Вода на Місяці — це вода, яка перебуває на Місяці незалежно від форми. Як виявила обсерваторія SOFIA (спільний проект 80/20 НАСА та Німецького аерокосмічного центру, DLR) у 2020 році, дифузні молекули води в низьких концентраціях можуть зберігатися на освітленій сонцем поверхні Місяця. Поступово водяна пара розкладається сонячним світлом, через що водень і кисень втрачаються у космосі. Вчені знайшли водяний лід у холодних, постійно затінених кратерах на полюсах Місяця. Молекули води також присутні в надзвичайно тонкій атмосфері Місяця.
Експеримент НАСА Ice-Mining Experiment-1 (планується запустити у рамках місії [en] не раніше ніж наприкінці 2024 року) покликаний відповісти на питання, чи є водяний лід у придатних для використання кількостях у південному полярному регіоні.
Вода (H2O) і пов'язана з нею гідроксильна група (-OH) існують у хімічно зв'язаних формах у вигляді гідратів і гідроксидів з місячними мінералами (а не у формі вільної води), і дані переконливо свідчать про те, що це відбувається в низьких концентраціях на більшості поверхні Місяця. Фактично, розраховано, що адсорбована вода існує в слідових концентраціях від 10 до 1000 [en]. Протягом другої половини 20-го сторіччя на основі різноманітних спостережень було накопичено непереконливі докази існування вільного водяного льоду на полюсах Місяця, які свідчать про наявність зв'язаного водню.
18 серпня 1976 року радянський зонд «Луна-24» здійснив посадку в Морі Криз, взявши проби з глибин 118, 143 і 184 см місячного реголіту, і повернув їх на Землю. У лютому 1978 року лабораторний аналіз цих зразків показав, що вони містили 0,1 % (1000 ppm) води за масою. Спектральні вимірювання показали мінімуми поблизу 3, 5 і 6 мкм, характерні смуги валентних коливань для молекул води, інтенсивність яких у два-три рази перевищує рівень шуму.
24 вересня 2009 року [en] Chandra's Altitudinal Composition Explorer (CHACE) Індійської організації космічних досліджень і Moon Mineralogy Mapper (M3) НАСА на борту зонда Чандраян-1 виявили особливості поглинання на довжинах хвиль 2,8–3,0 мкм на поверхні Місяця. 14 листопада 2008 року Чандраян-1 випустив зонд Moon Impact Probe для зіткнення у кратері Шеклтон, що допомогло підтвердити наявність водяного льоду. Для силікатних тіл такі особливості зазвичай приписують гідроксильним та/або водовмісним матеріалам. У серпні 2018 року НАСА підтвердило, що M3 показав наявність водяного льоду на поверхні полюсів Місяця. 26 жовтня 2020 року обсерваторія SOFIA підтвердила наявність води в концентраціях від 100 до 412 частин на мільйон (0,01 %-0,042 %) на освітленій сонцем поверхні Місяця.
Вода могла бути доставлена на Місяць протягом геологічних масштабів часу внаслідок регулярного бомбардування водоносними кометами, астероїдами та метеороїдами або безперервно вироблялася на місці іонами водню (протонами) сонячного вітру, що діють на мінерали, які містять кисень.
Пошуки присутності місячної води привернули значну увагу та спонукали до кількох недавніх місячних місій, головним чином через корисність води для довгострокового проживання на Місяці.
Історія спостережень
20 століття
Про можливість існування льоду на дні полярних місячних кратерів вперше припустили в 1961 році дослідники Каліфорнійського технологічного інституту Кеннет Уотсон, Брюс С. Мюррей і Гаррісон Браун.
Земні радіолокаційні вимірювання використовувалися для виявлення областей, які знаходяться в постійній тіні і, отже, мають потенціал для укриття місячного льоду. Оцінки загальної площі затінених приполярних областей від 87,5 градусів широти становлять 1030 and 2550 км2 для північного та південного полюсів відповідно. Подальше комп'ютерне моделювання, що охоплює додатковий рельєф, показало, що в постійній тіні може бути площа до 14000 км2.
Програма Аполлон
Хоча сліди води були виявлені у зразках місячних порід, зібраних астронавтами Аполлона, припускалося, що це результат забруднення, і більшість місячної поверхні вважалося повністю сухою. Однак у 2008 році дослідження зразків місячних порід виявило докази молекул води, захоплених у вулканічних скляних кульках.
Перші прямі докази наявності водяної пари поблизу Місяця були отримані в ході експерименту Apollo 14 ALSEP Suprathermal Ion Detector Experiment, SIDE, 7 березня 1971 року. Мас-спектрометр спостерігав серію спалахів іонів водяної пари на поверхні Місяця поблизу місця посадки Аполлона-14.
Луна-24
У лютому 1978 року радянські вчені М. Ахманова, Б. Дементьєв і М. Марков з Інституту геохімії та аналітичної хімії імені В. І. Вернадського опублікували статтю, в якій стверджувалося, що вода виявлена з достатньою впевненістю. Їхнє дослідження показало, що зразки, повернуті на Землю радянським зондом «Луна-24» у 1976 році, містили близько 0,1 % води за масою, як видно з інфрачервоної абсорбційної спектроскопії (довжина хвилі приблизно 3 мкм), на рівні виявлення приблизно в 10 разів вище порогового значення, хоча Кроттс зазначає, що «автори… не бажали ставити свою репутацію на абсолютну заяву про те, що земного забруднення вдалося повністю уникнути». Це було б першим прямим вимірюванням вмісту води на поверхні Місяця, хоча цей результат не був підтверджений іншими дослідниками.
Клементина
Пропонований доказ наявності водяного льоду на Місяці надійшов у 1994 році з зонда США «Клементина». У дослідженні, відомому як «експеримент з бістатичним радаром», Клементина використовувала свій передавач для передачі радіохвиль у темні області південного полюса Місяця. Відлуння цих хвиль були виявлені великими тарілчастими антенами мережі дальнього космічного зв'язку на Землі. Величина та поляризація цих відлунь відповідали крижаній, а не скелястій поверхні, але результати були непереконливими, і їх значення було поставлене під сумнів.
Lunar Prospector
Зонд Lunar Prospector, запущений у 1998 році, використовував нейтронний спектрометр для вимірювання кількості водню в місячному реголіті поблизу полярних регіонів. Він зміг визначити надлишок та розташування водню з точністю до 50 частин на мільйон і виявив підвищену концентрацію водню на північному та південному полюсах Місяця. Це було інтерпретовано як вказівка на значну кількість водяного льоду, захопленого в постійно затінених кратерах, але також могло бути пов'язано з наявністю гідроксильного радикалу (•OH), хімічно зв'язаного з мінералами. Ґрунтуючись на даних Clementine та Lunar Prospector, вчені НАСА підрахували, що за наявності поверхневого водного льоду його загальна кількість може сягати 1-3 кубічних кілометрів. У липні 1999 року, наприкінці своєї місії, зонд Lunar Prospector навмисно врізався в кратер Шумейкер, поблизу південного полюса Місяця, в надії, що буде вивільнено помітну кількість води. Однак спектроскопічні спостереження з наземних телескопів не виявили спектрального підпису води.
Кассіні–Гюйгенс
Більше підозр щодо існування води на Місяці були породжені непереконливими даними, отриманими місією Кассіні-Гюйгенс, яка пролетіла повз Місяць у 1999 році.
21 століття
Deep Impact
У 2005 році спостереження за Місяцем, виконані космічним апаратом Deep Impact, дали непереконливі спектроскопічні дані, які свідчать про наявність води на Місяці. У 2006 році спостереження за допомогою планетарного радара Аресібо показали, що деякі з показів приполярних радарів апарата Клементина, які раніше вважалися ознаками льоду, натомість можуть бути пов'язані з скелями, викинутими з молодих кратерів. Якщо це правда, то нейтронні результати Lunar Prospector були в основному від водню в формах, відмінних від льоду, таких як захоплені молекули водню або органічні речовини. Тим не менш, інтерпретація даних Аресібо не виключає можливості існування водяного льоду в постійно затінених кратерах. У червні 2009 року космічний корабель НАСА Deep Impact, який тепер отримав назву EPOXI, здійснив додаткові підтверджувальні вимірювання зв'язаного водню під час іншого обльоту Місяця.
Кагуя
У рамках своєї програми картографування Місяця японський зонд Кагуя, запущений у вересні 2007 року для 19-місячної місії, здійснив гамма-спектрометричні спостереження з орбіти, якими можна вимірювати кількість різних елементів на поверхні Місяця. Датчики зображення високої роздільної здатності японського зонда Кагуя не змогли виявити жодних ознак водяного льоду в постійно затінених кратерах навколо південного полюса Місяця, і він завершив свою місію, врізавшись у поверхню Місяця, щоб вивчити вміст шлейфу викиду. Результати вимірювань, отримані Кагуя, пояснювались як присутністю чистого анортозиту, так і сублімацією летких речовин (імовірно льоду) з глибини 10-20 см від поверхні.
Чан'е 1
Орбітальний апарат Китайської Народної Республіки Чан'е-1, запущений у жовтні 2007 року, зробив перші детальні фотографії деяких полярних областей, де, ймовірно, знайдена вода у формі криги. Результати обробки даних з мікрохвильового радіометра показали можливість існування 2,8 % водяного льоду в реголіті кратера Кабео. Також показано існування іонів у екзосфері Місяця.
Чандраян-1
Індійський космічний корабель Чандраян-1 випустив зонд Moon Impact Probe (MIP), який зіткнувся з кратером Шеклтон на південному полюсі Місяця о 20:31 14 листопада 2008 року, вивільнивши підповерхневі уламки, які проаналізовані на наявність водяного льоду. Під час 25-хвилинного спуску Chandra's Altitudinal Composition Explorer (CHACE) зафіксував докази наявності води в 650 мас-спектрах, зібраних у тонкій атмосфері над поверхнею Місяця, і лініях поглинання гідроксилу у відбитому сонячному світлі.
25 вересня 2009 року НАСА оголосило, що дані, надіслані з його M3, підтвердили існування водню на великих ділянках поверхні Місяця, хоча і в низьких концентраціях і у формі гідроксильної групи ( · OH) хімічно зв'язаної із ґрунтом. Це підтверджує попередні дані спектрометрів на борту зондів Deep Impact і Cassini. На Місяці ця особливість розглядається як широко розповсюджене поглинання, яке виявляється найсильнішим у більш низьких високих широтах і в кількох свіжих кратерах у польовому шпаті. Загальна відсутність кореляції цієї особливості даних M3 від сонячного освітленні з даними нейтронного спектрометра щодо надлишку Н свідчить про те, що утворення та утримання OH і H2O є поточним процесом на поверхні.
Хоча результати M3 узгоджуються з нещодавніми висновками інших приладів НАСА на борту Чандраян-1, виявлені молекули води в полярних регіонах Місяця не узгоджуються з наявністю товстих відкладень майже чистого водяного льоду в межах кількох метрів від поверхні Місяця, але це не виключає наявності невеликих (<~ 10 см), окремих шматків льоду, змішаних з реголітом. Додатковий аналіз за допомогою M3, опублікований у 2018 році, надав більш прямі докази наявності водяного льоду біля поверхні в межах 20° широти від обох полюсів. На додаток до спостережень за відбитим світлом від поверхні, вчені використовували можливості M3 з дослідження поглинання у ближньому інфрачервоному діапазоні в постійно затінених областях полярних регіонів, щоб знайти спектри поглинання, які відповідають льоду. У районі північного полюса водяний лід розкиданий у вигляді плям, тоді як навколо південного полюса він більше зосереджений в одному тілі. Оскільки ці полярні області не зазнають високих температур (вище 373 Кельвінів), було припущено, що полюси діють як холодні пастки, де на Місяці збирається випарувана вода.
У березні 2010 року було повідомлено, що [en] на борту Чандраян-1 виявив понад 40 постійно затемнених кратерів поблизу північного полюса Місяця, які, за гіпотезою, містять близько 600 мільйонів метричних тонн водяного льоду. Високе відношення кругової поляризації радара не є однозначною діагностикою нерівностей або льоду; наукова група повинна взяти до уваги середовище появи високого відношення кругової поляризації сигналу, щоб інтерпретувати його причину. Лід має бути відносно чистим і товщиною принаймні пару метрів, щоб дати такий підпис. Розрахункова кількість потенційно наявного водяного льоду порівнянна з кількістю, оціненою за даними нейтронів попередньої місії Lunar Prospector.
Lunar Reconnaissance Orbiter
9 жовтня 2009 р. верхній ступінь ракети-носія Atlas V був спрямований на зіткнення з кратером Кабео об 11:31 UTC, а потім космічний корабель Lunar Crater Observation and Sensing Satellite (LCROSS) пролетів через шлейф викиду. LCROSS виявив значну кількість гідроксильних груп у матеріалі, викинутому з південного полярного кратера ударним зондом; це можна віднести до водомістких матеріалів — того, що виглядає як «майже чистий кристалічний водний лід», змішаний з реголітом. Насправді було виявлено хімічну групу гідроксилу ( · OH), яка, ймовірно, походить від води, але також може бути гідратами, які є неорганічними солями, що містять хімічно зв'язані молекули води. Природа, концентрація та розподіл цього матеріалу потребують подальшого аналізу. Головний науковий співробітник місії Ентоні Колапрет заявив, що викид, схоже, включає низку дрібнозернистих частинок майже чистого кристалічного водяного льоду. Пізніший остаточний аналіз показав, що концентрація води становить «5,6 ± 2,9 % маси».
Інструмент [en] на борту орбітального апарату Lunar Reconnaissance Orbiter (LRO) спостерігав шлейф уламків від удару орбітального апарату LCROSS, і було зроблено висновок, що водяний лід має бути у формі невеликих (< ~10 см), окремих шматочків, розподілених по всьому реголіту, або у вигляді тонкого криханого покриття на зернах. Це, у поєднанні з моностатичними радіолокаційними спостереженнями, свідчить про те, що водяний лід у постійно затінених областях місячних полярних кратерів, навряд чи присутній у формі товстих відкладень чистого льоду.
Дані, отримані приладом Lunar Exploration Neutron Detector (LEND) на борту LRO, показують кілька областей, де потік [en] від поверхні придушений, що вказує на підвищений вміст водню. Подальший аналіз даних LEND свідчить про те, що вміст води в полярних регіонах безпосередньо не визначається умовами освітленості поверхні, оскільки освітлені та затінені регіони не виявляють істотної різниці в оцінюваному вмісті води. Відповідно до спостережень лише цим інструментом, «постійна низька температура поверхні холодних пасток не є необхідною та достатньою умовою для збільшення вмісту води в реголіті».
Дослідження кратера Шеклтон на південному полюсі Місяця лазерним висотоміром LRO показує, що до 22 % поверхні цього кратера вкрито льодом.
Розплавні включення в зразках Аполлона-17
У травні 2011 року Ерік Горі та ін. повідомили про 615—1410 ppm води в розплавних включеннях у місячному зразку 74220, відомому як «помаранчевий скляний ґрунт» з високим вмістом титану вулканічного походження, зібраному під час місії «Аполлон-17» у 1972 році.
Цю концентрацію можна порівняти з концентрацією у магмі у верхній мантії Землі. Незважаючи на значний селенологічний інтерес, це оголошення мало втішить потенційних колоністів Місяця. Зразок виник за багато кілометрів під поверхнею, і доступ до включень настільки важкий, що знадобилося 39 років, щоб виявити їх за допомогою найсучаснішого інструменту іонного мікрозонду.
Стратосферна обсерваторія інфрачервоної астрономії
У жовтні 2020 року астрономи повідомили про виявлення молекулярної води на освітленій сонцем поверхні Місяця кількома незалежними науковими групами, включаючи Стратосферну обсерваторію інфрачервоної астрономії (SOFIA). Розрахункова кількість становить приблизно від 100 до 400 частин на мільйон з розподілом у невеликому діапазоні широт, що, ймовірно, є результатом місцевої геології, а не глобального явища. Було припущено, що виявлена вода зберігається в шматках скла або в пустотах між зернами, захищеною від суворого місячного середовища, що дозволяє воді залишатися на поверхні Місяця. Використовуючи дані Lunar Reconnaissance Orbiter, було показано, що окрім великих, постійно затінених областей у полярних областях Місяця, існує багато некартованих холодних пасток, які значно збільшують області, де може накопичуватися лід. Встановлено, що приблизно 10–20 % постійної площі холодної пастки для води міститься в «мікрохолодних пастках», які знаходяться в тіні в масштабах від 1 км до 1 см, на загальній площі ~40 000 км2, приблизно 60 % яка знаходиться на півдні, і більшість холодних пасток для водяного льоду знаходяться на широтах >80° через постійну тінь.
26 жовтня 2020 року: у статті, опублікованій в Nature Astronomy, команда вчених використовувала SOFIA, інфрачервоний телескоп, встановлений усередині реактивного літака 747, щоб провести спостереження, які показали однозначні докази наявності води в тих частинах Місяця, де світить Сонце. «Це відкриття показує, що вода може бути розподілена по місячній поверхні, а не обмежуватися холодними затіненими місцями поблизу місячних полюсів», — сказав [en], директор відділу астрофізики НАСА.
Lunar IceCube
[en] — це CubeSat розміром 6U (шість одиниць), який мав оцінити кількість і склад місячного льоду за допомогою спектрометра інфрачервоного зображення, розробленого Центром космічних польотів Годдарда НАСА. Космічний корабель успішно відділився від Артеміда-1 17 листопада 2022 року, але незабаром після цього не зміг вийти на зв'язок і вважається втраченим.
PRIME-1
Спеціальний локальний експеримент НАСА під назвою [en] планується висадити на Місяць не раніше листопада 2023 року поблизу кратера Шеклтон на Південному полюсі Місяця. Місія буде бурити у пошуках водяного льоду.
Lunar Trailblazer
Супутник [en], запланований на запуск у 2025 році, є частиною програми НАСА Small Innovative Missions for Planetary Exploration (SIMPLEx). Супутник оснащено двома інструментами — спектрометром високої роздільної здатності, який виявлятиме та картографує різні форми води, і термокартографом. Основні цілі місії полягають у тому, щоб охарактеризувати форму місячної води, її кількість і місце; визначити, як місячні леткі речовини змінюються та переміщуються з часом; виміряти, скільки і яка форма води існує в постійно затінених областях Місяця; а також оцінити, як відмінності у відбивній здатності та температурі місячних поверхонь впливають на концентрацію місячної води.
Зонд Чан'е-5
Дослідження, опубліковане в журналі Nature Geoscience у квітні 2023 року, показало, що трильйони фунтів води можуть бути розкидані по всьому Місяцю, потрапивши в крихітні скляні кульки, які могли утворитися, коли астероїди зтикалися з місячною поверхнею. Дослідження провели китайські вчені, які проаналізували перші зразки місячного ґрунту, повернуті на Землю з 1970-х років. Дослідники виявили, що скляні кульки містять значну кількість води, що вказує на новий механізм зберігання води на поверхні Місяця. Отримані дані можуть бути корисними для майбутніх місій на Місяць шляхом виявлення потенційних ресурсів, які можна перетворити на питну воду або ракетне паливо.
Можливий кругообіг води
Утворення
Місячна вода має два потенційних джерела: водоносні комети (та інші тіла), що стикаються з Місяцем, і утворення на місці. Існує теорія, що останнє може статися, коли іони водню (протони) у сонячному вітрі хімічно поєднуються з атомами кисню, присутніми в місячних мінералах (оксидах, силікатах тощо), утворюючи невелику кількість води, захопленої кристалами мінералів. решітки або як гідроксильні групи, потенційні попередники води. (Цю воду мінералів не слід плутати з водяним льодом.)
Гідроксильні поверхневі групи (X–OH), утворені реакцією протонів (H+) з атомами кисню, доступними на поверхні оксиду (X=O), можуть бути далі перетворені в молекули води (H2O), які будуть адсорбовані на поверхні оксидного мінералу. Баланс мас передбачуваного хімічного перегрупування на поверхні оксиду можна схематично записати так:
- 2 X–OH → X=O + X + H 2 O
або
- 2 X–OH → X–O–X + H 2 O
де «X» являє собою поверхню оксиду.
Для утворення однієї молекули води необхідна наявність двох сусідніх гідроксильних груп або каскад послідовних реакцій одного атома кисню з двома протонами.
Захоплення
Сонячне випромінювання зазвичай виносить вільну воду або водяний лід з місячної поверхні, розщеплюючи її на водень і кисень, які потім виходять у космос. Однак через дуже невеликий осьовий нахил осі обертання Місяця до площини екліптики (1,5 °), деякі глибокі кратери поблизу полюсів ніколи не отримують сонячного світла і постійно затінені (див., наприклад, кратер Шеклтон і кратер [en]). Температура в цих регіонах ніколи не піднімається вище приблизно 100 K (близько −170 ° Цельсія), і будь-яка вода, яка зрештою потрапила в ці кратери, могла залишатися замерзлою та стабільною протягом надзвичайно тривалих періодів часу — можливо, мільярдів років, залежно від стабільності орієнтації осі Місяця.
Хоча відкладення льоду можуть бути товстими, вони, швидше за все, змішані з реголітом, можливо, у вигляді шаруватих форм.
Транспорт
Хоча вільна вода не може зберігатися в освітлених областях Місяця, будь-яка така вода, що утворюється там під дією сонячного вітру на місячні мінерали, може мігрувати до постійно холодних полярних областей і накопичуватися там у вигляді льоду, можливо, на додаток до будь-якого льоду, принесеного ударами комет.
Гіпотетичний механізм транспортування / захоплення води (якщо такий є) залишається невідомим: дійсно, місячні поверхні, які безпосередньо піддаються впливу сонячного вітру, де відбувається утворення води, занадто гарячі, щоб дозволити захоплення конденсацією води (і сонячне випромінювання також постійно розкладає воду), тоді як утворення води у неосвітлених (або набагато менше освітлених) ділянках, які не піддаються прямому впливу Сонця, відсутнє або значно менше. Враховуючи очікуваний короткий час життя молекул води в освітлених регіонах, коротка відстань транспортування в принципі збільшить ймовірність захоплення. Іншими словами, молекули води, які утворюються поблизу холодного темного полярного кратера, повинні мати найвищу ймовірність вижити й потрапити в пастку.
Рідка вода
4–3,5 мільярда років тому на поверхні Місяця могла бути достатня кількість атмосфери та рідкої води. Теплі регіони з підвищеним тиском у надрах Місяця все ще можуть містити рідку воду.
Наявність великої кількості води на Місяці була б важливим фактором для того, щоб зробити [en] економічно ефективним, оскільки транспортування води (або водню та кисню) із Землі було б непомірно дорогим. Якщо майбутні дослідження виявлять, що кількість буде особливо великою, водяний лід можна буде видобувати для отримання рідкої води для пиття та розмноження рослин, а також воду можна буде розділити на водень і кисень за допомогою електростанцій, обладнаних сонячними панелями, або ядерного генератора, забезпечення кисню для дихання, а також компонентів ракетного палива. Водневий компонент водяного льоду також можна використовувати для вилучення оксидів із місячного ґрунту та збору ще більшої кількості кисню.
Аналіз місячного льоду також надасть наукову інформацію про історію ударів Місяця та велику кількість комет і астероїдів у ранній Внутрішній Сонячній системі.
Право власності
Гіпотетичне відкриття придатної для використання кількості води на Місяці може викликати правові питання про те, кому належить вода і хто має право її використовувати. Договір Організації Об'єднаних Націй з космосу не забороняє використання місячних ресурсів, але запобігає привласненню Місяця окремими націями і, як правило, тлумачиться як заборона країнам претендувати на право власності на місячні ресурси.
Договір про Місяць конкретно передбачає, що експлуатація місячних ресурсів регулюється «міжнародним режимом», але цей договір був ратифікований лише кількома країнами, і в першу чергу тими, які не мають можливості самостійного космічного польоту.
Люксембург і США надали своїм громадянам право на видобуток і володіння космічними ресурсами, включаючи ресурси Місяця. Президент США Дональд Трамп прямо заявив про це у своєму розпорядженні від 6 квітня 2020 р.
Див. також
- Місії, що складають карту місячної води
- Чандраян-1
- Чандраян-2
- [en]
- [en]
- [en]
- Lunar Reconnaissance Orbiter
Примітки
- NASA - SOFIA discovers water on sunlit surface of the Moon. NASA. 26 October 2020.
- Pinson, Jerald (20 листопада 2020). Moon May Hold Billions of Tons of Subterranean Ice at Its Poles. Eos. 101. doi:10.1029/2020eo151889. ISSN 2324-9250.
- Ice Confirmed at the Moon's Poles. NASA Jet Propulsion Laboratory (JPL). Процитовано 13 квітня 2023.
- Is There an Atmosphere on the Moon? | NASA. nasa.gov. 7 June 2013. Процитовано 25 травня 2015.
- NASA - NSSDCA - Spacecraft - Details.
- Lucey, Paul G. (23 October 2009). A Lunar Waterworld. Science. 326 (5952): 531—532. Bibcode:2009Sci...326..531L. doi:10.1126/science.1181471. PMID 19779147.
- Clark, Roger N. (23 October 2009). Detection of Adsorbed Water and Hydroxyl on the Moon. Science. 326 (5952): 562—564. Bibcode:2009Sci...326..562C. doi:10.1126/science.1178105. PMID 19779152.
- Akhmanova, M; Dement'ev, B; Markov, M (February 1978). Water in the regolith of Mare Crisium (Luna-24)?. Geokhimiya (рос.) (285).
- Akhmanova, M; Dement'ev, B; Markov, M (1978). Possible Water in Luna 24 Regolith from the Sea of Crises. Geochemistry International. 15 (166).
- . Bangalore, India. ISBN .
{{}}
: Пропущений або порожній|title=
() - In Depth | Chandrayaan 1. NASA Solar System Exploration. Процитовано 21 серпня 2023.
- Pieters, C. M.; Goswami, J. N.; Clark, R. N.; Annadurai, M.; Boardman, J.; Buratti, B.; Combe, J. -P.; Dyar, M. D.; Green, R. (2009). Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1. Science. 326 (5952): 568—572. Bibcode:2009Sci...326..568P. doi:10.1126/science.1178658. PMID 19779151.
- Ice Confirmed at the Moon's Poles. NASA Jet Propulsion Laboratory (JPL). Процитовано 13 квітня 2023.
- Water on the Moon: Direct evidence from Chandrayaan-1's Moon Impact Probe. Published on 2010/04/07.
- NASA's SOFIA Discovers Water on Sunlit Surface of Moon. NASA. 26 October 2020. Процитовано 26 October 2020.
- Elston, D.P. (1968) «Character and Geologic Habitat of Potential Deposits of Water, Carbon and Rare Gases on the Moon», Geological Problems in Lunar and Planetary Research, Proceedings of AAS/IAP Symposium, AAS Science and Technology Series, Supplement to Advances in the Astronautical Sciences., p. 441
- . lunar.arc.nasa.gov. Архів оригіналу за 14 вересня 2016. Процитовано 25 травня 2015.
- The Moon. nssdc.gsfc.nasa.gov. Процитовано 7 липня 2022.
- Watson, K., B. C. Murray, and H. Brown (1961), The Behavior of Volatiles on the Lunar Surface, J. Geophys. Res., 66(9), 3033–3045.
- Margot, J. L. (1999). Topography of the Lunar Poles from Radar Interferometry: A Survey of Cold Trap Locations. Science. 284 (5420): 1658—1660. Bibcode:1999Sci...284.1658M. CiteSeerX 10.1.1.485.312. doi:10.1126/science.284.5420.1658. ISSN 0036-8075. PMID 10356393.
- Linda, Martel (4 червня 2003). The Moon's Dark, Icy Poles.
- «It's Official: Water Found on the Moon», Space.com, 23 September 2009
- Moon Once Harbored Water, Lunar Lava Beads Show, Scientific American, July 9, 2008
- Freeman, J.W., Jr., H.K. Hills., R.A. Lindeman, and R.R. Vondrak, Observations of Water Vapor at the Lunar Surface, The Moon, 8, 115—128, 1973
- Crotts, Arlin (2012). Water on The Moon, I. Historical Overview. arXiv:1205.5597v1 [astro-ph.EP].
- Crotts, Arlin (October 12, 2009). «Water on the Moon», The Space Review. Retrieved 13 November 2023
- Spudis, Paul D. (June 1, 2012). «Who discovered water on the Moon?», [en]. Retrieved 13 November 2023.
- The Clementine bistatic radar experiment — Science
- Clementine Probe [ July 24, 2008, у Wayback Machine.]
- Simpson, Richard A.; Tyler, G. Leonard (1999). Reanalysis of Clementine bistatic radar data from the lunar South Pole. Journal of Geophysical Research. 104 (E2): 3845. Bibcode:1999JGR...104.3845S. doi:10.1029/1998JE900038.
{{}}
:|hdl-access=
вимагає|hdl=
() - Campbell, Donald B.; Campbell, Bruce A.; Carter, Lynn M.; Margot, Jean-Luc; Stacy, Nicholas J. S. (2006). No evidence for thick deposits of ice at the lunar south pole (PDF). Nature. 443 (7113): 835—7. Bibcode:2006Natur.443..835C. doi:10.1038/nature05167. PMID 17051213.
- . 31 серпня 2001. Архів оригіналу за 9 грудня 2006.
- Lunar Prospector Science Results NASA
- Prospecting for Lunar Water [ 2010-03-18 у Wayback Machine.], NASA
- Neutron spectrometer results [ January 17, 2009, у Wayback Machine.]
- No water ice detected from Lunar Prospector, NASA website
- Kemm, Kelvin (9 жовтня 2009). Evidence of water on the Moon, Mars alters planning for manned bases. Engineering News. Процитовано 9 жовтня 2009.
- (Пресреліз). JPL. 17 August 1999. Архів оригіналу за 25 July 2010. Процитовано 18 September 2011.
- Paul Spudis (2006). Ice on the Moon. The Space Review. Процитовано 27 вересня 2013.
- Kaguya Gamma Ray Spectrometer, JAXA
- Japan's now-finished lunar mission found no water ice. Spaceflight Now. 6 липня 2009. Процитовано 27 вересня 2013.
- Japanese probe crashes into Moon. BBC News. 11 червня 2009. Процитовано 27 вересня 2013.
- Haruyama, Junichi; Yamamoto, Satoru; Yokota, Yasuhiro; Ohtake, Makiko; Matsunaga, Tsuneo (16 серпня 2013). An explanation of bright areas inside Shackleton Crater at the Lunar South Pole other than water‐ice deposits. Geophysical Research Letters (англ.). Т. 40, № 15. с. 3814—3818. doi:10.1002/grl.50753. ISSN 0094-8276. Процитовано 29 квітня 2024.
- Ohtake, Makiko; Nakauchi, Yusuke; Tanaka, Satoshi; Yamamoto, Mitsuo; Onodera, Keisuke; Nagaoka, Hiroshi; Nishitani, Ryusuke (2024-03). Plumes of Water Ice/Gas Mixtures Observed in the Lunar Polar Region. The Astrophysical Journal (англ.). Т. 963, № 2. с. 124. doi:10.3847/1538-4357/ad1be3. ISSN 0004-637X. Процитовано 29 квітня 2024.
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом () - «Who's Orbiting the Moon?» [ 2010-02-21 у Wayback Machine.], NASA, February 20, 2008
- Meng, ZhiGuo; Chen, ShengBo; Osei, Edward Matthew; Wang, ZiJun; Cui, TengFei (2010-12). Research on water ice content in Cabeus crater using the data from the microwave radiometer onboard Chang’e-1 satellite. Science China Physics, Mechanics and Astronomy (англ.). Т. 53, № 12. с. 2172—2178. doi:10.1007/s11433-010-4159-y. ISSN 1674-7348. Процитовано 29 квітня 2024.
- Jin, Shuanggen; Arivazhagan, Sundaram; Araki, Hiroshi (2013-07). New results and questions of lunar exploration from SELENE, Chang’E-1, Chandrayaan-1 and LRO/LCROSS. Advances in Space Research. Т. 52, № 2. с. 285—305. doi:10.1016/j.asr.2012.11.022. ISSN 0273-1177. Процитовано 29 квітня 2024.
- . The Hindu. 15 листопада 2008. Архів оригіналу за 16 грудня 2008.
- MIP detected water on Moon way back in June: ISRO Chairman. The Hindu. 25 вересня 2009.
- «Spacecraft see 'damp' Moon soils», BBC, 24 September 2009
- Leopold, George (13 листопада 2009). NASA confirms water on Moon. Процитовано 18 листопада 2009.
- «Moon crash will create six-mile plume of dust as Nasa searches for water», The Times, October 3, 2009
- Discovery of water on Moon boosts prospects for permanent lunar base, The Guardian, 24 September 2009
- Pieters, C. M.; Goswami, J. N.; Clark, R. N.; Annadurai, M.; Boardman, J.; Buratti, B.; Combe, J.-P.; Dyar, M. D.; Green, R. (23 жовтня 2009). Character and Spatial Distribution of OH/H 2 O on the Surface of the Moon Seen by M 3 on Chandrayaan-1. Science (англ.). Т. 326, № 5952. с. 568—572. doi:10.1126/science.1178658. ISSN 0036-8075. Процитовано 29 квітня 2024.
- Neish, C. D.; D. B. J. Bussey; P. Spudis; W. Marshall; B. J. Thomson; G. W. Patterson; L. M. Carter. (13 January 2011). The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site. Journal of Geophysical Research: Planets. 116 (E01005): 8. Bibcode:2011JGRE..116.1005N. doi:10.1029/2010JE003647. Процитовано 26 березня 2012.
the Mini-RF instruments on ISRO's Chandrayaan-1 and NASA's Lunar Reconnaissance Orbiter (LRO) obtained S band (12,6 cm (5,0 in)) synthetic aperture radar images of the impact site at 150 and 30 m resolution, respectively. These observations show that the floor of Cabeus has a circular polarization ratio (CPR) comparable to or less than the average of nearby terrain in the southern lunar highlands. Furthermore, <2 % of the pixels in Cabeus crater have CPR values greater than unity. This observation is not consistent with the presence of thick deposits of nearly pure water ice within a few meters of the lunar surface, but it does not rule out the presence of small (<~10 cm (3,9 in)), discrete pieces of ice mixed in with the regolith.
- Rincon, Paul (21 August 2018). Water ice 'detected on Moon's surface'. BBC. Процитовано 21 August 2018.
- Shuai Li; Paul G. Lucey; Ralph E. Milliken; Paul O. Hayne; Elizabeth Fisher; Jean-Pierre Williams; Dana M. Hurley; Richard C. Elphic (20 August 2018). Direct evidence of surface exposed water ice in the lunar polar regions. Proceedings of the National Academy of Sciences of the United States of America. 115 (36): 8907—8912. Bibcode:2018PNAS..115.8907L. doi:10.1073/pnas.1802345115. PMC 6130389. PMID 30126996.
- «Ice deposits found at Moon's pole». BBC News, 2 March 2010.
- NASA Radar Finds Ice Deposits at Moon's North Pole. NASA. March 2010. Процитовано 26 березня 2012.
- LCROSS mission overview [ 2009-06-13 у Wayback Machine.], NASA
- Lakdawalla, Emily (13 November 2009). . The Planetary Society. Архів оригіналу за 22 January 2010. Процитовано 13 квітня 2010.
- Dino, Jonas; Lunar Crater Observation and Sensing Satellite Team (13 листопада 2009). LCROSS Impact Data Indicates Water on Moon. NASA. Процитовано 14 листопада 2009.
- Moon River: What Water in the Heavens Means for Life on Earth, by , The Huffington Post, November 30, 2009.
- Colaprete, A.; Schultz, P.; Heldmann, J.; Wooden, D.; Shirley, M.; Ennico, K.; Hermalyn, B.; Marshall, W; Ricco, A. (22 October 2010). Detection of Water in the LCROSS Ejecta Plume. Science. 330 (6003): 463—468. Bibcode:2010Sci...330..463C. doi:10.1126/science.1186986. PMID 20966242.
- «Mini-RF Monostatic Radar Observations of Permanently Shadowed Crater Floors.» L. M. Jozwiak, G. W. Patterson, R. Perkins. Lunar ISRU 2019: Developing a New Space Economy Through Lunar Resources and Their Utilization. July 15–17, 2019, Columbia, Maryland.
- Nozette, Stewart; Spudis, Paul; Bussey, Ben; Jensen, Robert; Raney, Keith та ін. (January 2010). The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration. Space Science Reviews. 150 (1–4): 285—302. Bibcode:2010SSRv..150..285N. doi:10.1007/s11214-009-9607-5.
- Neish, C. D.; D. B. J. Bussey; P. Spudis; W. Marshall; B. J. Thomson; G. W. Patterson; L. M. Carter. (13 January 2011). The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site. Journal of Geophysical Research: Planets. 116 (E01005): 8. Bibcode:2011JGRE..116.1005N. doi:10.1029/2010JE003647. Процитовано 26 березня 2012.
- Mitrofanov, I. G.; Sanin, A. B.; Boynton, W. V.; Chin, G.; Garvin, J. B.; Golovin, D.; Evans, L. G.; Harshman, K.; Kozyrev, A. S. (2010). Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND. Science. 330 (6003): 483—486. Bibcode:2010Sci...330..483M. doi:10.1126/science.1185696. PMID 20966247.
- Mitrofanov, I. G.; Sanin, A. B.; Litvak, M. L. (2016). Water in the Moon's polar areas: Results of LEND neutron telescope mapping. Doklady Physics. 61 (2): 98—101. Bibcode:2016DokPh..61...98M. doi:10.1134/S1028335816020117.
- Researchers Estimate Ice Content of Crater at Moon's South Pole (NASA)
- Hauri, Erik; Thomas Weinreich; Alberto E. Saal; Malcolm C. Rutherford; James A. Van Orman (26 May 2011). High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions. Science Express. 10 (1126): 213—215. Bibcode:2011Sci...333..213H. doi:10.1126/science.1204626. ISSN 1095-9203. PMID 21617039.
- Guarino, Ben; Achenbach, Joel (26 October 2020). Pair of studies confirm there is water on the moon - New research confirms what scientists had theorized for years — the moon is wet. The Washington Post. Процитовано 26 October 2020.
- Chang, Kenneth (26 October 2020). There's Water and Ice on the Moon, and in More Places Than NASA Once Thought - Future astronauts seeking water on the moon may not need to go into the most treacherous craters in its polar regions to find it. The New York Times. Процитовано 26 October 2020.
- Honniball, C.I. та ін. (26 October 2020). Molecular water detected on the sunlit Moon by SOFIA. Nature Astronomy. 5 (2): 121—127. Bibcode:2021NatAs...5..121H. doi:10.1038/s41550-020-01222-x. Процитовано 26 October 2020.
- Hayne, P.O. та ін. (26 October 2020). Micro cold traps on the Moon. Nature Astronomy. 5 (2): 169—175. arXiv:2005.05369. Bibcode:2021NatAs...5..169H. doi:10.1038/s41550-020-1198-9. Процитовано 26 October 2020.
- Potter, Sean (26 жовтня 2020). NASA's SOFIA Discovers Water on Sunlit Surface of Moon. NASA. Процитовано 5 грудня 2022.
- NASA - Lunar IceCube to Take on Big Mission from Small Package. 4 August 2015.
- Foust, Jeff (17 лютого 2023). Deep space smallsats face big challenges. SpaceNews (амер.). Процитовано 15 вересня 2023.
- NASA, Intuitive Machines Announce Landing Site for Lunar Drill. 3 November 2021.
- NASA - NSSDCA - Spacecraft - Details.
- JPL Science: Lunar Trailblazer. JPL Science. Процитовано 31 March 2022.
- Lunar Discovery and Exploration Program (LDEP). NASA Science. Процитовано 31 March 2022.
- Tereza Pultarova (28 березня 2023). Hidden water source on the moon found locked in glass beads, Chinese probe reveals. Space.com (англ.). Процитовано 13 квітня 2023.
- He, Huicun; Ji, Jianglong; Zhang, Yue; Hu, Sen; Lin, Yangting; Hui, Hejiu; Hao, Jialong; Li, Ruiying; Yang, Wei (April 2023). A solar wind-derived water reservoir on the Moon hosted by impact glass beads. Nature Geoscience (англ.). 16 (4): 294—300. Bibcode:2023NatGe..16..294H. doi:10.1038/s41561-023-01159-6. ISSN 1752-0908.
- L.F.A. THEODORE; V.R. Eke & R. Elphic. Lunar Hydrogen Distribution after KAGUYA(SELANE) (PDF). 2009 Annual Meeting of LEG (2009). Процитовано 18 листопада 2009.
- Jones, Brant M.; Aleksandrov, Alex; Hibbitts, K.; Dyar, M. D.; Orlando, Thomas M. (28 жовтня 2018). Solar Wind‐Induced Water Cycle on the Moon. Geophysical Research Letters (англ.). Т. 45, № 20. doi:10.1029/2018GL080008. ISSN 0094-8276. Процитовано 29 квітня 2024.
- Ice on the Moon, NASA
- The Moon and Mercury May Have Thick Ice Deposits. Bill Steigerwald and Nancy Jones, NASA. 2 August 2019.
- Reiss, P.; Warren, T.; Sefton‐Nash, E.; Trautner, R. (2021-05). Dynamics of Subsurface Migration of Water on the Moon. Journal of Geophysical Research: Planets (англ.). Т. 126, № 5. doi:10.1029/2020JE006742. ISSN 2169-9097. Процитовано 29 квітня 2024.
- Mysteries from the moon's past. . 23 July 2018. Процитовано 22 August 2020.
- Schulze-Makuch, Dirk; Crawford, Ian A. (2018). Was There an Early Habitability Window for Earth's Moon?. Astrobiology. 18 (8): 985—988. Bibcode:2018AsBio..18..985S. doi:10.1089/ast.2018.1844. PMC 6225594. PMID 30035616.
- News | Center for Astrophysics.
- Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies («Outer Space Treaty») [ 2011-04-27 у Wayback Machine.], UN Office for Outer Space Affairs
- «Moon Water: A Trickle of Data and a Flood of Questions», space.com, March 6, 2006
- Agreement Governing the Activities of States on the Moon and Other Celestial Bodies («Moon Treaty») [ 2008-05-14 у Wayback Machine.], UN Office for Outer Space Affairs
- Luxembourg leads the trillion-dollar race to become the Silicon Valley of asteroid mining. CNBC. 16 April 2018.
- The House just passed a bill about space mining. The future is here. - The Washington Post. The Washington Post.
- It's now legal to own and mine asteroids. The Independent (англ.). 26 листопада 2015. Процитовано 13 квітня 2023.
- White House looks for international support for space resource rights. 7 April 2020.
Посилання
- CubeSat для дослідження льоду на Місяці — SPIE Newsroom
- Лід на Місяці — Центр космічних польотів NASA Goddard
- Потоки швидких і епітеплових нейтронів від Lunar Prospector: докази існування водяного льоду на полюсах Місяця — Наука
- На Місяць припадає літр води на кожну тонну ґрунту — Times Online
- Однозначні докази наявності води на Місяці — Slashdot Science Story
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Voda na Misyaci ce voda yaka perebuvaye na Misyaci nezalezhno vid formi Yak viyavila observatoriya SOFIA spilnij proekt 80 20 NASA ta Nimeckogo aerokosmichnogo centru DLR u 2020 roci difuzni molekuli vodi v nizkih koncentraciyah mozhut zberigatisya na osvitlenij soncem poverhni Misyacya Postupovo vodyana para rozkladayetsya sonyachnim svitlom cherez sho voden i kisen vtrachayutsya u kosmosi Vcheni znajshli vodyanij lid u holodnih postijno zatinenih kraterah na polyusah Misyacya Molekuli vodi takozh prisutni v nadzvichajno tonkij atmosferi Misyacya Spektri difuznogo vidbittya zrazkiv misyachnogo regolitu viluchenih na glibinah 118 i 184 sm radyanskim zondom Luna 24 demonstruyut minimumi bilya 3 5 i 6 mkm smugi valentnih kolivan dlya molekul vodi Ci zobrazhennya pokazuyut duzhe molodij misyachnij krater na zvorotnomu boci zroblene aparatom Moon Mineralogy Mapper na bortu Chandrayan 1 Na zobrazhenni pokazano rozpodil poverhnevogo lodu na pivdennomu polyusi Misyacya livoruch i Pivnichnomu polyusi pravoruch za dopomogoyu spektrometra NASA Moon Mineralogy Mapper M3 na bortu indijskogo orbitalnogo aparatu Chandrayan 1 Eksperiment NASA Ice Mining Experiment 1 planuyetsya zapustiti u ramkah misiyi en ne ranishe nizh naprikinci 2024 roku poklikanij vidpovisti na pitannya chi ye vodyanij lid u pridatnih dlya vikoristannya kilkostyah u pivdennomu polyarnomu regioni Voda H2O i pov yazana z neyu gidroksilna grupa OH isnuyut u himichno zv yazanih formah u viglyadi gidrativ i gidroksidiv z misyachnimi mineralami a ne u formi vilnoyi vodi i dani perekonlivo svidchat pro te sho ce vidbuvayetsya v nizkih koncentraciyah na bilshosti poverhni Misyacya Faktichno rozrahovano sho adsorbovana voda isnuye v slidovih koncentraciyah vid 10 do 1000 en Protyagom drugoyi polovini 20 go storichchya na osnovi riznomanitnih sposterezhen bulo nakopicheno neperekonlivi dokazi isnuvannya vilnogo vodyanogo lodu na polyusah Misyacya yaki svidchat pro nayavnist zv yazanogo vodnyu 18 serpnya 1976 roku radyanskij zond Luna 24 zdijsniv posadku v Mori Kriz vzyavshi probi z glibin 118 143 i 184 sm misyachnogo regolitu i povernuv yih na Zemlyu U lyutomu 1978 roku laboratornij analiz cih zrazkiv pokazav sho voni mistili 0 1 1000 ppm vodi za masoyu Spektralni vimiryuvannya pokazali minimumi poblizu 3 5 i 6 mkm harakterni smugi valentnih kolivan dlya molekul vodi intensivnist yakih u dva tri razi perevishuye riven shumu 24 veresnya 2009 roku en Chandra s Altitudinal Composition Explorer CHACE Indijskoyi organizaciyi kosmichnih doslidzhen i Moon Mineralogy Mapper M3 NASA na bortu zonda Chandrayan 1 viyavili osoblivosti poglinannya na dovzhinah hvil 2 8 3 0 mkm na poverhni Misyacya 14 listopada 2008 roku Chandrayan 1 vipustiv zond Moon Impact Probe dlya zitknennya u krateri Sheklton sho dopomoglo pidtverditi nayavnist vodyanogo lodu Dlya silikatnih til taki osoblivosti zazvichaj pripisuyut gidroksilnim ta abo vodovmisnim materialam U serpni 2018 roku NASA pidtverdilo sho M3 pokazav nayavnist vodyanogo lodu na poverhni polyusiv Misyacya 26 zhovtnya 2020 roku observatoriya SOFIA pidtverdila nayavnist vodi v koncentraciyah vid 100 do 412 chastin na miljon 0 01 0 042 na osvitlenij soncem poverhni Misyacya Voda mogla buti dostavlena na Misyac protyagom geologichnih masshtabiv chasu vnaslidok regulyarnogo bombarduvannya vodonosnimi kometami asteroyidami ta meteoroyidami abo bezperervno viroblyalasya na misci ionami vodnyu protonami sonyachnogo vitru sho diyut na minerali yaki mistyat kisen Poshuki prisutnosti misyachnoyi vodi privernuli znachnu uvagu ta sponukali do kilkoh nedavnih misyachnih misij golovnim chinom cherez korisnist vodi dlya dovgostrokovogo prozhivannya na Misyaci Istoriya sposterezhen20 stolittya Pro mozhlivist isnuvannya lodu na dni polyarnih misyachnih krateriv vpershe pripustili v 1961 roci doslidniki Kalifornijskogo tehnologichnogo institutu Kennet Uotson Bryus S Myurrej i Garrison Braun Zemni radiolokacijni vimiryuvannya vikoristovuvalisya dlya viyavlennya oblastej yaki znahodyatsya v postijnij tini i otzhe mayut potencial dlya ukrittya misyachnogo lodu Ocinki zagalnoyi ploshi zatinenih pripolyarnih oblastej vid 87 5 gradusiv shiroti stanovlyat 1030 and 2550 km2 dlya pivnichnogo ta pivdennogo polyusiv vidpovidno Podalshe komp yuterne modelyuvannya sho ohoplyuye dodatkovij relyef pokazalo sho v postijnij tini mozhe buti plosha do 14000 km2 Programa Apollon Hocha slidi vodi buli viyavleni u zrazkah misyachnih porid zibranih astronavtami Apollona pripuskalosya sho ce rezultat zabrudnennya i bilshist misyachnoyi poverhni vvazhalosya povnistyu suhoyu Odnak u 2008 roci doslidzhennya zrazkiv misyachnih porid viyavilo dokazi molekul vodi zahoplenih u vulkanichnih sklyanih kulkah Pershi pryami dokazi nayavnosti vodyanoyi pari poblizu Misyacya buli otrimani v hodi eksperimentu Apollo 14 ALSEP Suprathermal Ion Detector Experiment SIDE 7 bereznya 1971 roku Mas spektrometr sposterigav seriyu spalahiv ioniv vodyanoyi pari na poverhni Misyacya poblizu miscya posadki Apollona 14 Luna 24 U lyutomu 1978 roku radyanski vcheni M Ahmanova B Dementyev i M Markov z Institutu geohimiyi ta analitichnoyi himiyi imeni V I Vernadskogo opublikuvali stattyu v yakij stverdzhuvalosya sho voda viyavlena z dostatnoyu vpevnenistyu Yihnye doslidzhennya pokazalo sho zrazki povernuti na Zemlyu radyanskim zondom Luna 24 u 1976 roci mistili blizko 0 1 vodi za masoyu yak vidno z infrachervonoyi absorbcijnoyi spektroskopiyi dovzhina hvili priblizno 3 mkm na rivni viyavlennya priblizno v 10 raziv vishe porogovogo znachennya hocha Krotts zaznachaye sho avtori ne bazhali staviti svoyu reputaciyu na absolyutnu zayavu pro te sho zemnogo zabrudnennya vdalosya povnistyu uniknuti Ce bulo b pershim pryamim vimiryuvannyam vmistu vodi na poverhni Misyacya hocha cej rezultat ne buv pidtverdzhenij inshimi doslidnikami Klementina Zvedene zobrazhennya pivdennoyi polyarnoyi oblasti Misyacya zroblene zondom NASA Klementina protyagom dvoh en Postijno zatineni dilyanki mozhut utrimuvati vodyanij lid Proponovanij dokaz nayavnosti vodyanogo lodu na Misyaci nadijshov u 1994 roci z zonda SShA Klementina U doslidzhenni vidomomu yak eksperiment z bistatichnim radarom Klementina vikoristovuvala svij peredavach dlya peredachi radiohvil u temni oblasti pivdennogo polyusa Misyacya Vidlunnya cih hvil buli viyavleni velikimi tarilchastimi antenami merezhi dalnogo kosmichnogo zv yazku na Zemli Velichina ta polyarizaciya cih vidlun vidpovidali krizhanij a ne skelyastij poverhni ale rezultati buli neperekonlivimi i yih znachennya bulo postavlene pid sumniv Lunar Prospector Zond Lunar Prospector zapushenij u 1998 roci vikoristovuvav nejtronnij spektrometr dlya vimiryuvannya kilkosti vodnyu v misyachnomu regoliti poblizu polyarnih regioniv Vin zmig viznachiti nadlishok ta roztashuvannya vodnyu z tochnistyu do 50 chastin na miljon i viyaviv pidvishenu koncentraciyu vodnyu na pivnichnomu ta pivdennomu polyusah Misyacya Ce bulo interpretovano yak vkazivka na znachnu kilkist vodyanogo lodu zahoplenogo v postijno zatinenih kraterah ale takozh moglo buti pov yazano z nayavnistyu gidroksilnogo radikalu OH himichno zv yazanogo z mineralami Gruntuyuchis na danih Clementine ta Lunar Prospector vcheni NASA pidrahuvali sho za nayavnosti poverhnevogo vodnogo lodu jogo zagalna kilkist mozhe syagati 1 3 kubichnih kilometriv U lipni 1999 roku naprikinci svoyeyi misiyi zond Lunar Prospector navmisno vrizavsya v krater Shumejker poblizu pivdennogo polyusa Misyacya v nadiyi sho bude vivilneno pomitnu kilkist vodi Odnak spektroskopichni sposterezhennya z nazemnih teleskopiv ne viyavili spektralnogo pidpisu vodi Kassini Gyujgens Bilshe pidozr shodo isnuvannya vodi na Misyaci buli porodzheni neperekonlivimi danimi otrimanimi misiyeyu Kassini Gyujgens yaka proletila povz Misyac u 1999 roci 21 stolittya Deep Impact U 2005 roci sposterezhennya za Misyacem vikonani kosmichnim aparatom Deep Impact dali neperekonlivi spektroskopichni dani yaki svidchat pro nayavnist vodi na Misyaci U 2006 roci sposterezhennya za dopomogoyu planetarnogo radara Aresibo pokazali sho deyaki z pokaziv pripolyarnih radariv aparata Klementina yaki ranishe vvazhalisya oznakami lodu natomist mozhut buti pov yazani z skelyami vikinutimi z molodih krateriv Yaksho ce pravda to nejtronni rezultati Lunar Prospector buli v osnovnomu vid vodnyu v formah vidminnih vid lodu takih yak zahopleni molekuli vodnyu abo organichni rechovini Tim ne mensh interpretaciya danih Aresibo ne viklyuchaye mozhlivosti isnuvannya vodyanogo lodu v postijno zatinenih kraterah U chervni 2009 roku kosmichnij korabel NASA Deep Impact yakij teper otrimav nazvu EPOXI zdijsniv dodatkovi pidtverdzhuvalni vimiryuvannya zv yazanogo vodnyu pid chas inshogo oblotu Misyacya Kaguya U ramkah svoyeyi programi kartografuvannya Misyacya yaponskij zond Kaguya zapushenij u veresni 2007 roku dlya 19 misyachnoyi misiyi zdijsniv gamma spektrometrichni sposterezhennya z orbiti yakimi mozhna vimiryuvati kilkist riznih elementiv na poverhni Misyacya Datchiki zobrazhennya visokoyi rozdilnoyi zdatnosti yaponskogo zonda Kaguya ne zmogli viyaviti zhodnih oznak vodyanogo lodu v postijno zatinenih kraterah navkolo pivdennogo polyusa Misyacya i vin zavershiv svoyu misiyu vrizavshis u poverhnyu Misyacya shob vivchiti vmist shlejfu vikidu Rezultati vimiryuvan otrimani Kaguya poyasnyuvalis yak prisutnistyu chistogo anortozitu tak i sublimaciyeyu letkih rechovin imovirno lodu z glibini 10 20 sm vid poverhni Chan e 1 Orbitalnij aparat Kitajskoyi Narodnoyi Respubliki Chan e 1 zapushenij u zhovtni 2007 roku zrobiv pershi detalni fotografiyi deyakih polyarnih oblastej de jmovirno znajdena voda u formi krigi Rezultati obrobki danih z mikrohvilovogo radiometra pokazali mozhlivist isnuvannya 2 8 vodyanogo lodu v regoliti kratera Kabeo Takozh pokazano isnuvannya ioniv H2 displaystyle ce H 2 u ekzosferi Misyacya Chandrayan 1 Pryami dokazi nayavnosti misyachnoyi vodi v misyachnij atmosferi otrimani za dopomogoyu visotnogo profilyu Chandrayan 1 CHACE Zobrazhennya Misyacya zroblene kartografom z mineralogiyi Misyacya Sinij kolir pokazuye spektralnij harakter gidroksidu zelenij pokazuye yaskravist poverhni vimiryanu vidbitim infrachervonim viprominyuvannyam vid Soncya a chervonij pokazuye mineral pid nazvoyu piroksen Indijskij kosmichnij korabel Chandrayan 1 vipustiv zond Moon Impact Probe MIP yakij zitknuvsya z kraterom Sheklton na pivdennomu polyusi Misyacya o 20 31 14 listopada 2008 roku vivilnivshi pidpoverhnevi ulamki yaki proanalizovani na nayavnist vodyanogo lodu Pid chas 25 hvilinnogo spusku Chandra s Altitudinal Composition Explorer CHACE zafiksuvav dokazi nayavnosti vodi v 650 mas spektrah zibranih u tonkij atmosferi nad poverhneyu Misyacya i liniyah poglinannya gidroksilu u vidbitomu sonyachnomu svitli 25 veresnya 2009 roku NASA ogolosilo sho dani nadislani z jogo M3 pidtverdili isnuvannya vodnyu na velikih dilyankah poverhni Misyacya hocha i v nizkih koncentraciyah i u formi gidroksilnoyi grupi OH himichno zv yazanoyi iz gruntom Ce pidtverdzhuye poperedni dani spektrometriv na bortu zondiv Deep Impact i Cassini Na Misyaci cya osoblivist rozglyadayetsya yak shiroko rozpovsyudzhene poglinannya yake viyavlyayetsya najsilnishim u bilsh nizkih visokih shirotah i v kilkoh svizhih kraterah u polovomu shpati Zagalna vidsutnist korelyaciyi ciyeyi osoblivosti danih M3 vid sonyachnogo osvitlenni z danimi nejtronnogo spektrometra shodo nadlishku N svidchit pro te sho utvorennya ta utrimannya OH i H2O ye potochnim procesom na poverhni Hocha rezultati M3 uzgodzhuyutsya z neshodavnimi visnovkami inshih priladiv NASA na bortu Chandrayan 1 viyavleni molekuli vodi v polyarnih regionah Misyacya ne uzgodzhuyutsya z nayavnistyu tovstih vidkladen majzhe chistogo vodyanogo lodu v mezhah kilkoh metriv vid poverhni Misyacya ale ce ne viklyuchaye nayavnosti nevelikih lt 10 sm okremih shmatkiv lodu zmishanih z regolitom Dodatkovij analiz za dopomogoyu M3 opublikovanij u 2018 roci nadav bilsh pryami dokazi nayavnosti vodyanogo lodu bilya poverhni v mezhah 20 shiroti vid oboh polyusiv Na dodatok do sposterezhen za vidbitim svitlom vid poverhni vcheni vikoristovuvali mozhlivosti M3 z doslidzhennya poglinannya u blizhnomu infrachervonomu diapazoni v postijno zatinenih oblastyah polyarnih regioniv shob znajti spektri poglinannya yaki vidpovidayut lodu U rajoni pivnichnogo polyusa vodyanij lid rozkidanij u viglyadi plyam todi yak navkolo pivdennogo polyusa vin bilshe zoseredzhenij v odnomu tili Oskilki ci polyarni oblasti ne zaznayut visokih temperatur vishe 373 Kelviniv bulo pripusheno sho polyusi diyut yak holodni pastki de na Misyaci zbirayetsya viparuvana voda U berezni 2010 roku bulo povidomleno sho en na bortu Chandrayan 1 viyaviv ponad 40 postijno zatemnenih krateriv poblizu pivnichnogo polyusa Misyacya yaki za gipotezoyu mistyat blizko 600 miljoniv metrichnih tonn vodyanogo lodu Visoke vidnoshennya krugovoyi polyarizaciyi radara ne ye odnoznachnoyu diagnostikoyu nerivnostej abo lodu naukova grupa povinna vzyati do uvagi seredovishe poyavi visokogo vidnoshennya krugovoyi polyarizaciyi signalu shob interpretuvati jogo prichinu Lid maye buti vidnosno chistim i tovshinoyu prinajmni paru metriv shob dati takij pidpis Rozrahunkova kilkist potencijno nayavnogo vodyanogo lodu porivnyanna z kilkistyu ocinenoyu za danimi nejtroniv poperednoyi misiyi Lunar Prospector Lunar Reconnaissance Orbiter source source source source source source source Video stvorene na osnovi zobrazhen Lunar Reconnaissance Orbiter na yakih pokazano dilyanki postijnoyi tini Realistichni tini rozvivayutsya protyagom kilkoh misyaciv 9 zhovtnya 2009 r verhnij stupin raketi nosiya Atlas V buv spryamovanij na zitknennya z kraterom Kabeo ob 11 31 UTC a potim kosmichnij korabel Lunar Crater Observation and Sensing Satellite LCROSS proletiv cherez shlejf vikidu LCROSS viyaviv znachnu kilkist gidroksilnih grup u materiali vikinutomu z pivdennogo polyarnogo kratera udarnim zondom ce mozhna vidnesti do vodomistkih materialiv togo sho viglyadaye yak majzhe chistij kristalichnij vodnij lid zmishanij z regolitom Naspravdi bulo viyavleno himichnu grupu gidroksilu OH yaka jmovirno pohodit vid vodi ale takozh mozhe buti gidratami yaki ye neorganichnimi solyami sho mistyat himichno zv yazani molekuli vodi Priroda koncentraciya ta rozpodil cogo materialu potrebuyut podalshogo analizu Golovnij naukovij spivrobitnik misiyi Entoni Kolapret zayaviv sho vikid shozhe vklyuchaye nizku dribnozernistih chastinok majzhe chistogo kristalichnogo vodyanogo lodu Piznishij ostatochnij analiz pokazav sho koncentraciya vodi stanovit 5 6 2 9 masi Instrument en na bortu orbitalnogo aparatu Lunar Reconnaissance Orbiter LRO sposterigav shlejf ulamkiv vid udaru orbitalnogo aparatu LCROSS i bulo zrobleno visnovok sho vodyanij lid maye buti u formi nevelikih lt 10 sm okremih shmatochkiv rozpodilenih po vsomu regolitu abo u viglyadi tonkogo krihanogo pokrittya na zernah Ce u poyednanni z monostatichnimi radiolokacijnimi sposterezhennyami svidchit pro te sho vodyanij lid u postijno zatinenih oblastyah misyachnih polyarnih krateriv navryad chi prisutnij u formi tovstih vidkladen chistogo lodu Dani otrimani priladom Lunar Exploration Neutron Detector LEND na bortu LRO pokazuyut kilka oblastej de potik en vid poverhni pridushenij sho vkazuye na pidvishenij vmist vodnyu Podalshij analiz danih LEND svidchit pro te sho vmist vodi v polyarnih regionah bezposeredno ne viznachayetsya umovami osvitlenosti poverhni oskilki osvitleni ta zatineni regioni ne viyavlyayut istotnoyi riznici v ocinyuvanomu vmisti vodi Vidpovidno do sposterezhen lishe cim instrumentom postijna nizka temperatura poverhni holodnih pastok ne ye neobhidnoyu ta dostatnoyu umovoyu dlya zbilshennya vmistu vodi v regoliti Doslidzhennya kratera Sheklton na pivdennomu polyusi Misyacya lazernim visotomirom LRO pokazuye sho do 22 poverhni cogo kratera vkrito lodom Rozplavni vklyuchennya v zrazkah Apollona 17 U travni 2011 roku Erik Gori ta in povidomili pro 615 1410 ppm vodi v rozplavnih vklyuchennyah u misyachnomu zrazku 74220 vidomomu yak pomaranchevij sklyanij grunt z visokim vmistom titanu vulkanichnogo pohodzhennya zibranomu pid chas misiyi Apollon 17 u 1972 roci Cyu koncentraciyu mozhna porivnyati z koncentraciyeyu u magmi u verhnij mantiyi Zemli Nezvazhayuchi na znachnij selenologichnij interes ce ogoloshennya malo vtishit potencijnih kolonistiv Misyacya Zrazok vinik za bagato kilometriv pid poverhneyu i dostup do vklyuchen nastilki vazhkij sho znadobilosya 39 rokiv shob viyaviti yih za dopomogoyu najsuchasnishogo instrumentu ionnogo mikrozondu Stratosferna observatoriya infrachervonoyi astronomiyi U zhovtni 2020 roku astronomi povidomili pro viyavlennya molekulyarnoyi vodi na osvitlenij soncem poverhni Misyacya kilkoma nezalezhnimi naukovimi grupami vklyuchayuchi Stratosfernu observatoriyu infrachervonoyi astronomiyi SOFIA Rozrahunkova kilkist stanovit priblizno vid 100 do 400 chastin na miljon z rozpodilom u nevelikomu diapazoni shirot sho jmovirno ye rezultatom miscevoyi geologiyi a ne globalnogo yavisha Bulo pripusheno sho viyavlena voda zberigayetsya v shmatkah skla abo v pustotah mizh zernami zahishenoyu vid suvorogo misyachnogo seredovisha sho dozvolyaye vodi zalishatisya na poverhni Misyacya Vikoristovuyuchi dani Lunar Reconnaissance Orbiter bulo pokazano sho okrim velikih postijno zatinenih oblastej u polyarnih oblastyah Misyacya isnuye bagato nekartovanih holodnih pastok yaki znachno zbilshuyut oblasti de mozhe nakopichuvatisya lid Vstanovleno sho priblizno 10 20 postijnoyi ploshi holodnoyi pastki dlya vodi mistitsya v mikroholodnih pastkah yaki znahodyatsya v tini v masshtabah vid 1 km do 1 sm na zagalnij ploshi 40 000 km2 priblizno 60 yaka znahoditsya na pivdni i bilshist holodnih pastok dlya vodyanogo lodu znahodyatsya na shirotah gt 80 cherez postijnu tin 26 zhovtnya 2020 roku u statti opublikovanij v Nature Astronomy komanda vchenih vikoristovuvala SOFIA infrachervonij teleskop vstanovlenij useredini reaktivnogo litaka 747 shob provesti sposterezhennya yaki pokazali odnoznachni dokazi nayavnosti vodi v tih chastinah Misyacya de svitit Sonce Ce vidkrittya pokazuye sho voda mozhe buti rozpodilena po misyachnij poverhni a ne obmezhuvatisya holodnimi zatinenimi miscyami poblizu misyachnih polyusiv skazav en direktor viddilu astrofiziki NASA Lunar IceCube en ce CubeSat rozmirom 6U shist odinic yakij mav ociniti kilkist i sklad misyachnogo lodu za dopomogoyu spektrometra infrachervonogo zobrazhennya rozroblenogo Centrom kosmichnih polotiv Goddarda NASA Kosmichnij korabel uspishno viddilivsya vid Artemida 1 17 listopada 2022 roku ale nezabarom pislya cogo ne zmig vijti na zv yazok i vvazhayetsya vtrachenim PRIME 1 Specialnij lokalnij eksperiment NASA pid nazvoyu en planuyetsya visaditi na Misyac ne ranishe listopada 2023 roku poblizu kratera Sheklton na Pivdennomu polyusi Misyacya Misiya bude buriti u poshukah vodyanogo lodu Lunar Trailblazer Suputnik en zaplanovanij na zapusk u 2025 roci ye chastinoyu programi NASA Small Innovative Missions for Planetary Exploration SIMPLEx Suputnik osnasheno dvoma instrumentami spektrometrom visokoyi rozdilnoyi zdatnosti yakij viyavlyatime ta kartografuye rizni formi vodi i termokartografom Osnovni cili misiyi polyagayut u tomu shob oharakterizuvati formu misyachnoyi vodi yiyi kilkist i misce viznachiti yak misyachni letki rechovini zminyuyutsya ta peremishuyutsya z chasom vimiryati skilki i yaka forma vodi isnuye v postijno zatinenih oblastyah Misyacya a takozh ociniti yak vidminnosti u vidbivnij zdatnosti ta temperaturi misyachnih poverhon vplivayut na koncentraciyu misyachnoyi vodi Zond Chan e 5 Doslidzhennya opublikovane v zhurnali Nature Geoscience u kvitni 2023 roku pokazalo sho triljoni funtiv vodi mozhut buti rozkidani po vsomu Misyacyu potrapivshi v krihitni sklyani kulki yaki mogli utvoritisya koli asteroyidi ztikalisya z misyachnoyu poverhneyu Doslidzhennya proveli kitajski vcheni yaki proanalizuvali pershi zrazki misyachnogo gruntu povernuti na Zemlyu z 1970 h rokiv Doslidniki viyavili sho sklyani kulki mistyat znachnu kilkist vodi sho vkazuye na novij mehanizm zberigannya vodi na poverhni Misyacya Otrimani dani mozhut buti korisnimi dlya majbutnih misij na Misyac shlyahom viyavlennya potencijnih resursiv yaki mozhna peretvoriti na pitnu vodu abo raketne palivo Mozhlivij krugoobig vodiUtvorennya Misyachna voda maye dva potencijnih dzherela vodonosni kometi ta inshi tila sho stikayutsya z Misyacem i utvorennya na misci Isnuye teoriya sho ostannye mozhe statisya koli ioni vodnyu protoni u sonyachnomu vitri himichno poyednuyutsya z atomami kisnyu prisutnimi v misyachnih mineralah oksidah silikatah tosho utvoryuyuchi neveliku kilkist vodi zahoplenoyi kristalami mineraliv reshitki abo yak gidroksilni grupi potencijni poperedniki vodi Cyu vodu mineraliv ne slid plutati z vodyanim lodom Gidroksilni poverhnevi grupi X OH utvoreni reakciyeyu protoniv H z atomami kisnyu dostupnimi na poverhni oksidu X O mozhut buti dali peretvoreni v molekuli vodi H2O yaki budut adsorbovani na poverhni oksidnogo mineralu Balans mas peredbachuvanogo himichnogo peregrupuvannya na poverhni oksidu mozhna shematichno zapisati tak 2 X OH X O X H 2 O abo 2 X OH X O X H 2 O de X yavlyaye soboyu poverhnyu oksidu Dlya utvorennya odniyeyi molekuli vodi neobhidna nayavnist dvoh susidnih gidroksilnih grup abo kaskad poslidovnih reakcij odnogo atoma kisnyu z dvoma protonami Zahoplennya Sonyachne viprominyuvannya zazvichaj vinosit vilnu vodu abo vodyanij lid z misyachnoyi poverhni rozsheplyuyuchi yiyi na voden i kisen yaki potim vihodyat u kosmos Odnak cherez duzhe nevelikij osovij nahil osi obertannya Misyacya do ploshini ekliptiki 1 5 deyaki gliboki krateri poblizu polyusiv nikoli ne otrimuyut sonyachnogo svitla i postijno zatineni div napriklad krater Sheklton i krater en Temperatura v cih regionah nikoli ne pidnimayetsya vishe priblizno 100 K blizko 170 Celsiya i bud yaka voda yaka zreshtoyu potrapila v ci krateri mogla zalishatisya zamerzloyu ta stabilnoyu protyagom nadzvichajno trivalih periodiv chasu mozhlivo milyardiv rokiv zalezhno vid stabilnosti oriyentaciyi osi Misyacya Hocha vidkladennya lodu mozhut buti tovstimi voni shvidshe za vse zmishani z regolitom mozhlivo u viglyadi sharuvatih form Transport Hocha vilna voda ne mozhe zberigatisya v osvitlenih oblastyah Misyacya bud yaka taka voda sho utvoryuyetsya tam pid diyeyu sonyachnogo vitru na misyachni minerali mozhe migruvati do postijno holodnih polyarnih oblastej i nakopichuvatisya tam u viglyadi lodu mozhlivo na dodatok do bud yakogo lodu prinesenogo udarami komet Gipotetichnij mehanizm transportuvannya zahoplennya vodi yaksho takij ye zalishayetsya nevidomim dijsno misyachni poverhni yaki bezposeredno piddayutsya vplivu sonyachnogo vitru de vidbuvayetsya utvorennya vodi zanadto garyachi shob dozvoliti zahoplennya kondensaciyeyu vodi i sonyachne viprominyuvannya takozh postijno rozkladaye vodu todi yak utvorennya vodi u neosvitlenih abo nabagato menshe osvitlenih dilyankah yaki ne piddayutsya pryamomu vplivu Soncya vidsutnye abo znachno menshe Vrahovuyuchi ochikuvanij korotkij chas zhittya molekul vodi v osvitlenih regionah korotka vidstan transportuvannya v principi zbilshit jmovirnist zahoplennya Inshimi slovami molekuli vodi yaki utvoryuyutsya poblizu holodnogo temnogo polyarnogo kratera povinni mati najvishu jmovirnist vizhiti j potrapiti v pastku Ridka vodaTemperatura i tisk vseredini Misyacya zrostayut iz glibinoyu 4 3 5 milyarda rokiv tomu na poverhni Misyacya mogla buti dostatnya kilkist atmosferi ta ridkoyi vodi Tepli regioni z pidvishenim tiskom u nadrah Misyacya vse she mozhut mistiti ridku vodu Nayavnist velikoyi kilkosti vodi na Misyaci bula b vazhlivim faktorom dlya togo shob zrobiti en ekonomichno efektivnim oskilki transportuvannya vodi abo vodnyu ta kisnyu iz Zemli bulo b nepomirno dorogim Yaksho majbutni doslidzhennya viyavlyat sho kilkist bude osoblivo velikoyu vodyanij lid mozhna bude vidobuvati dlya otrimannya ridkoyi vodi dlya pittya ta rozmnozhennya roslin a takozh vodu mozhna bude rozdiliti na voden i kisen za dopomogoyu elektrostancij obladnanih sonyachnimi panelyami abo yadernogo generatora zabezpechennya kisnyu dlya dihannya a takozh komponentiv raketnogo paliva Vodnevij komponent vodyanogo lodu takozh mozhna vikoristovuvati dlya viluchennya oksidiv iz misyachnogo gruntu ta zboru she bilshoyi kilkosti kisnyu Analiz misyachnogo lodu takozh nadast naukovu informaciyu pro istoriyu udariv Misyacya ta veliku kilkist komet i asteroyidiv u rannij Vnutrishnij Sonyachnij sistemi Pravo vlasnostiGipotetichne vidkrittya pridatnoyi dlya vikoristannya kilkosti vodi na Misyaci mozhe viklikati pravovi pitannya pro te komu nalezhit voda i hto maye pravo yiyi vikoristovuvati Dogovir Organizaciyi Ob yednanih Nacij z kosmosu ne zaboronyaye vikoristannya misyachnih resursiv ale zapobigaye privlasnennyu Misyacya okremimi naciyami i yak pravilo tlumachitsya yak zaborona krayinam pretenduvati na pravo vlasnosti na misyachni resursi Dogovir pro Misyac konkretno peredbachaye sho ekspluataciya misyachnih resursiv regulyuyetsya mizhnarodnim rezhimom ale cej dogovir buv ratifikovanij lishe kilkoma krayinami i v pershu chergu timi yaki ne mayut mozhlivosti samostijnogo kosmichnogo polotu Lyuksemburg i SShA nadali svoyim gromadyanam pravo na vidobutok i volodinnya kosmichnimi resursami vklyuchayuchi resursi Misyacya Prezident SShA Donald Tramp pryamo zayaviv pro ce u svoyemu rozporyadzhenni vid 6 kvitnya 2020 r Div takozhVikoristannya resursiv in situ en Shackleton Energy Company Voda na MarsiMisiyi sho skladayut kartu misyachnoyi vodiChandrayan 1 Chandrayan 2 en en en Lunar Reconnaissance OrbiterPrimitkiNASA SOFIA discovers water on sunlit surface of the Moon NASA 26 October 2020 Pinson Jerald 20 listopada 2020 Moon May Hold Billions of Tons of Subterranean Ice at Its Poles Eos 101 doi 10 1029 2020eo151889 ISSN 2324 9250 Ice Confirmed at the Moon s Poles NASA Jet Propulsion Laboratory JPL Procitovano 13 kvitnya 2023 Is There an Atmosphere on the Moon NASA nasa gov 7 June 2013 Procitovano 25 travnya 2015 NASA NSSDCA Spacecraft Details Lucey Paul G 23 October 2009 A Lunar Waterworld Science 326 5952 531 532 Bibcode 2009Sci 326 531L doi 10 1126 science 1181471 PMID 19779147 Clark Roger N 23 October 2009 Detection of Adsorbed Water and Hydroxyl on the Moon Science 326 5952 562 564 Bibcode 2009Sci 326 562C doi 10 1126 science 1178105 PMID 19779152 Akhmanova M Dement ev B Markov M February 1978 Water in the regolith of Mare Crisium Luna 24 Geokhimiya ros 285 Akhmanova M Dement ev B Markov M 1978 Possible Water in Luna 24 Regolith from the Sea of Crises Geochemistry International 15 166 Bangalore India ISBN 978 0 08 024437 2 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite conference title Shablon Cite conference cite conference a Propushenij abo porozhnij title dovidka In Depth Chandrayaan 1 NASA Solar System Exploration Procitovano 21 serpnya 2023 Pieters C M Goswami J N Clark R N Annadurai M Boardman J Buratti B Combe J P Dyar M D Green R 2009 Character and Spatial Distribution of OH H2O on the Surface of the Moon Seen by M3 on Chandrayaan 1 Science 326 5952 568 572 Bibcode 2009Sci 326 568P doi 10 1126 science 1178658 PMID 19779151 Ice Confirmed at the Moon s Poles NASA Jet Propulsion Laboratory JPL Procitovano 13 kvitnya 2023 Water on the Moon Direct evidence from Chandrayaan 1 s Moon Impact Probe Published on 2010 04 07 NASA s SOFIA Discovers Water on Sunlit Surface of Moon NASA 26 October 2020 Procitovano 26 October 2020 Elston D P 1968 Character and Geologic Habitat of Potential Deposits of Water Carbon and Rare Gases on the Moon Geological Problems in Lunar and Planetary Research Proceedings of AAS IAP Symposium AAS Science and Technology Series Supplement to Advances in the Astronautical Sciences p 441 lunar arc nasa gov Arhiv originalu za 14 veresnya 2016 Procitovano 25 travnya 2015 The Moon nssdc gsfc nasa gov Procitovano 7 lipnya 2022 Watson K B C Murray and H Brown 1961 The Behavior of Volatiles on the Lunar Surface J Geophys Res 66 9 3033 3045 Margot J L 1999 Topography of the Lunar Poles from Radar Interferometry A Survey of Cold Trap Locations Science 284 5420 1658 1660 Bibcode 1999Sci 284 1658M CiteSeerX 10 1 1 485 312 doi 10 1126 science 284 5420 1658 ISSN 0036 8075 PMID 10356393 Linda Martel 4 chervnya 2003 The Moon s Dark Icy Poles It s Official Water Found on the Moon Space com 23 September 2009 Moon Once Harbored Water Lunar Lava Beads Show Scientific American July 9 2008 Freeman J W Jr H K Hills R A Lindeman and R R Vondrak Observations of Water Vapor at the Lunar Surface The Moon 8 115 128 1973 Crotts Arlin 2012 Water on The Moon I Historical Overview arXiv 1205 5597v1 astro ph EP Crotts Arlin October 12 2009 Water on the Moon The Space Review Retrieved 13 November 2023 Spudis Paul D June 1 2012 Who discovered water on the Moon en Retrieved 13 November 2023 The Clementine bistatic radar experiment Science Clementine Probe July 24 2008 u Wayback Machine Simpson Richard A Tyler G Leonard 1999 Reanalysis of Clementine bistatic radar data from the lunar South Pole Journal of Geophysical Research 104 E2 3845 Bibcode 1999JGR 104 3845S doi 10 1029 1998JE900038 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite journal title Shablon Cite journal cite journal a hdl access vimagaye hdl dovidka Campbell Donald B Campbell Bruce A Carter Lynn M Margot Jean Luc Stacy Nicholas J S 2006 No evidence for thick deposits of ice at the lunar south pole PDF Nature 443 7113 835 7 Bibcode 2006Natur 443 835C doi 10 1038 nature05167 PMID 17051213 31 serpnya 2001 Arhiv originalu za 9 grudnya 2006 Lunar Prospector Science Results NASA Prospecting for Lunar Water 2010 03 18 u Wayback Machine NASA Neutron spectrometer results January 17 2009 u Wayback Machine No water ice detected from Lunar Prospector NASA website Kemm Kelvin 9 zhovtnya 2009 Evidence of water on the Moon Mars alters planning for manned bases Engineering News Procitovano 9 zhovtnya 2009 Presreliz JPL 17 August 1999 Arhiv originalu za 25 July 2010 Procitovano 18 September 2011 Paul Spudis 2006 Ice on the Moon The Space Review Procitovano 27 veresnya 2013 Kaguya Gamma Ray Spectrometer JAXA Japan s now finished lunar mission found no water ice Spaceflight Now 6 lipnya 2009 Procitovano 27 veresnya 2013 Japanese probe crashes into Moon BBC News 11 chervnya 2009 Procitovano 27 veresnya 2013 Haruyama Junichi Yamamoto Satoru Yokota Yasuhiro Ohtake Makiko Matsunaga Tsuneo 16 serpnya 2013 An explanation of bright areas inside Shackleton Crater at the Lunar South Pole other than water ice deposits Geophysical Research Letters angl T 40 15 s 3814 3818 doi 10 1002 grl 50753 ISSN 0094 8276 Procitovano 29 kvitnya 2024 Ohtake Makiko Nakauchi Yusuke Tanaka Satoshi Yamamoto Mitsuo Onodera Keisuke Nagaoka Hiroshi Nishitani Ryusuke 2024 03 Plumes of Water Ice Gas Mixtures Observed in the Lunar Polar Region The Astrophysical Journal angl T 963 2 s 124 doi 10 3847 1538 4357 ad1be3 ISSN 0004 637X Procitovano 29 kvitnya 2024 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Who s Orbiting the Moon 2010 02 21 u Wayback Machine NASA February 20 2008 Meng ZhiGuo Chen ShengBo Osei Edward Matthew Wang ZiJun Cui TengFei 2010 12 Research on water ice content in Cabeus crater using the data from the microwave radiometer onboard Chang e 1 satellite Science China Physics Mechanics and Astronomy angl T 53 12 s 2172 2178 doi 10 1007 s11433 010 4159 y ISSN 1674 7348 Procitovano 29 kvitnya 2024 Jin Shuanggen Arivazhagan Sundaram Araki Hiroshi 2013 07 New results and questions of lunar exploration from SELENE Chang E 1 Chandrayaan 1 and LRO LCROSS Advances in Space Research T 52 2 s 285 305 doi 10 1016 j asr 2012 11 022 ISSN 0273 1177 Procitovano 29 kvitnya 2024 The Hindu 15 listopada 2008 Arhiv originalu za 16 grudnya 2008 MIP detected water on Moon way back in June ISRO Chairman The Hindu 25 veresnya 2009 Spacecraft see damp Moon soils BBC 24 September 2009 Leopold George 13 listopada 2009 NASA confirms water on Moon Procitovano 18 listopada 2009 Moon crash will create six mile plume of dust as Nasa searches for water The Times October 3 2009 Discovery of water on Moon boosts prospects for permanent lunar base The Guardian 24 September 2009 Pieters C M Goswami J N Clark R N Annadurai M Boardman J Buratti B Combe J P Dyar M D Green R 23 zhovtnya 2009 Character and Spatial Distribution of OH H 2 O on the Surface of the Moon Seen by M 3 on Chandrayaan 1 Science angl T 326 5952 s 568 572 doi 10 1126 science 1178658 ISSN 0036 8075 Procitovano 29 kvitnya 2024 Neish C D D B J Bussey P Spudis W Marshall B J Thomson G W Patterson L M Carter 13 January 2011 The nature of lunar volatiles as revealed by Mini RF observations of the LCROSS impact site Journal of Geophysical Research Planets 116 E01005 8 Bibcode 2011JGRE 116 1005N doi 10 1029 2010JE003647 Procitovano 26 bereznya 2012 the Mini RF instruments on ISRO s Chandrayaan 1 and NASA s Lunar Reconnaissance Orbiter LRO obtained S band 12 6 cm 5 0 in synthetic aperture radar images of the impact site at 150 and 30 m resolution respectively These observations show that the floor of Cabeus has a circular polarization ratio CPR comparable to or less than the average of nearby terrain in the southern lunar highlands Furthermore lt 2 of the pixels in Cabeus crater have CPR values greater than unity This observation is not consistent with the presence of thick deposits of nearly pure water ice within a few meters of the lunar surface but it does not rule out the presence of small lt 10 cm 3 9 in discrete pieces of ice mixed in with the regolith Rincon Paul 21 August 2018 Water ice detected on Moon s surface BBC Procitovano 21 August 2018 Shuai Li Paul G Lucey Ralph E Milliken Paul O Hayne Elizabeth Fisher Jean Pierre Williams Dana M Hurley Richard C Elphic 20 August 2018 Direct evidence of surface exposed water ice in the lunar polar regions Proceedings of the National Academy of Sciences of the United States of America 115 36 8907 8912 Bibcode 2018PNAS 115 8907L doi 10 1073 pnas 1802345115 PMC 6130389 PMID 30126996 Ice deposits found at Moon s pole BBC News 2 March 2010 NASA Radar Finds Ice Deposits at Moon s North Pole NASA March 2010 Procitovano 26 bereznya 2012 LCROSS mission overview 2009 06 13 u Wayback Machine NASA Lakdawalla Emily 13 November 2009 The Planetary Society Arhiv originalu za 22 January 2010 Procitovano 13 kvitnya 2010 Dino Jonas Lunar Crater Observation and Sensing Satellite Team 13 listopada 2009 LCROSS Impact Data Indicates Water on Moon NASA Procitovano 14 listopada 2009 Moon River What Water in the Heavens Means for Life on Earth by The Huffington Post November 30 2009 Colaprete A Schultz P Heldmann J Wooden D Shirley M Ennico K Hermalyn B Marshall W Ricco A 22 October 2010 Detection of Water in the LCROSS Ejecta Plume Science 330 6003 463 468 Bibcode 2010Sci 330 463C doi 10 1126 science 1186986 PMID 20966242 Mini RF Monostatic Radar Observations of Permanently Shadowed Crater Floors L M Jozwiak G W Patterson R Perkins Lunar ISRU 2019 Developing a New Space Economy Through Lunar Resources and Their Utilization July 15 17 2019 Columbia Maryland Nozette Stewart Spudis Paul Bussey Ben Jensen Robert Raney Keith ta in January 2010 The Lunar Reconnaissance Orbiter Miniature Radio Frequency Mini RF Technology Demonstration Space Science Reviews 150 1 4 285 302 Bibcode 2010SSRv 150 285N doi 10 1007 s11214 009 9607 5 Neish C D D B J Bussey P Spudis W Marshall B J Thomson G W Patterson L M Carter 13 January 2011 The nature of lunar volatiles as revealed by Mini RF observations of the LCROSS impact site Journal of Geophysical Research Planets 116 E01005 8 Bibcode 2011JGRE 116 1005N doi 10 1029 2010JE003647 Procitovano 26 bereznya 2012 Mitrofanov I G Sanin A B Boynton W V Chin G Garvin J B Golovin D Evans L G Harshman K Kozyrev A S 2010 Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND Science 330 6003 483 486 Bibcode 2010Sci 330 483M doi 10 1126 science 1185696 PMID 20966247 Mitrofanov I G Sanin A B Litvak M L 2016 Water in the Moon s polar areas Results of LEND neutron telescope mapping Doklady Physics 61 2 98 101 Bibcode 2016DokPh 61 98M doi 10 1134 S1028335816020117 Researchers Estimate Ice Content of Crater at Moon s South Pole NASA Hauri Erik Thomas Weinreich Alberto E Saal Malcolm C Rutherford James A Van Orman 26 May 2011 High Pre Eruptive Water Contents Preserved in Lunar Melt Inclusions Science Express 10 1126 213 215 Bibcode 2011Sci 333 213H doi 10 1126 science 1204626 ISSN 1095 9203 PMID 21617039 Guarino Ben Achenbach Joel 26 October 2020 Pair of studies confirm there is water on the moon New research confirms what scientists had theorized for years the moon is wet The Washington Post Procitovano 26 October 2020 Chang Kenneth 26 October 2020 There s Water and Ice on the Moon and in More Places Than NASA Once Thought Future astronauts seeking water on the moon may not need to go into the most treacherous craters in its polar regions to find it The New York Times Procitovano 26 October 2020 Honniball C I ta in 26 October 2020 Molecular water detected on the sunlit Moon by SOFIA Nature Astronomy 5 2 121 127 Bibcode 2021NatAs 5 121H doi 10 1038 s41550 020 01222 x Procitovano 26 October 2020 Hayne P O ta in 26 October 2020 Micro cold traps on the Moon Nature Astronomy 5 2 169 175 arXiv 2005 05369 Bibcode 2021NatAs 5 169H doi 10 1038 s41550 020 1198 9 Procitovano 26 October 2020 Potter Sean 26 zhovtnya 2020 NASA s SOFIA Discovers Water on Sunlit Surface of Moon NASA Procitovano 5 grudnya 2022 NASA Lunar IceCube to Take on Big Mission from Small Package 4 August 2015 Foust Jeff 17 lyutogo 2023 Deep space smallsats face big challenges SpaceNews amer Procitovano 15 veresnya 2023 NASA Intuitive Machines Announce Landing Site for Lunar Drill 3 November 2021 NASA NSSDCA Spacecraft Details JPL Science Lunar Trailblazer JPL Science Procitovano 31 March 2022 Lunar Discovery and Exploration Program LDEP NASA Science Procitovano 31 March 2022 Tereza Pultarova 28 bereznya 2023 Hidden water source on the moon found locked in glass beads Chinese probe reveals Space com angl Procitovano 13 kvitnya 2023 He Huicun Ji Jianglong Zhang Yue Hu Sen Lin Yangting Hui Hejiu Hao Jialong Li Ruiying Yang Wei April 2023 A solar wind derived water reservoir on the Moon hosted by impact glass beads Nature Geoscience angl 16 4 294 300 Bibcode 2023NatGe 16 294H doi 10 1038 s41561 023 01159 6 ISSN 1752 0908 L F A THEODORE V R Eke amp R Elphic Lunar Hydrogen Distribution after KAGUYA SELANE PDF 2009 Annual Meeting of LEG 2009 Procitovano 18 listopada 2009 Jones Brant M Aleksandrov Alex Hibbitts K Dyar M D Orlando Thomas M 28 zhovtnya 2018 Solar Wind Induced Water Cycle on the Moon Geophysical Research Letters angl T 45 20 doi 10 1029 2018GL080008 ISSN 0094 8276 Procitovano 29 kvitnya 2024 Ice on the Moon NASA The Moon and Mercury May Have Thick Ice Deposits Bill Steigerwald and Nancy Jones NASA 2 August 2019 Reiss P Warren T Sefton Nash E Trautner R 2021 05 Dynamics of Subsurface Migration of Water on the Moon Journal of Geophysical Research Planets angl T 126 5 doi 10 1029 2020JE006742 ISSN 2169 9097 Procitovano 29 kvitnya 2024 Mysteries from the moon s past 23 July 2018 Procitovano 22 August 2020 Schulze Makuch Dirk Crawford Ian A 2018 Was There an Early Habitability Window for Earth s Moon Astrobiology 18 8 985 988 Bibcode 2018AsBio 18 985S doi 10 1089 ast 2018 1844 PMC 6225594 PMID 30035616 News Center for Astrophysics Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space including the Moon and Other Celestial Bodies Outer Space Treaty 2011 04 27 u Wayback Machine UN Office for Outer Space Affairs Moon Water A Trickle of Data and a Flood of Questions space com March 6 2006 Agreement Governing the Activities of States on the Moon and Other Celestial Bodies Moon Treaty 2008 05 14 u Wayback Machine UN Office for Outer Space Affairs Luxembourg leads the trillion dollar race to become the Silicon Valley of asteroid mining CNBC 16 April 2018 The House just passed a bill about space mining The future is here The Washington Post The Washington Post It s now legal to own and mine asteroids The Independent angl 26 listopada 2015 Procitovano 13 kvitnya 2023 White House looks for international support for space resource rights 7 April 2020 PosilannyaCubeSat dlya doslidzhennya lodu na Misyaci SPIE Newsroom Lid na Misyaci Centr kosmichnih polotiv NASA Goddard Potoki shvidkih i epiteplovih nejtroniv vid Lunar Prospector dokazi isnuvannya vodyanogo lodu na polyusah Misyacya Nauka Na Misyac pripadaye litr vodi na kozhnu tonnu gruntu Times Online Odnoznachni dokazi nayavnosti vodi na Misyaci Slashdot Science Story