Abc-гіпотеза (також відома як гіпотеза Естерле–Массера ) — це гіпотеза розділу теорії чисел, яка виникла як результат дискусій Джозефа Естерле та Девіда Массера в 1985 році Вона виражається в термінах трьох натуральних чисел a, b і c (звідси й назва), які є взаємно простими та задовольняють умову a + b = c . Гіпотеза по суті стверджує, що добуток різних простих множників abc зазвичай не набагато менший за c . Низка гіпотез і теорем теорії чисел випливають безпосередньо з abc-гіпотези або її версій. Математик Доріан Голдфельд описав цю гіпотезу як «найважливішу невирішену проблему діофантового аналізу ».
Напрямок | Теорія Чисел |
---|---|
Автори |
|
Рік | 1985 |
Еквівалентне | [en] |
Наслідки |
|
Abc-гіпотеза виникла як результат спроб Остерле та Массера зрозуміти гіпотезу Шпіро про еліптичні криві , що включає у своє твердження більше геометричних структур, ніж abc-гіпотеза . Було доведено, що abc-гіпотеза еквівалентна модифікованій гіпотезі Шпіро.
Було зроблено багато спроб довести abc-гіпотезу, але наразі жодна з них не прийнята повністю математичною спільнотою, і станом на 2020 рік вона все ще вважається недоведеною.
Формулювання
Перш ніж сформулювати гіпотезу, слід ввести поняття радикала цілого числа : для натурального числа n радикал n, позначається rad( n ), є добутком різних простих множників n . Наприклад:
Якщо a, b і c є взаємно простими натуральними числами, такими що a + b = c, виявляється, що "зазвичай" c < rad( abc ). Abc-гіпотеза має справу з винятками. Зокрема, в ній зазначено, що:
Еквівалентне формулювання:
Еквівалентно (використовуючи позначення o-маленьке ):
Четверте еквівалентне формулювання гіпотези включає у себе поняття якості q ( a, b, c ) трійки ( a, b, c ), що визначається як
Наприклад:
Типова трійка ( a, b, c ) взаємно простих натуральних чисел з умовою a + b = c матиме c < rad( abc ), тобто q ( a, b, c ) < 1. Трійки з q > 1, такі як наведені у другому прикладі, доволі особливі, вони складаються з чисел, які діляться на великі степені малих простих чисел . Третє формулювання:
Оскільки відомо, що існує нескінченна кількість трійок ( a, b, c ) взаємно простих натуральних чисел з умовою a + b = c таких, що q ( a, b, c ) > 1, то гіпотеза передбачає, що лише скінченна кількість із них мають q > 1,01 або q > 1,001 або навіть q > 1,0001 тощо. Зокрема, якщо гіпотеза вірна, то має існувати така трійка ( a, b, c ), яка досягає максимально можливої якості q ( a, b, c ).
Приклади трійок з малим радикалом
Умова ε > 0 є необхідною, оскільки існує нескінченна кількість трійок a, b, c з c > rad( abc ). Наприклад, нехай
Ціле число b ділиться на 9:
Використовуючи цей факт, виконуються такі обчислення:
Замінивши експоненту 6 n іншими експонентами, змусивши b мати більші квадратичні множники, співвідношення між радикалом і c можна зробити як завгодно малим. Зокрема, нехай p > 2 є простим числом і розглянемо
Тепер можна стверджувати, що b ділиться на p 2 :
Останній крок використовує той факт, що p 2 ділить 2 p ( p −1) − 1. Це напряму випливає з малої теореми Ферма, яка стверджує, що для p > 2, 2 p −1 = pk + 1 для деякого цілого числа k . Піднесення обох частин до степеня p показує, що 2 p ( p −1) = p 2 (...) + 1.
А тепер подібними обчисленнями, як описано вище, отримуємо:
Нижче наведено список трійок найвищої якості (трійок з особливо малим радикалом відносно c ); найвищу якість, 1,6299, виявив Ерік Рейссат (Lando та Zvonkin, 2004) для
Abc-гіпотеза має велику кількість наслідків. До них належать як відомі результати (деякі з яких були доведені окремо уже після того, як гіпотеза була висловлена), так і гіпотези, для яких вона дає умовне доведення . Серед наслідків:
- (Теорема Рота) про діофантову апроксимацію алгебраїчних чисел .
- Гіпотеза Морделла (уже доведена Гердом Фалтінгсом ).
- Як еквівалент, гіпотеза Войта в розмірності 1.
- Гіпотеза Ердеша–Вудса, яка допускає кінцеву кількість контрприкладів.
- Існування нескінченної кількості невіферіхових простих чисел у кожній основі b > 1.
- Слабка форма гіпотези Маршалла Холла про відокремлення квадратів і кубів цілих чисел.
- Велика теорема Ферма має відомий складний доказ Ендрю Вайлза. Однак це випливає легко, принаймні для , від ефективної форми слабкої версії гіпотези abc . Гіпотеза abc говорить, що lim sup набору всіх якостей (визначених вище) дорівнює 1, що передбачає набагато слабше твердження про те, що існує кінцева верхня межа для якостей. Припущення, що 2 є такою верхньою межею, достатньо для дуже короткого доказу останньої теореми Ферма для .
- Гіпотеза Ферма-Каталана, узагальнення останньої теореми Ферма щодо степенів, які є сумами степенів.
- L -функція L ( s, χ d ), утворена за допомогою символу Лежандра, не має нуля Зігеля, враховуючи уніфіковану версію abc-гіпотези у числових полях, а не лише abc-гіпотезу, як сформульовано вище для раціональних цілих чисел.
- Многочлен P ( x ) має лише скінченну кількість досконалих степенів для всіх цілих чисел x, якщо P має принаймні три прості нулі .
- Узагальнення теореми Тідждемана щодо кількості розв’язків y m = x n + k (теорема Тідждемана відповідає випадку k = 1) і гіпотези Піллаї (1931) щодо кількості розв’язків Ay m = Bx n + k .
- Як еквівалент, гіпотеза Гранвіля–Ланжевена, що якщо f є бінарною формою без квадратів степеня n > 2, то для довільного дійсного β > 2 існує константа C ( f, β ), така що для всіх взаємно простих цілих чисел x, y, радикал f ( x, y ) перевищує C · max{| х |, | y |} n − β .
- Як еквівалент, модифікована гіпотеза Шпіро, яка дасть межу rad( abc ) 1,2+ ε .
- Dąbrowski, (1996) показав, що гіпотеза abc означає, що має лише скінченну кількість розв’язків для будь-якого даного цілого числа A .
- Існує ~ c f N додатних цілих чисел n ≤ N, для яких f ( n )/B' є вільним від квадратів, де c f > 0 додатна константа, визначена як:
- Гіпотеза Біла, узагальнення великої теореми Ферма, яка припускає, що якщо A, B, C, x, y та z є натуральними числами з A x + B y = C z та x, y, z > 2, то A, B, і C мають спільний простий множник. Гіпотеза abc означатиме, що існує лише кінцева кількість контрприкладів.
- Гіпотеза Ленга, нижня межа для висоти раціональної точки без кручення еліптичної кривої.
- Від'ємний розв’язок проблеми Ердеша–Улама на щільних множинах евклідових точок із раціональними відстанями.
- Ефективний варіант теореми Зігеля про цілі точки на алгебраїчних кривих.
Теоретичні результати
Abc-гіпотеза передбачає, що c може бути обмежено зверху майже лінійною функцією радикала abc . Відомо, що межі є експоненціальними . Зокрема, було доведено такі межі:
У даних межах K 1 і K 3 є константами, які не залежать від a, b чи c, а K 2 є константою, яка залежить від ε ( ефективно обчислюваним способом), але не залежить від a, b або c . Межі застосовуються до будь-яких трійок, для яких c > 2.
Результати обчислень
У 2006 році математичний факультет Лейденського університету в Нідерландах спільно з нідерландським науковим інститутом Kennislink запустив проект ABC@Home, грід- обчислювальну систему, метою якої є виявлення додаткових трійок a, b, c з rad( abc ) < c . Хоча жоден скінченний набір прикладів чи контрприкладів не може довести чи спростувати abc-гіпотезу, є сподівання, що закономірності в трійках, які будуть виявлені цим проектом, приведуть до глибшого розуміння цієї гіпотези.
q c | q > 1 | q > 1.05 | q > 1.1 | q > 1.2 | q > 1.3 | q > 1.4 |
---|---|---|---|---|---|---|
c < 102 | 6 | 4 | 4 | 2 | 0 | 0 |
c < 103 | 31 | 17 | 14 | 8 | 3 | 1 |
c < 104 | 120 | 74 | 50 | 22 | 8 | 3 |
c < 105 | 418 | 240 | 152 | 51 | 13 | 6 |
c < 106 | 1,268 | 667 | 379 | 102 | 29 | 11 |
c < 107 | 3,499 | 1,669 | 856 | 210 | 60 | 17 |
c < 108 | 8,987 | 3,869 | 1,801 | 384 | 98 | 25 |
c < 109 | 22,316 | 8,742 | 3,693 | 706 | 144 | 34 |
c < 1010 | 51,677 | 18,233 | 7,035 | 1,159 | 218 | 51 |
c < 1011 | 116,978 | 37,612 | 13,266 | 1,947 | 327 | 64 |
c < 1012 | 252,856 | 73,714 | 23,773 | 3,028 | 455 | 74 |
c < 1013 | 528,275 | 139,762 | 41,438 | 4,519 | 599 | 84 |
c < 1014 | 1,075,319 | 258,168 | 70,047 | 6,665 | 769 | 98 |
c < 1015 | 2,131,671 | 463,446 | 115,041 | 9,497 | 998 | 112 |
c < 1016 | 4,119,410 | 812,499 | 184,727 | 13,118 | 1,232 | 126 |
c < 1017 | 7,801,334 | 1,396,909 | 290,965 | 17,890 | 1,530 | 143 |
c < 1018 | 14,482,065 | 2,352,105 | 449,194 | 24,013 | 1,843 | 160 |
Станом на травень 2014 року ABC@Home знайшов 23,8 мільйона трійок.
Rank | q | a | b | c | Discovered by |
---|---|---|---|---|---|
1 | 1.6299 | 2 | 310·109 | 235 | Eric Reyssat |
2 | 1.6260 | 112 | 32·56·73 | 221·23 | Benne de Weger |
3 | 1.6235 | 19·1307 | 7·292·318 | 28·322·54 | Jerzy Browkin, Juliusz Brzezinski |
4 | 1.5808 | 283 | 511·132 | 28·38·173 | Jerzy Browkin, Juliusz Brzezinski, Abderrahmane Nitaj |
5 | 1.5679 | 1 | 2·37 | 54·7 | Benne de Weger |
Примітка: якість q ( a, b, c ) трійки ( a, b, c ) визначена вище .
Уточнені форми, узагальнення та відповідні твердження
Гіпотеза abc є цілочисельним аналогом теореми Мейсона–Стозерса для поліномів.
Сильніша гіпотеза, запропонована Baker, (1998), стверджує, що в гіпотезі abc можна замінити rad( abc ) на
де ω — загальна кількість різних простих чисел, що ділять a, b і c .
Ендрю Гранвіль помітив, що мінімум функції для виникає при
Це надихнуло Baker, (2004) запропонувати чіткішу форму abc-гіпотези, а саме:
де κ є абсолютною константою. Після кількох обчислювальних експериментів він виявив, що значення було допустимим для κ . Ця версія називається «явною гіпотезою abc ».
Бейкер, (1998) також описав гіпотези що б дало верхню межу на c виду:
де Ω( n ) — загальна кількість простих множників n, і
де Θ( n ) — кількість цілих чисел до n, які діляться лише на прості числа, що ділять n .
Роберт, Стюарт та Тенанбаум, (2014) запропонували більш точну нерівність базуючись на Роберт та Тенанбаум, (2013). Нехай k = rad(abc). Вони припустили, що існує константа C1 така що
виконується, тоді коли існує стала C 2 така, що
виконується нескінченно часто.
Броукін та Бжезинський, (1994) сформулювали —версію abc гіпотезу для цілих чисел n > 2 .
Заявлені доведення
Люсьєн Шпіро запропонував рішення в 2007 році, але невдовзі у ньому знайшли помилку.
З серпня 2012 року Шінічі Мочізукі заявив про доведення гіпотези Шпіро, а отже, abc-гіпотези . Він випустив серію з чотирьох препринтів, які включали нову теорію, яку він назвав міжуніверсальною теорією Тейхмюллера (IUTT), яка в подальшому застосовується для підтвердження abc-гіпотези . Статті не були прийняті математичною спільнотою як докази гіпотези. Це відбулося не лише через їхню довжину та складність розуміння , а й тому, що принаймні один конкретний момент у аргументації був визначений як прогалина деякими іншими експертами. Незважаючи на те, що кілька математиків ручалися за правильність доведення і намагалися показати своє розуміння через семінари на IUTT, їм не вдалося переконати спільноту математиків теорії чисел.
У березні 2018 року Пітер Шольце та Якоб Стікс відвідали Кіото для обговорення з Мочізукі. Хоча вони не усунули розбіжності, вони чіткіше їх сформулювали. Шольце та Стікс написали звіт, в якому пояснювали помилку в логіці доведення та стверджували, що отримана прогалина була «настільки серйозною, що ... невеликі зміни не врятують стратегію доказу»; Мочізукі стверджував, що вони неправильно зрозуміли життєво важливі аспекти теорії та зробили некоректні спрощення.
3 квітня 2020 року двоє математиків з Кіотського науково-дослідного інституту, де працює Мочізукі, оголосили, що заявлене ним доведення буде опубліковано в публікаціях науково-дослідного інституту математичних наук, журналі інституту. Мочізукі є головним редактором цього журналу, але він відмовився від рецензування даної статті. Кіран Кедлая та Едвард Френкель сприйняли цю заяву зі скептицизмом, а журнал Nature описав її як «навряд чи приведе багатьох дослідників до табору Мочізукі». У березні 2021 року доведення Мочізукі було опубліковано в RIMS.
Дивіться також
Список літератури
- When a + b = c, coprimality of a, b, c implies of a, b, c. So in this case, it does not matter which concept we use.
Джерела
- (1998). Logarithmic forms and the abc-conjecture. У Győry, Kálmán (ред.). Number theory. Diophantine, computational and algebraic aspects. Proceedings of the international conference, Eger, Hungary, July 29-August 2, 1996. Berlin: de Gruyter. с. 37—44. ISBN . Zbl 0973.11047.
- (2004). Experiments on the abc-conjecture. Publicationes Mathematicae Debrecen. 65 (3–4): 253—260.
- Bombieri, Enrico (1994). Roth's theorem and the abc-conjecture (Preprint). ETH Zürich.[]
- ; Gubler, Walter (2006). Heights in Diophantine Geometry. New Mathematical Monographs. Т. 4. Cambridge University Press. ISBN . Zbl 1130.11034.
- ; Brzeziński, Juliusz (1994). Some remarks on the abc-conjecture. Math. Comp. 62 (206): 931—939. Bibcode:1994MaCom..62..931B. doi:10.2307/2153551. JSTOR 2153551.
- Browkin, Jerzy (2000). The abc-conjecture. У Bambah, R. P.; Dumir, V. C.; Hans-Gill, R. J. (ред.). Number Theory. Trends in Mathematics. Basel: Birkhäuser. с. 75–106. ISBN .
- Dąbrowski, Andrzej (1996). On the diophantine equation x! + A = y2. Nieuw Archief voor Wiskunde, IV. 14: 321—324. Zbl 0876.11015.
- (1991). ABC implies Mordell. International Mathematics Research Notices. 1991 (7): 99—109. doi:10.1155/S1073792891000144.
- (1997). On Ternary Equations of Fermat Type and Relations with Elliptic Curves. Modular Forms and Fermat's Last Theorem. New York: Springer. с. 527—548. ISBN .
- (1996). Beyond the last theorem. . 4 (September): 26—34. doi:10.1080/10724117.1996.11974985. JSTOR 25678079.
- (2002). Modular forms, elliptic curves and the abc-conjecture. У (ред.). A panorama in number theory or The view from Baker's garden. Based on a conference in honor of Alan Baker's 60th birthday, Zürich, Switzerland, 1999. Cambridge: Cambridge University Press. с. 128–147. ISBN . Zbl 1046.11035.
- ; Barrow-Green, June; Leader, Imre, ред. (2008). The Princeton Companion to Mathematics. Princeton: Princeton University Press. с. 361–362, 681. ISBN .
- (1998). ABC Allows Us to Count Squarefrees (PDF). International Mathematics Research Notices. 1998 (19): 991—1009. doi:10.1155/S1073792898000592.
- ; Stark, H. (2000). ABC implies no "Siegel zeros" for L-functions of characters with negative exponent (PDF). Inventiones Mathematicae. 139 (3): 509—523. Bibcode:2000InMat.139..509G. doi:10.1007/s002229900036.
- ; Tucker, Thomas (2002). It's As Easy As abc (PDF). . 49 (10): 1224—1231. CiteSeerX 10.1.1.146.610.
- Guy, Richard K. (2004). Unsolved Problems in Number Theory. Berlin: Springer-Verlag. ISBN .
- . ISBN .
{{}}
: Пропущений або порожній|title=
() - Langevin, M. (1993). Cas d'égalité pour le théorème de Mason et applications de la conjecture abc. Comptes rendus de l'Académie des sciences (фр.). 317 (5): 441—444.
- (1985). Open problems. У Chen, W. W. L. (ред.). Proceedings of the Symposium on Analytic Number Theory. London: Imperial College.
- Mollin, R.A. (2009). (PDF). Far East Journal of Mathematical Sciences. 33: 267—275. ISSN 0972-0871. Zbl 1241.11034. Архів оригіналу (PDF) за 4 березня 2016. Процитовано 14 червня 2013.
- Mollin, Richard A. (2010). Advanced number theory with applications. Boca Raton, FL: CRC Press. ISBN . Zbl 1200.11002.
- Nitaj, Abderrahmane (1996). La conjecture abc. Enseign. Math. (фр.). 42 (1–2): 3—24.
- (1988), Nouvelles approches du "théorème" de Fermat, Astérisque, Séminaire Bourbaki exp 694 (161): 165—186, ISSN 0303-1179, MR 0992208
- (2008). Computational Number Theory. The Princeton Companion to Mathematics. Princeton University Press. с. 361—362.
- (1988). Wieferich's criterion and the abc-conjecture. Journal of Number Theory. 30 (2): 226—237. doi:10.1016/0022-314X(88)90019-4. Zbl 0654.10019.
- Robert, Olivier; ; (2014). A refinement of the abc conjecture (PDF). Bulletin of the London Mathematical Society. 46 (6): 1156—1166. doi:10.1112/blms/bdu069.
- Robert, Olivier; Tenenbaum, Gérald (November 2013). Sur la répartition du noyau d'un entier [On the distribution of the kernel of an integer]. Indagationes Mathematicae (фр.). 24 (4): 802—914. doi:10.1016/j.indag.2013.07.007.
- ; (1986). On the Oesterlé-Masser conjecture. Monatshefte für Mathematik. 102 (3): 251—257. doi:10.1007/BF01294603.
- ; (1991). On the abc conjecture. Mathematische Annalen. 291 (1): 225—230. doi:10.1007/BF01445201.
- ; (2001). On the abc conjecture, II. . 108 (1): 169—181. doi:10.1215/S0012-7094-01-10815-6.
- Van Frankenhuijsen, Machiel (2002). The ABC conjecture implies Vojta's height inequality for curves. . 95 (2): 289—302. doi:10.1006/jnth.2001.2769. MR 1924103.
- Waldschmidt, Michel (2015). Lecture on the abc Conjecture and Some of Its Consequences. Mathematics in the 21st Century. Springer Proceedings in Mathematics & Statistics. Т. 98. с. 211—230. doi:10.1007/978-3-0348-0859-0_13. ISBN .
Посилання
- Distributed computing project called [en].
- Easy as ABC: Easy to follow, detailed explanation by Brian Hayes.
- Weisstein, Eric W. abc Conjecture(англ.) на сайті Wolfram MathWorld.
- Abderrahmane Nitaj's
- Bart de Smit's ABC Triples webpage
- http://www.math.columbia.edu/~goldfeld/ABC-Conjecture.pdf
- The ABC's of Number Theory by [en]
- Questions about Number by [en]
- Philosophy behind Mochizuki’s work on the ABC conjecture on [en]
- ABC Conjecture [en] wiki page linking to various sources of commentary on Mochizuki's papers.
- abc Conjecture Numberphile video
- News about IUT by Mochizuki
- Oesterlé, 1988.
- Masser, 1985.
- Goldfeld, 1996.
- Fesenko, Ivan (September 2015). Arithmetic deformation theory via arithmetic fundamental groups and nonarchimedean theta-functions, notes on the work of Shinichi Mochizuki. European Journal of Mathematics. 1 (3): 405—440. doi:10.1007/s40879-015-0066-0.
- Castelvecchi, Davide (9 квітня 2020). Mathematical proof that rocked number theory will be published. Nature. 580 (7802): 177. Bibcode:2020Natur.580..177C. doi:10.1038/d41586-020-00998-2. PMID 32246118.
- Waldschmidt, 2015.
- Bombieri, (1994).
- Elkies, (1991).
- Van Frankenhuijsen, (2002).
- Langevin, (1993).
- Silverman, (1988).
- Nitaj, (1996).
- Granville, Andrew; Tucker, Thomas (2002). It's As Easy As abc (PDF). Notices of the AMS. 49 (10): 1224—1231.
- Pomerance, (2008).
- Granville та Stark, (2000).
- The ABC-conjecture, Frits Beukers, ABC-DAY, Leiden, Utrecht University, 9 September 2005.
- Mollin, (2009); Mollin, (2010)
- Granville, (1998).
- Pasten, Hector (2017), Definability of Frobenius orbits and a result on rational distance sets, , 182 (1): 99—126, doi:10.1007/s00605-016-0973-2, MR 3592123
- arXiv:math/0408168 , Siegel’s theorem and the abc conjecture, Riv. Mat. Univ. Parma (7) 3, 2004, S. 323–332
- , RekenMeeMetABC.nl (нід.), архів оригіналу за 22 грудня 2008, процитовано 3 жовтня 2012.
- , ABC@Home, архів оригіналу за 15 травня 2014, процитовано 30 квітня 2014
- 100 unbeaten triples. Reken mee met ABC. 7 листопада 2010.
- Bombieri та Gubler, (2006), с. 404.
- "Finiteness Theorems for Dynamical Systems", Lucien Szpiro, talk at Conference on L-functions and Automorphic Forms (on the occasion of Dorian Goldfeld's 60th Birthday), Columbia University, May 2007. See (26 травня 2007), Proof of the abc Conjecture?, Not Even Wrong.
- Ball, Peter (10 вересня 2012). Proof claimed for deep connection between primes. Nature. doi:10.1038/nature.2012.11378. Процитовано 19 березня 2018.
- Mochizuki, Shinichi (4 березня 2021). Inter-universal Teichmüller Theory IV: Log-Volume Computations and Set-Theoretic Foundations. Publications of the Research Institute for Mathematical Sciences. 57 (1): 627—723. doi:10.4171/PRIMS/57-1-4.
- (17 грудня 2017). The ABC conjecture has (still) not been proved. Процитовано 17 березня 2018.
- Revell, Timothy (7 вересня 2017). Baffling ABC maths proof now has impenetrable 300-page 'summary'. New Scientist.
- ; . (PDF). Архів оригіналу (PDF) за 8 лютого 2020. Процитовано 23 вересня 2018. (updated version of their May report [ 2020-02-08 у Wayback Machine.])
- (28 вересня 2016). Fukugen. Inference. 2. Процитовано 30 жовтня 2021.
- (15 грудня 2015). Notes on the Oxford IUT workshop by Brian Conrad. Процитовано 18 березня 2018.
- Castelvecchi, Davide (8 жовтня 2015). The biggest mystery in mathematics: Shinichi Mochizuki and the impenetrable proof. Nature. 526 (7572): 178—181. Bibcode:2015Natur.526..178C. doi:10.1038/526178a. PMID 26450038.
- (20 вересня 2018). Titans of Mathematics Clash Over Epic Proof of ABC Conjecture. Quanta Magazine.
- March 2018 Discussions on IUTeich. Процитовано 2 жовтня 2018. Web-page by Mochizuki describing discussions and linking consequent publications and supplementary material
- . Report on Discussions, Held during the Period March 15 – 20, 2018, Concerning Inter-Universal Teichmüller Theory (PDF). Процитовано 1 лютого 2019.
the ... discussions ... constitute the first detailed, ... substantive discussions concerning negative positions ... IUTch.
- (July 2018). Comments on the manuscript by Scholze-Stix concerning Inter-Universal Teichmüller Theory (PDF). Процитовано 2 жовтня 2018.
- . Comments on the manuscript (2018-08 version) by Scholze-Stix concerning Inter-Universal Teichmüller Theory (PDF). Процитовано 2 жовтня 2018.
- . Mochizuki's proof of ABC conjecture. Процитовано 13 липня 2021.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Abc gipoteza takozh vidoma yak gipoteza Esterle Massera ce gipoteza rozdilu teoriyi chisel yaka vinikla yak rezultat diskusij Dzhozefa Esterle ta Devida Massera v 1985 roci Vona virazhayetsya v terminah troh naturalnih chisel a b i c zvidsi j nazva yaki ye vzayemno prostimi ta zadovolnyayut umovu a b c Gipoteza po suti stverdzhuye sho dobutok riznih prostih mnozhnikiv abc zazvichaj ne nabagato menshij za c Nizka gipotez i teorem teoriyi chisel viplivayut bezposeredno z abc gipotezi abo yiyi versij Matematik Dorian Goldfeld opisav cyu gipotezu yak najvazhlivishu nevirishenu problemu diofantovogo analizu Napryamok Teoriya Chisel Avtori en en Rik 1985 Ekvivalentne en Naslidki en en Gipoteza Mordella Velika teorema Ferma Gipoteza Ferma Katalana Teorema Rota en Matematik Dzhozef Osterle Matematik Devid Masser Abc gipoteza vinikla yak rezultat sprob Osterle ta Massera zrozumiti gipotezu Shpiro pro eliptichni krivi sho vklyuchaye u svoye tverdzhennya bilshe geometrichnih struktur nizh abc gipoteza Bulo dovedeno sho abc gipoteza ekvivalentna modifikovanij gipotezi Shpiro Bulo zrobleno bagato sprob dovesti abc gipotezu ale narazi zhodna z nih ne prijnyata povnistyu matematichnoyu spilnotoyu i stanom na 2020 rik vona vse she vvazhayetsya nedovedenoyu FormulyuvannyaPersh nizh sformulyuvati gipotezu slid vvesti ponyattya radikala cilogo chisla dlya naturalnogo chisla n radikal n poznachayetsya rad n ye dobutkom riznih prostih mnozhnikiv n Napriklad rad 16 rad 24 rad 2 2 rad 17 17 rad 18 rad 2 32 2 3 6 rad 1000000 rad 26 56 2 5 10 Yaksho a b i c ye vzayemno prostimi naturalnimi chislami takimi sho a b c viyavlyayetsya sho zazvichaj c lt rad abc Abc gipoteza maye spravu z vinyatkami Zokrema v nij zaznacheno sho Dlya bud yakogo dodatnogo dijsnogo chisla e isnuye skinchenna kilkist trijok a b c vzayemno prostih cilih chisel yaki zadovilnyayut umovu a b c takih sho that c gt rad a b c 1 e displaystyle c gt operatorname rad abc 1 varepsilon Ekvivalentne formulyuvannya Dlya dovilnogo dodatnogo dijsnogo chisla e isnuye konstanta Ke taka sho dlya vsih trijok vzayemno prostih cilih chisel a b c takih sho a b c c lt K e rad a b c 1 e displaystyle c lt K varepsilon cdot operatorname rad abc 1 varepsilon Ekvivalentno vikoristovuyuchi poznachennya o malenke Dlya vsih trijok a b c vzayemno prostih dodatnih cilih chisel takih sho a b c rad abc ye shonajmenshe c1 o 1 Chetverte ekvivalentne formulyuvannya gipotezi vklyuchaye u sebe ponyattya yakosti q a b c trijki a b c sho viznachayetsya yakq a b c log c log rad a b c displaystyle q a b c frac log c log big operatorname rad abc big Napriklad q 4 127 131 log 131 log rad 4 127 131 log 131 log 2 127 131 0 46820 q 3 125 128 log 128 log rad 3 125 128 log 128 log 30 1 426565 Tipova trijka a b c vzayemno prostih naturalnih chisel z umovoyu a b c matime c lt rad abc tobto q a b c lt 1 Trijki z q gt 1 taki yak navedeni u drugomu prikladi dovoli osoblivi voni skladayutsya z chisel yaki dilyatsya na veliki stepeni malih prostih chisel Tretye formulyuvannya Dlya dovilnogo naturalnogo chisla e isnuye skinchenna kilkist trijok a b c vzayemno prostih naturalnih chisel sho zadovilnyayut umovu a b c takih sho q a b c gt 1 e Oskilki vidomo sho isnuye neskinchenna kilkist trijok a b c vzayemno prostih naturalnih chisel z umovoyu a b c takih sho q a b c gt 1 to gipoteza peredbachaye sho lishe skinchenna kilkist iz nih mayut q gt 1 01 abo q gt 1 001 abo navit q gt 1 0001 tosho Zokrema yaksho gipoteza virna to maye isnuvati taka trijka a b c yaka dosyagaye maksimalno mozhlivoyi yakosti q a b c Prikladi trijok z malim radikalomUmova e gt 0 ye neobhidnoyu oskilki isnuye neskinchenna kilkist trijok a b c z c gt rad abc Napriklad nehaj a 1 b 2 6 n 1 c 2 6 n n gt 1 displaystyle a 1 quad b 2 6n 1 quad c 2 6n qquad n gt 1 Cile chislo b dilitsya na 9 b 2 6 n 1 64 n 1 64 1 9 7 displaystyle b 2 6n 1 64 n 1 64 1 cdots 9 cdot 7 cdot cdots Vikoristovuyuchi cej fakt vikonuyutsya taki obchislennya rad a b c rad a rad b rad c rad 1 rad 2 6 n 1 rad 2 6 n 2 rad 2 6 n 1 2 rad 9 b 9 2 3 b 9 2 b 3 lt 2 3 c displaystyle begin aligned operatorname rad abc amp operatorname rad a operatorname rad b operatorname rad c amp operatorname rad 1 operatorname rad left 2 6n 1 right operatorname rad left 2 6n right amp 2 operatorname rad left 2 6n 1 right amp 2 operatorname rad left 9 cdot tfrac b 9 right amp leqslant 2 cdot 3 cdot tfrac b 9 amp 2 tfrac b 3 amp lt tfrac 2 3 c end aligned Zaminivshi eksponentu 6 n inshimi eksponentami zmusivshi b mati bilshi kvadratichni mnozhniki spivvidnoshennya mizh radikalom i c mozhna zrobiti yak zavgodno malim Zokrema nehaj p gt 2 ye prostim chislom i rozglyanemo a 1 b 2 p p 1 n 1 c 2 p p 1 n n gt 1 displaystyle a 1 quad b 2 p p 1 n 1 quad c 2 p p 1 n qquad n gt 1 Teper mozhna stverdzhuvati sho b dilitsya na p 2 b 2 p p 1 n 1 2 p p 1 n 1 2 p p 1 1 p 2 r displaystyle begin aligned b amp 2 p p 1 n 1 amp left 2 p p 1 right n 1 amp left 2 p p 1 1 right cdots amp p 2 cdot r cdots end aligned Ostannij krok vikoristovuye toj fakt sho p 2 dilit 2 p p 1 1 Ce napryamu viplivaye z maloyi teoremi Ferma yaka stverdzhuye sho dlya p gt 2 2 p 1 pk 1 dlya deyakogo cilogo chisla k Pidnesennya oboh chastin do stepenya p pokazuye sho 2 p p 1 p 2 1 A teper podibnimi obchislennyami yak opisano vishe otrimuyemo rad a b c lt 2 p c displaystyle operatorname rad abc lt tfrac 2 p c Nizhche navedeno spisok trijok najvishoyi yakosti trijok z osoblivo malim radikalom vidnosno c najvishu yakist 1 6299 viyaviv Erik Rejssat Lando ta Zvonkin 2004 dlya a 2 b 310 109 6436 341 c 235 6436 343 rad abc 15042 Abc gipoteza maye veliku kilkist naslidkiv Do nih nalezhat yak vidomi rezultati deyaki z yakih buli dovedeni okremo uzhe pislya togo yak gipoteza bula vislovlena tak i gipotezi dlya yakih vona daye umovne dovedennya Sered naslidkiv Teorema Rota pro diofantovu aproksimaciyu algebrayichnih chisel Gipoteza Mordella uzhe dovedena Gerdom Faltingsom Yak ekvivalent gipoteza Vojta v rozmirnosti 1 Gipoteza Erdesha Vudsa yaka dopuskaye kincevu kilkist kontrprikladiv Isnuvannya neskinchennoyi kilkosti neviferihovih prostih chisel u kozhnij osnovi b gt 1 Slabka forma gipotezi Marshalla Holla pro vidokremlennya kvadrativ i kubiv cilih chisel Velika teorema Ferma maye vidomij skladnij dokaz Endryu Vajlza Odnak ce viplivaye legko prinajmni dlya n 6 displaystyle n geq 6 vid efektivnoyi formi slabkoyi versiyi gipotezi abc Gipoteza abc govorit sho lim sup naboru vsih yakostej viznachenih vishe dorivnyuye 1 sho peredbachaye nabagato slabshe tverdzhennya pro te sho isnuye kinceva verhnya mezha dlya yakostej Pripushennya sho 2 ye takoyu verhnoyu mezheyu dostatno dlya duzhe korotkogo dokazu ostannoyi teoremi Ferma dlya n 6 displaystyle n geq 6 Gipoteza Ferma Katalana uzagalnennya ostannoyi teoremi Ferma shodo stepeniv yaki ye sumami stepeniv L funkciya L s x d utvorena za dopomogoyu simvolu Lezhandra ne maye nulya Zigelya vrahovuyuchi unifikovanu versiyu abc gipotezi u chislovih polyah a ne lishe abc gipotezu yak sformulovano vishe dlya racionalnih cilih chisel Mnogochlen P x maye lishe skinchennu kilkist doskonalih stepeniv dlya vsih cilih chisel x yaksho P maye prinajmni tri prosti nuli Uzagalnennya teoremi Tidzhdemana shodo kilkosti rozv yazkiv y m x n k teorema Tidzhdemana vidpovidaye vipadku k 1 i gipotezi Pillayi 1931 shodo kilkosti rozv yazkiv Ay m Bx n k Yak ekvivalent gipoteza Granvilya Lanzhevena sho yaksho f ye binarnoyu formoyu bez kvadrativ stepenya n gt 2 to dlya dovilnogo dijsnogo b gt 2 isnuye konstanta C f b taka sho dlya vsih vzayemno prostih cilih chisel x y radikal f x y perevishuye C max h y n b Yak ekvivalent modifikovana gipoteza Shpiro yaka dast mezhu rad abc 1 2 e Dabrowski 1996 pokazav sho gipoteza abc oznachaye sho maye lishe skinchennu kilkist rozv yazkiv dlya bud yakogo danogo cilogo chisla A Isnuye c f N dodatnih cilih chisel n N dlya yakih f n B ye vilnim vid kvadrativ de c f gt 0 dodatna konstanta viznachena yak c f prime p x i 1 w f p p 2 q p displaystyle c f prod text prime p x i left 1 frac omega f p p 2 q p right Gipoteza Bila uzagalnennya velikoyi teoremi Ferma yaka pripuskaye sho yaksho A B C x y ta z ye naturalnimi chislami z A x B y C z ta x y z gt 2 to A B i C mayut spilnij prostij mnozhnik Gipoteza abc oznachatime sho isnuye lishe kinceva kilkist kontrprikladiv Gipoteza Lenga nizhnya mezha dlya visoti racionalnoyi tochki bez kruchennya eliptichnoyi krivoyi Vid yemnij rozv yazok problemi Erdesha Ulama na shilnih mnozhinah evklidovih tochok iz racionalnimi vidstanyami Efektivnij variant teoremi Zigelya pro cili tochki na algebrayichnih krivih Teoretichni rezultatiAbc gipoteza peredbachaye sho c mozhe buti obmezheno zverhu majzhe linijnoyu funkciyeyu radikala abc Vidomo sho mezhi ye eksponencialnimi Zokrema bulo dovedeno taki mezhi c lt exp K 1 rad a b c 15 displaystyle c lt exp left K 1 operatorname rad abc 15 right Stewart ta Tijdeman 1986 c lt exp K 2 rad a b c 2 3 e displaystyle c lt exp left K 2 operatorname rad abc frac 2 3 varepsilon right Stewart ta Yu 1991 tac lt exp K 3 rad a b c 1 3 log rad a b c 3 displaystyle c lt exp left K 3 operatorname rad abc frac 1 3 left log operatorname rad abc right 3 right Stewart ta Yu 2001 U danih mezhah K 1 i K 3 ye konstantami yaki ne zalezhat vid a b chi c a K 2 ye konstantoyu yaka zalezhit vid e efektivno obchislyuvanim sposobom ale ne zalezhit vid a b abo c Mezhi zastosovuyutsya do bud yakih trijok dlya yakih c gt 2 Rezultati obchislenU 2006 roci matematichnij fakultet Lejdenskogo universitetu v Niderlandah spilno z niderlandskim naukovim institutom Kennislink zapustiv proekt ABC Home grid obchislyuvalnu sistemu metoyu yakoyi ye viyavlennya dodatkovih trijok a b c z rad abc lt c Hocha zhoden skinchennij nabir prikladiv chi kontrprikladiv ne mozhe dovesti chi sprostuvati abc gipotezu ye spodivannya sho zakonomirnosti v trijkah yaki budut viyavleni cim proektom privedut do glibshogo rozuminnya ciyeyi gipotezi Rozpodil trijok z q gt 1 qc q gt 1 q gt 1 05 q gt 1 1 q gt 1 2 q gt 1 3 q gt 1 4 c lt 102 6 4 4 2 0 0 c lt 103 31 17 14 8 3 1 c lt 104 120 74 50 22 8 3 c lt 105 418 240 152 51 13 6 c lt 106 1 268 667 379 102 29 11 c lt 107 3 499 1 669 856 210 60 17 c lt 108 8 987 3 869 1 801 384 98 25 c lt 109 22 316 8 742 3 693 706 144 34 c lt 1010 51 677 18 233 7 035 1 159 218 51 c lt 1011 116 978 37 612 13 266 1 947 327 64 c lt 1012 252 856 73 714 23 773 3 028 455 74 c lt 1013 528 275 139 762 41 438 4 519 599 84 c lt 1014 1 075 319 258 168 70 047 6 665 769 98 c lt 1015 2 131 671 463 446 115 041 9 497 998 112 c lt 1016 4 119 410 812 499 184 727 13 118 1 232 126 c lt 1017 7 801 334 1 396 909 290 965 17 890 1 530 143 c lt 1018 14 482 065 2 352 105 449 194 24 013 1 843 160 Stanom na traven 2014 roku ABC Home znajshov 23 8 miljona trijok Trijki najvishoyi yakosti Rank q a b c Discovered by 1 1 6299 2 310 109 235 Eric Reyssat 2 1 6260 112 32 56 73 221 23 Benne de Weger 3 1 6235 19 1307 7 292 318 28 322 54 Jerzy Browkin Juliusz Brzezinski 4 1 5808 283 511 132 28 38 173 Jerzy Browkin Juliusz Brzezinski Abderrahmane Nitaj 5 1 5679 1 2 37 54 7 Benne de Weger Primitka yakist q a b c trijki a b c viznachena vishe Utochneni formi uzagalnennya ta vidpovidni tverdzhennyaGipoteza abc ye cilochiselnim analogom teoremi Mejsona Stozersa dlya polinomiv Silnisha gipoteza zaproponovana Baker 1998 stverdzhuye sho v gipotezi abc mozhna zaminiti rad abc na e w rad abc de w zagalna kilkist riznih prostih chisel sho dilyat a b i c Endryu Granvil pomitiv sho minimum funkciyi e w rad a b c 1 e displaystyle big varepsilon omega operatorname rad abc big 1 varepsilon dlya e gt 0 displaystyle varepsilon gt 0 vinikaye pri e w log rad a b c displaystyle varepsilon frac omega log big operatorname rad abc big Ce nadihnulo Baker 2004 zaproponuvati chitkishu formu abc gipotezi a same c lt k rad a b c log rad a b c w w displaystyle c lt kappa operatorname rad abc frac Big log big operatorname rad abc big Big omega omega de k ye absolyutnoyu konstantoyu Pislya kilkoh obchislyuvalnih eksperimentiv vin viyaviv sho znachennya 6 5 displaystyle 6 5 bulo dopustimim dlya k Cya versiya nazivayetsya yavnoyu gipotezoyu abc Bejker 1998 takozh opisav gipotezi sho b dalo verhnyu mezhu na c vidu K W a b c rad a b c displaystyle K Omega abc operatorname rad abc de W n zagalna kilkist prostih mnozhnikiv n i O rad a b c 8 a b c displaystyle O big operatorname rad abc Theta abc big de 8 n kilkist cilih chisel do n yaki dilyatsya lishe na prosti chisla sho dilyat n Robert Styuart ta Tenanbaum 2014 zaproponuvali bilsh tochnu nerivnist bazuyuchis na Robert ta Tenanbaum 2013 Nehaj k rad abc Voni pripustili sho isnuye konstanta C1 taka sho c lt k exp 4 3 log k log log k 1 log log log k 2 log log k C 1 log log k displaystyle c lt k exp left 4 sqrt frac 3 log k log log k left 1 frac log log log k 2 log log k frac C 1 log log k right right vikonuyetsya todi koli isnuye stala C 2 taka sho c gt k exp 4 3 log k log log k 1 log log log k 2 log log k C 2 log log k displaystyle c gt k exp left 4 sqrt frac 3 log k log log k left 1 frac log log log k 2 log log k frac C 2 log log k right right vikonuyetsya neskinchenno chasto Broukin ta Bzhezinskij 1994 sformulyuvali versiyu abc gipotezu dlya cilih chisel n gt 2 Zayavleni dovedennyaLyusyen Shpiro zaproponuvav rishennya v 2007 roci ale nevdovzi u nomu znajshli pomilku Z serpnya 2012 roku Shinichi Mochizuki zayaviv pro dovedennya gipotezi Shpiro a otzhe abc gipotezi Vin vipustiv seriyu z chotiroh preprintiv yaki vklyuchali novu teoriyu yaku vin nazvav mizhuniversalnoyu teoriyeyu Tejhmyullera IUTT yaka v podalshomu zastosovuyetsya dlya pidtverdzhennya abc gipotezi Statti ne buli prijnyati matematichnoyu spilnotoyu yak dokazi gipotezi Ce vidbulosya ne lishe cherez yihnyu dovzhinu ta skladnist rozuminnya a j tomu sho prinajmni odin konkretnij moment u argumentaciyi buv viznachenij yak progalina deyakimi inshimi ekspertami Nezvazhayuchi na te sho kilka matematikiv ruchalisya za pravilnist dovedennya i namagalisya pokazati svoye rozuminnya cherez seminari na IUTT yim ne vdalosya perekonati spilnotu matematikiv teoriyi chisel U berezni 2018 roku Piter Sholce ta Yakob Stiks vidvidali Kioto dlya obgovorennya z Mochizuki Hocha voni ne usunuli rozbizhnosti voni chitkishe yih sformulyuvali Sholce ta Stiks napisali zvit v yakomu poyasnyuvali pomilku v logici dovedennya ta stverdzhuvali sho otrimana progalina bula nastilki serjoznoyu sho neveliki zmini ne vryatuyut strategiyu dokazu Mochizuki stverdzhuvav sho voni nepravilno zrozumili zhittyevo vazhlivi aspekti teoriyi ta zrobili nekorektni sproshennya 3 kvitnya 2020 roku dvoye matematikiv z Kiotskogo naukovo doslidnogo institutu de pracyuye Mochizuki ogolosili sho zayavlene nim dovedennya bude opublikovano v publikaciyah naukovo doslidnogo institutu matematichnih nauk zhurnali institutu Mochizuki ye golovnim redaktorom cogo zhurnalu ale vin vidmovivsya vid recenzuvannya danoyi statti Kiran Kedlaya ta Edvard Frenkel sprijnyali cyu zayavu zi skepticizmom a zhurnal Nature opisav yiyi yak navryad chi privede bagatoh doslidnikiv do taboru Mochizuki U berezni 2021 roku dovedennya Mochizuki bulo opublikovano v RIMS Divitsya takozhSpisok nerozv yazanih zadach z matematikiSpisok literaturiWhen a b c coprimality of a b c implies of a b c So in this case it does not matter which concept we use Dzherela 1998 Logarithmic forms and the abc conjecture U Gyory Kalman red Number theory Diophantine computational and algebraic aspects Proceedings of the international conference Eger Hungary July 29 August 2 1996 Berlin de Gruyter s 37 44 ISBN 3 11 015364 5 Zbl 0973 11047 2004 Experiments on the abc conjecture Publicationes Mathematicae Debrecen 65 3 4 253 260 Bombieri Enrico 1994 Roth s theorem and the abc conjecture Preprint ETH Zurich neavtoritetne dzherelo Gubler Walter 2006 Heights in Diophantine Geometry New Mathematical Monographs T 4 Cambridge University Press ISBN 978 0 521 71229 3 Zbl 1130 11034 Brzezinski Juliusz 1994 Some remarks on the abc conjecture Math Comp 62 206 931 939 Bibcode 1994MaCom 62 931B doi 10 2307 2153551 JSTOR 2153551 Browkin Jerzy 2000 The abc conjecture U Bambah R P Dumir V C Hans Gill R J red Number Theory Trends in Mathematics Basel Birkhauser s 75 106 ISBN 3 7643 6259 6 Dabrowski Andrzej 1996 On the diophantine equation x A y2 Nieuw Archief voor Wiskunde IV 14 321 324 Zbl 0876 11015 1991 ABC implies Mordell International Mathematics Research Notices 1991 7 99 109 doi 10 1155 S1073792891000144 1997 On Ternary Equations of Fermat Type and Relations with Elliptic Curves Modular Forms and Fermat s Last Theorem New York Springer s 527 548 ISBN 0 387 94609 8 1996 Beyond the last theorem 4 September 26 34 doi 10 1080 10724117 1996 11974985 JSTOR 25678079 2002 Modular forms elliptic curves and the abc conjecture U red A panorama in number theory or The view from Baker s garden Based on a conference in honor of Alan Baker s 60th birthday Zurich Switzerland 1999 Cambridge Cambridge University Press s 128 147 ISBN 0 521 80799 9 Zbl 1046 11035 Barrow Green June Leader Imre red 2008 The Princeton Companion to Mathematics Princeton Princeton University Press s 361 362 681 ISBN 978 0 691 11880 2 1998 ABC Allows Us to Count Squarefrees PDF International Mathematics Research Notices 1998 19 991 1009 doi 10 1155 S1073792898000592 Stark H 2000 ABC implies no Siegel zeros for L functions of characters with negative exponent PDF Inventiones Mathematicae 139 3 509 523 Bibcode 2000InMat 139 509G doi 10 1007 s002229900036 Tucker Thomas 2002 It s As Easy As abc PDF 49 10 1224 1231 CiteSeerX 10 1 1 146 610 Guy Richard K 2004 Unsolved Problems in Number Theory Berlin Springer Verlag ISBN 0 387 20860 7 ISBN 3 540 00203 0 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite encyclopedia title Shablon Cite encyclopedia cite encyclopedia a Propushenij abo porozhnij title dovidka Langevin M 1993 Cas d egalite pour le theoreme de Mason et applications de la conjecture abc Comptes rendus de l Academie des sciences fr 317 5 441 444 1985 Open problems U Chen W W L red Proceedings of the Symposium on Analytic Number Theory London Imperial College Mollin R A 2009 PDF Far East Journal of Mathematical Sciences 33 267 275 ISSN 0972 0871 Zbl 1241 11034 Arhiv originalu PDF za 4 bereznya 2016 Procitovano 14 chervnya 2013 Mollin Richard A 2010 Advanced number theory with applications Boca Raton FL CRC Press ISBN 978 1 4200 8328 6 Zbl 1200 11002 Nitaj Abderrahmane 1996 La conjecture abc Enseign Math fr 42 1 2 3 24 1988 Nouvelles approches du theoreme de Fermat Asterisque Seminaire Bourbaki exp 694 161 165 186 ISSN 0303 1179 MR 0992208 2008 Computational Number Theory The Princeton Companion to Mathematics Princeton University Press s 361 362 1988 Wieferich s criterion and the abc conjecture Journal of Number Theory 30 2 226 237 doi 10 1016 0022 314X 88 90019 4 Zbl 0654 10019 Robert Olivier 2014 A refinement of the abc conjecture PDF Bulletin of the London Mathematical Society 46 6 1156 1166 doi 10 1112 blms bdu069 Robert Olivier Tenenbaum Gerald November 2013 Sur la repartition du noyau d un entier On the distribution of the kernel of an integer Indagationes Mathematicae fr 24 4 802 914 doi 10 1016 j indag 2013 07 007 1986 On the Oesterle Masser conjecture Monatshefte fur Mathematik 102 3 251 257 doi 10 1007 BF01294603 1991 On the abc conjecture Mathematische Annalen 291 1 225 230 doi 10 1007 BF01445201 2001 On the abc conjecture II 108 1 169 181 doi 10 1215 S0012 7094 01 10815 6 Van Frankenhuijsen Machiel 2002 The ABC conjecture implies Vojta s height inequality for curves 95 2 289 302 doi 10 1006 jnth 2001 2769 MR 1924103 Waldschmidt Michel 2015 Lecture on the abc Conjecture and Some of Its Consequences Mathematics in the 21st Century Springer Proceedings in Mathematics amp Statistics T 98 s 211 230 doi 10 1007 978 3 0348 0859 0 13 ISBN 978 3 0348 0858 3 PosilannyaDistributed computing project called en Easy as ABC Easy to follow detailed explanation by Brian Hayes Weisstein Eric W abc Conjecture angl na sajti Wolfram MathWorld Abderrahmane Nitaj s Bart de Smit s ABC Triples webpage http www math columbia edu goldfeld ABC Conjecture pdf The ABC s of Number Theory by en Questions about Number by en Philosophy behind Mochizuki s work on the ABC conjecture on en ABC Conjecture en wiki page linking to various sources of commentary on Mochizuki s papers abc Conjecture Numberphile video News about IUT by Mochizuki Oesterle 1988 Masser 1985 Goldfeld 1996 Fesenko Ivan September 2015 Arithmetic deformation theory via arithmetic fundamental groups and nonarchimedean theta functions notes on the work of Shinichi Mochizuki European Journal of Mathematics 1 3 405 440 doi 10 1007 s40879 015 0066 0 Castelvecchi Davide 9 kvitnya 2020 Mathematical proof that rocked number theory will be published Nature 580 7802 177 Bibcode 2020Natur 580 177C doi 10 1038 d41586 020 00998 2 PMID 32246118 Waldschmidt 2015 Bombieri 1994 Elkies 1991 Van Frankenhuijsen 2002 Langevin 1993 Silverman 1988 Nitaj 1996 Granville Andrew Tucker Thomas 2002 It s As Easy As abc PDF Notices of the AMS 49 10 1224 1231 Pomerance 2008 Granville ta Stark 2000 The ABC conjecture Frits Beukers ABC DAY Leiden Utrecht University 9 September 2005 Mollin 2009 Mollin 2010 Granville 1998 Pasten Hector 2017 Definability of Frobenius orbits and a result on rational distance sets 182 1 99 126 doi 10 1007 s00605 016 0973 2 MR 3592123 arXiv math 0408168 Siegel s theorem and the abc conjecture Riv Mat Univ Parma 7 3 2004 S 323 332 RekenMeeMetABC nl nid arhiv originalu za 22 grudnya 2008 procitovano 3 zhovtnya 2012 ABC Home arhiv originalu za 15 travnya 2014 procitovano 30 kvitnya 2014 100 unbeaten triples Reken mee met ABC 7 listopada 2010 Bombieri ta Gubler 2006 s 404 Finiteness Theorems for Dynamical Systems Lucien Szpiro talk at Conference on L functions and Automorphic Forms on the occasion of Dorian Goldfeld s 60th Birthday Columbia University May 2007 See 26 travnya 2007 Proof of the abc Conjecture Not Even Wrong Ball Peter 10 veresnya 2012 Proof claimed for deep connection between primes Nature doi 10 1038 nature 2012 11378 Procitovano 19 bereznya 2018 Mochizuki Shinichi 4 bereznya 2021 Inter universal Teichmuller Theory IV Log Volume Computations and Set Theoretic Foundations Publications of the Research Institute for Mathematical Sciences 57 1 627 723 doi 10 4171 PRIMS 57 1 4 17 grudnya 2017 The ABC conjecture has still not been proved Procitovano 17 bereznya 2018 Revell Timothy 7 veresnya 2017 Baffling ABC maths proof now has impenetrable 300 page summary New Scientist PDF Arhiv originalu PDF za 8 lyutogo 2020 Procitovano 23 veresnya 2018 updated version of their May report 2020 02 08 u Wayback Machine 28 veresnya 2016 Fukugen Inference 2 Procitovano 30 zhovtnya 2021 15 grudnya 2015 Notes on the Oxford IUT workshop by Brian Conrad Procitovano 18 bereznya 2018 Castelvecchi Davide 8 zhovtnya 2015 The biggest mystery in mathematics Shinichi Mochizuki and the impenetrable proof Nature 526 7572 178 181 Bibcode 2015Natur 526 178C doi 10 1038 526178a PMID 26450038 20 veresnya 2018 Titans of Mathematics Clash Over Epic Proof of ABC Conjecture Quanta Magazine March 2018 Discussions on IUTeich Procitovano 2 zhovtnya 2018 Web page by Mochizuki describing discussions and linking consequent publications and supplementary material Report on Discussions Held during the Period March 15 20 2018 Concerning Inter Universal Teichmuller Theory PDF Procitovano 1 lyutogo 2019 the discussions constitute the first detailed substantive discussions concerning negative positions IUTch July 2018 Comments on the manuscript by Scholze Stix concerning Inter Universal Teichmuller Theory PDF Procitovano 2 zhovtnya 2018 Comments on the manuscript 2018 08 version by Scholze Stix concerning Inter Universal Teichmuller Theory PDF Procitovano 2 zhovtnya 2018 Mochizuki s proof of ABC conjecture Procitovano 13 lipnya 2021