 14 08 15 0417 17 01 14 02 11 03 08 04 05 05 02 05 19 06 16 07 13 08 10 09 07 10 04 11 01 12 18 12 15 13 12 14 09 15 06 16 0318 18 01 16 02 14 06 12 04 10 05 08 06 06 07 04 08 02 09 00 09 18 10 16 11 04 12 12 13 10 14 08 15 06 16 04 17 0219 19 01 18 02 17 03 16 04 15 05 14 06 13 07 12 08 11 09 10 10 09 11 08 12 07 13 06 14 05 15 04 16 03 17 02 18 01 Dilennya rozv yazuyetsya tak samo yak v desyatkovij sistemi ale ye osoblivist vikonannya dij u desyatkovij chastini yaka vidokremlena komoyu 77 5 25 03 17 10 01 05 03 02 U dvadcyatkovij sistemi odinicya dilitsya na 20 chastin tomu 0 10 stanovit polovinu odinici 0 5 00 10 00 10 daye 01 00 DrobiPeretvorennya drobiv desyatkovoyi sistemi u dvadcyatkovu pov yazane z tim sho u dvadcyatkovij polovina 0 5 zapisuyetsya 00 10 Tobto desyati chastini drobu peremnozhuyemo na 2 Na kozhnu sotu cifru u drobah desyatkovoyi sistemi pripadaye chotiri u dvadcyatkovij sistemi tomu mnozhimo na chotiri Na kozhnu tisyachnu v desyatkovij sistemi pripadaye visim u dvadcyatkovij sistemi otzhe mnozhimo na 8 Desyatkova smstema Mnozhnik Dvadcyatkova smstema0 1 X 2 00 020 01 X 4 00 00 040 001 X 8 00 00 00 080 0001 X 16 00 00 00 00 160 00001 X 32 00 00 00 00 01 12 dd dd dd Drib 0 98 z desyatkovoyi sistemi mi mozhemo legko peretvoriti u dvadcyatkovu sistemu a beremo ostannyu cifru pislya komi 8 i mnozhimo yiyi na 4 32 rozkladayemo na 20 i 12 zapisuyemo 12 20 odinicya vishogo ryadu b cifru 9 mnozhimo na 2 18 i dodayemo perenesene 18 1 19 i zapisuyemo 00 19 12 Otzhe yaksho mi hochemo podiliti 55 4 13 75 mi mozhemo predstaviti ce tak 02 15 04 13 15 u dvadcyatkovij sistemi Drobi v desyatkovij sistemi chislennya skladayutsya z kilkoh cifr yaki predstavlyayut desyati soti tisyachni Na kozhnu odinicyu desyatkovoyi sistemi pripadaye dvi odinici dvadcyatkovoyi sistemi adzhe odinicya desyatkovoyi sistemi chislennya maye 10 odinic a dvadcyatkovoyi 20 Tablicya drobiv Drobi desyatkovoyi sistemi Desyatkovi drobi Drobi dvadcyatkovoyi sistemi Desyatkovi drobi1 100 0 01 01 05 00 00 00 042 100 0 02 02 05 00 00 00 083 100 0 03 03 05 00 00 00 124 100 0 04 04 05 00 00 00 165 100 0 05 05 05 00 00 016 100 0 06 06 05 00 00 01 047 100 0 07 07 05 00 00 01 088 100 0 08 08 05 00 00 01 129 100 0 09 09 05 00 00 01 1610 100 0 10 10 05 00 00 0211 100 0 11 11 05 00 00 02 0412 100 0 12 12 05 00 00 02 0813 100 0 13 13 05 00 00 02 1214 100 0 14 14 05 00 00 02 1615 100 0 15 15 05 00 00 0316 100 0 16 16 05 00 00 03 0417 100 0 17 17 05 00 00 03 0818 100 0 18 18 05 00 00 03 1219 100 0 19 19 05 00 00 03 1620 100 0 20 01 00 05 00 00 0421 100 0 21 01 01 05 00 00 04 0422 100 0 22 01 02 05 00 00 04 0823 100 0 23 01 03 05 00 00 04 1224 100 0 24 01 04 05 00 00 04 1625 100 0 25 01 05 05 00 00 0526 100 0 26 01 06 05 00 00 05 0427 100 0 27 01 07 05 00 00 05 0828 100 0 28 01 08 05 00 00 05 1229 100 0 29 01 09 05 00 00 05 1630 100 0 30 01 10 05 00 00 0631 100 0 31 01 11 05 00 00 06 0432 100 0 32 01 12 05 00 00 06 08 60 100 0 60 03 00 05 00 00 1261 100 0 61 03 01 05 00 00 12 0462 100 0 62 03 02 05 00 00 12 08 72 100 0 72 03 12 05 00 00 14 08 82 100 0 82 04 02 05 00 00 16 08 85 100 0 85 04 05 05 00 00 18 95 100 0 95 04 15 05 00 00 1996 100 0 96 04 16 05 00 00 19 0497 100 0 97 04 17 05 00 00 19 0898 100 0 98 04 18 05 00 00 19 1299 100 0 99 04 19 05 00 00 19 16100 100 1 00 05 00 05 00 01 00 dd dd dd Dijsni chislaIrracionalni chisla V desyatkovij U dvadcyatkovij 2 dovzhina diagonali kvadrata 1 41421356237309 1 08 05 13 14 03 07 19 16 15 00 09 17 06 3 dovzhina diagonali kuba 1 73205080756887 1 14 12 16 08 02 11 13 13 15 05 06 01 07 5 dovzhina prostorovoyi diagonali pryamokutnika 2 2360679774997 2 04 14 08 10 17 10 11 03 19 17 16 18 11 f zolotij peretin 1 6180339887498 1 12 07 04 05 08 15 05 11 19 18 18 09 05 transcendentni chisla Desyatkova Dvadcyatkovap vidnoshennya dovzhini kola do promiru 3 14159265358979 3 02 16 12 14 16 09 16 11 17 19 09 13 02 E osnova logarifma 2 7182818284590452 2 14 07 06 05 01 17 00 08 11 00 12 09 05 g granichna riznicya mizh garmonijnim ryadom i naturalnim logarifmom 0 5772156649015328606 0 11 10 17 14 10 02 11 01 09 11 13 18 11 18 Perevedennya chisel z desyatkovoyi i dvadcyatkovoyi sistem lichbiShob peretvoriti desyatkove chislo u dvadcyatkovu sistemu lichbi treba na velichinu yaka predstavlyaye ryad diliti chislo zaokruglene vidpovidno do pokaznika ryadu sho ne perevishuye yiyi u 20 raziv i ne ye menshim ciyeyi velichini shob ostacha dililasya na velichinu nizhchogo ryadu Napriklad 587 433 221 580 000 000 zaokruglene chislo menshe anizh 1 280 000 000 ale bilshe nizh 64 000 000 64 000 000 9 09 zalishok 4 000 000 dilimo na velichinu nizhchogo ryadu 3 200 000 bude 1 01 800 000 dilimo na 160 000 otrimayemo 5 05 Otzhe 580 000 000 u dvadcyatkovij sistemi 09 01 05 00 00 00 00 7 400 000 3 200 00 2 02 1 000 000 160 000 6 06 40 000 8 000 5 05 Otzhe 7 400 000 02 06 05 00 00 00 Tobto 7 400 000 02 06 05 00 00 00 Dodayemo dva znachennya 09 01 05 00 00 00 00 02 06 05 00 00 00 09 03 11 05 00 00 00 zapis chisla 587 400 000 33 000 8 000 4 04 1000 400 2 02 200 20 10 04 02 10 zapis chisla 33 000 220 20 11 11 najnizhchij ryad 1 11 01 zapis chisla 221 Dodayemo 04 02 10 11 01 04 03 01 01 33 221 04 03 01 01 09 03 11 05 00 00 00 09 03 11 09 03 01 01 Otzhe 587 433 221 09 03 11 09 03 01 01 Dvadcyatkove chislo peretvoryuyetsya u desyatkovu sistemu peremnozhuvannyam velichin ryadiv i dodavannyam 09 03 11 09 03 01 01 09h64 000 000 03 3 200 000 11 160 000 09 8 000 03 400 01 20 01 576 000 000 9 600 000 1 760 000 72 000 1200 20 1 587 433 221 Div takozhPozicijna sistema chislennya Nepozicijni sistemi chislennya Nega pozicijna sistema chislennya Yegipetska sistema chislennya Arabska sistema chislennya Staroslov yanska sistema chislennya Rimska sistema chislennya Dvijkova sistema chislennya Trijkova sistema chislennya Chetvirkova sistema chislennya P yatirkova sistema chislennya Shistkova sistema chislennya Visimkova sistema chislennya Desyatkova sistema chislennya Dvanadcyatkova sistema chislennya Shistnadcyatkova sistema chislennya Shistdesyatkova sistema chislennya Chislova sistema zalishkiv Sistema chislennya FibonachchiLiteraturaKarl Menninger Number words and number symbols a cultural history of numbers translated by Paul Broneer from the revised German edition Cambridge Mass M I T Press 1969 also available in paperback New York Dover 1992 ISBN 0 486 27096 3 Levi Leonard Conant The Number Concept Its Origin and Development New York New York MacMillon amp Co 1931 Project Gutenberg EBook Number words and number symbols a cultural history of numbers translated by Paul Broneer from the revised German edition Cambridge Mass M I T Press 1969 also available in paperback New York Dover 1992 ISBN 0 486 27096 3 Primitkihttps pueblosoriginarios com meso valle teotihuacan escritura html Konvertor 1 Open Location Code An Open Source Standard for Addresses Independent of Building Numbers And Street Names github com Procitovano 25 serpnya 2020 Sylvanus G Morley La Civilizacion Maya p 253 Fondo de Cultura Economica Mexico 1975