Холодна пастка — це концепція планетознавства, яка описує територію, достатньо холодну для заморожування (уловлювання) [en]. Холодні пастки можуть існувати на поверхні безповітряних тіл або у верхніх шарах адіабатичної атмосфери. На безповітряних тілах лід, захоплений холодними пастками, потенційно може залишатися там протягом геологічних періодів часу, дозволяючи нам зазирнути в первісну Сонячну систему. У адіабатичних атмосферах холодні пастки запобігають виходу летких речовин (наприклад, води) з атмосфери в космос.
Холодні пастки на безповітряних планетарних тілах
Нахил осі деяких безповітряних планетних тіл у Сонячній системі, таких як Меркурій, Місяць і Церера, дуже близький до нуля. Гарольд Юрі вперше зазначив, що западини або кратери, розташовані поблизу полюсів цих тіл, відкидають стійкі тіні, які можуть зберігатися протягом геологічних періодів часу (мільйони-мільярди років). Відсутність атмосфери запобігає перемішуванню шляхом конвекції, що робить ці тіні надзвичайно холодними. Якщо молекули летких речовин, таких як вода, потрапляють у ці постійні тіні, вони потраплять у пастку на геологічні періоди часу.
Вивчення холодних пасток на безповітряних тілах
Оскільки ці тіні не отримують інсоляції, більша частина тепла, яке вони отримують, розсіюється та випромінюється навколишнім рельєфом. Зазвичай можна знехтувати горизонтальною теплопровідністю від сусідніх теплих областей через високу пористість і, отже, низьку теплопровідність верхніх шарів безповітряних тіл. Тому можна моделювати температуру цих постійних тіней за допомогою алгоритмів рей-кастингу або трасування променів у поєднанні з одновимірними моделями вертикальної теплопровідності. У деяких випадках, наприклад у чашоподібних кратерах, можна отримати вираз для рівноважної температури цих тіней.
Крім того, температури (і, отже, стабільність) холодних пасток можуть дистанційно вимірюватися орбітальним апаратом. Температури місячних холодних пасток були детально вивчені радіометром [en] зі складу Lunar Reconnaissance Orbiter. На Меркурії докази наявності відкладень льоду всередині холодних пасток були отримані за допомогою радара, рефлектометрії та видимих зображень. На Церері космічний корабель Dawn виявив холодні пастки.
Атмосферні холодні пастки
У [en] холодна пастка – це шар атмосфери, який значно холодніший за нижчі та вищі шари. Наприклад, для тропосфери Землі температура повітря падає зі збільшенням висоти, досягаючи найнижчої точки приблизно на висоті 20 кілометрів. Цю область називають холодною пасткою, оскільки вона затримує висхідні гази з високими температурами кипіння, змушуючи їх падати назад на Землю.
Деякі астрономи вважають, що через відсутність холодної пастки Венера та Марс втратили більшу частину рідкої води на початку своєї історії. Холодна пастка Землі розташована на висоті приблизно 12 км над рівнем моря, що значно нижче висоти, на якій водяна пара остаточно розділилася б на водень і кисень сонячними ультрафіолетовими променями, а водень незворотньо втрачався б у космосі. Через холодну пастку в земній атмосфері Земля фактично втрачає воду в космос зі швидкістю лише 1 міліметра океану кожні 1 мільйон років, що надто повільно, щоб вплинути на зміни рівня моря в будь-якому часовому масштабі, актуальному для людини. З такою швидкістю знадобляться трильйони років, набагато більше, ніж очікувана тривалість життя Землі, щоб уся її вода зникла (це також те, чому через кліматичні зміни, спричинені людиною, екстремальні погодні явища, такі як урагани та повені, посиляться найближчим часом термін, оскільки більш тепла атмосфера може утримувати більше вологи, і, отже, збільшити кількість зазначеної водяної пари, що повертається у вигляді опадів, оскільки навіть тоді холодна пастка все одно запобігатиме втраті водяної пари у космос, і тому атмосфера Землі все ще занадто холодна щоб це сталося), хоча остаточне нагрівання Сонця в міру його старіння лише послабить холодну пастку протягом наступних мільярдів років, зробивши земну атмосферу ще теплішою, що штовхає холодну пастку ще вище в атмосферу, а отже, спричиняючи втрату здатності запобігти дисоціації водяної пари на водень і кисень під дією ультрафіолетових променів Сонця та виходу водню у космос, через що Земля остаточно втратить свої океани в космос приблизно за 1 мільярд років, задовго до того, як Сонце нарешті перетворюється на червоного гіганта.
Як зазначають [en] і [en] у своїй книзі [en], поточний процес фактичної втрати океанів був задокументований лише двічі, вперше під час місії «Аполлон-16» на Місяць (хоча випадково, коли астронавти спостерігали за Землею за допомогою унікальної камери [en], яка була створена та використана лише один раз для цієї конкретної місії, оскільки такий процес можна спостерігати лише в ультрафіолетовому світлі та лише з Місяця, через відсутність атмосфери, яка блокувала б ультрафіолетове світло), а також у 1990-х за допомогою досліджень астронавтів, зроблених під час перебування на борту космічного човника.
Супутник Сатурна Титан має дуже слабку холодну пастку, яка здатна затримати лише частину його атмосферного метану. Таким чином, припускається, що Титан є найближчим аналогом того, як виглядатиме земна атмосфера, коли земна холодна пастка вийде з ладу, з метаном замість води та вуглеводневими продуктами фотохімічних реакцій замість кисню й озону.
Вважається, що холодні пастки працюють для кисню на Ганімеді.
Примітки
- Lucey, P. G. (2009). The Poles of the Moon. Elements. 5 (1): 41—6. doi:10.2113/gselements.5.1.41.
- Rubanenko, Lior; Aharonson, Oded (2017). Stability of ice on the Moon with rough topography. Icarus. 296: 99—109. Bibcode:2017Icar..296...99R. doi:10.1016/j.icarus.2017.05.028.
- Watson, Kenneth; Murray, Bruce C.; Brown, Harrison (1961). The behavior of volatiles on the lunar surface (PDF). Journal of Geophysical Research. 66 (9): 3033—45. Bibcode:1961JGR....66.3033W. doi:10.1029/JZ066i009p03033.
- Vasavada, A; Paige, David A.; Wood, Stephen E. (1999). Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits. Icarus. 141 (2): 179—93. Bibcode:1999Icar..141..179V. doi:10.1006/icar.1999.6175.
- Buhl, David; Welch, William J.; Rea, Donald G. (1968). Reradiation and thermal emission from illuminated craters on the lunar surface. Journal of Geophysical Research. 73 (16): 5281—95. Bibcode:1968JGR....73.5281B. doi:10.1029/JB073i016p05281.
- Paige, D. A.; Siegler, M. A.; Zhang, J. A.; Hayne, P. O.; Foote, E. J.; Bennett, K. A.; Vasavada, A. R.; Greenhagen, B. T.; Schofield, J. T. (2010). Diviner Lunar Radiometer Observations of Cold Traps in the Moon's South Polar Region. Science. 330 (6003): 479—82. Bibcode:2010Sci...330..479P. doi:10.1126/science.1187726. PMID 20966246.
- Harmon, J; Perillat, P. J.; Slade, M. A. (2001). High-Resolution Radar Imaging of Mercury's North Pole. Icarus. 149 (1): 1—15. Bibcode:2001Icar..149....1H. doi:10.1006/icar.2000.6544.
- Neumann, G. A.; Cavanaugh, J. F.; Sun, X.; Mazarico, E. M.; Smith, D. E.; Zuber, M. T.; Mao, D.; Paige, D. A.; Solomon, S. C. (2012). Bright and Dark Polar Deposits on Mercury: Evidence for Surface Volatiles. Science. 339 (6117): 296—300. Bibcode:2013Sci...339..296N. doi:10.1126/science.1229764. PMID 23196910.
- Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A. (2017). Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole. 48th Lunar and Planetary Science Conference. 48 (1964): 1461. Bibcode:2017LPI....48.1461R.
- Chabot, N. L.; Ernst, C. M.; Denevi, B. W.; Nair, H.; Deutsch, A. N.; Blewett, D. T.; Murchie, S. L.; Neumann, G. A.; Mazarico, E. (2014). Images of surface volatiles in Mercury's polar craters acquired by the MESSENGER spacecraft. Geology. 42 (12): 1051—4. Bibcode:2014Geo....42.1051C. doi:10.1130/G35916.1.
- Schorghofer, Norbert; Mazarico, Erwan; Platz, Thomas; Preusker, Frank; Schröder, Stefan E.; Raymond, Carol A.; Russell, Christopher T. (2016). The permanently shadowed regions of dwarf planet Ceres. Geophysical Research Letters. 43 (13): 6783—9. Bibcode:2016GeoRL..43.6783S. doi:10.1002/2016GL069368.
- Brewer, A. W. (Oct 1949). Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere. Quarterly Journal of the Royal Meteorological Society. 75 (326): 351—363. Bibcode:1949QJRMS..75..351B. doi:10.1002/qj.49707532603.
- Strow, Thompson (1977). Astronomy: Fundamentals and Frontiers. Quinn & Boden. с. 425.
- Lewis, B. R.; Vardavas, I. M.; Carver, J. H. (June 1983). The aeronomic dissociation of water vapor by solar H Lyman α radiation. Journal of Geophysical Research. 88 (A6): 4935—4940. Bibcode:1983JGR....88.4935L. doi:10.1029/JA088iA06p04935.
- Nicolet, Marcel (July 1984). On the photodissociation of water vapour in the mesosphere. Planetary and Space Science. 32 (7): 871—880. Bibcode:1984P&SS...32..871N. doi:10.1016/0032-0633(84)90011-4.
- Caldeira, K; Kasting, J F (December 1992). The life span of the biosphere revisited. Nature. 360 (6406): 721—23. Bibcode:1992Natur.360..721C. doi:10.1038/360721a0. PMID 11536510. S2CID 4360963.
- Titan and Earth's Future Atmospheres: Lost to Space. NASA Solar System Exploration. 26 серпня 2009.
- Lunine, J. I. (Feb 2009). Titan as an analog of Earth's past and future. EPJ Web of Conferences. 1: 267—274. Bibcode:2009EPJWC...1..267L. doi:10.1140/epjconf/e2009-00926-7.
- Vidal, R. A.; Bahr, D.; Baragiola, R. A.; Peters, M. (1997). Oxygen on Ganymede: Laboratory Studies. Science. 276 (5320): 1839—42. Bibcode:1997Sci...276.1839V. doi:10.1126/science.276.5320.1839. PMID 9188525.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Holodna pastka ce koncepciya planetoznavstva yaka opisuye teritoriyu dostatno holodnu dlya zamorozhuvannya ulovlyuvannya en Holodni pastki mozhut isnuvati na poverhni bezpovitryanih til abo u verhnih sharah adiabatichnoyi atmosferi Na bezpovitryanih tilah lid zahoplenij holodnimi pastkami potencijno mozhe zalishatisya tam protyagom geologichnih periodiv chasu dozvolyayuchi nam zazirnuti v pervisnu Sonyachnu sistemu U adiabatichnih atmosferah holodni pastki zapobigayut vihodu letkih rechovin napriklad vodi z atmosferi v kosmos Holodni pastki na bezpovitryanih planetarnih tilahNa dno kratera en poblizu pivnichnogo polyusa Merkuriya nikoli ne potraplyaye sonyachne svitlo Nahil osi deyakih bezpovitryanih planetnih til u Sonyachnij sistemi takih yak Merkurij Misyac i Cerera duzhe blizkij do nulya Garold Yuri vpershe zaznachiv sho zapadini abo krateri roztashovani poblizu polyusiv cih til vidkidayut stijki tini yaki mozhut zberigatisya protyagom geologichnih periodiv chasu miljoni milyardi rokiv Vidsutnist atmosferi zapobigaye peremishuvannyu shlyahom konvekciyi sho robit ci tini nadzvichajno holodnimi Yaksho molekuli letkih rechovin takih yak voda potraplyayut u ci postijni tini voni potraplyat u pastku na geologichni periodi chasu Vivchennya holodnih pastok na bezpovitryanih tilah Oskilki ci tini ne otrimuyut insolyaciyi bilsha chastina tepla yake voni otrimuyut rozsiyuyetsya ta viprominyuyetsya navkolishnim relyefom Zazvichaj mozhna znehtuvati gorizontalnoyu teploprovidnistyu vid susidnih teplih oblastej cherez visoku poristist i otzhe nizku teploprovidnist verhnih shariv bezpovitryanih til Tomu mozhna modelyuvati temperaturu cih postijnih tinej za dopomogoyu algoritmiv rej kastingu abo trasuvannya promeniv u poyednanni z odnovimirnimi modelyami vertikalnoyi teploprovidnosti U deyakih vipadkah napriklad u chashopodibnih kraterah mozhna otrimati viraz dlya rivnovazhnoyi temperaturi cih tinej Krim togo temperaturi i otzhe stabilnist holodnih pastok mozhut distancijno vimiryuvatisya orbitalnim aparatom Temperaturi misyachnih holodnih pastok buli detalno vivcheni radiometrom en zi skladu Lunar Reconnaissance Orbiter Na Merkuriyi dokazi nayavnosti vidkladen lodu vseredini holodnih pastok buli otrimani za dopomogoyu radara reflektometriyi ta vidimih zobrazhen Na Cereri kosmichnij korabel Dawn viyaviv holodni pastki Atmosferni holodni pastkiU en holodna pastka ce shar atmosferi yakij znachno holodnishij za nizhchi ta vishi shari Napriklad dlya troposferi Zemli temperatura povitrya padaye zi zbilshennyam visoti dosyagayuchi najnizhchoyi tochki priblizno na visoti 20 kilometriv Cyu oblast nazivayut holodnoyu pastkoyu oskilki vona zatrimuye vishidni gazi z visokimi temperaturami kipinnya zmushuyuchi yih padati nazad na Zemlyu Deyaki astronomi vvazhayut sho cherez vidsutnist holodnoyi pastki Venera ta Mars vtratili bilshu chastinu ridkoyi vodi na pochatku svoyeyi istoriyi Holodna pastka Zemli roztashovana na visoti priblizno 12 km nad rivnem morya sho znachno nizhche visoti na yakij vodyana para ostatochno rozdililasya b na voden i kisen sonyachnimi ultrafioletovimi promenyami a voden nezvorotno vtrachavsya b u kosmosi Cherez holodnu pastku v zemnij atmosferi Zemlya faktichno vtrachaye vodu v kosmos zi shvidkistyu lishe 1 milimetra okeanu kozhni 1 miljon rokiv sho nadto povilno shob vplinuti na zmini rivnya morya v bud yakomu chasovomu masshtabi aktualnomu dlya lyudini Z takoyu shvidkistyu znadoblyatsya triljoni rokiv nabagato bilshe nizh ochikuvana trivalist zhittya Zemli shob usya yiyi voda znikla ce takozh te chomu cherez klimatichni zmini sprichineni lyudinoyu ekstremalni pogodni yavisha taki yak uragani ta poveni posilyatsya najblizhchim chasom termin oskilki bilsh tepla atmosfera mozhe utrimuvati bilshe vologi i otzhe zbilshiti kilkist zaznachenoyi vodyanoyi pari sho povertayetsya u viglyadi opadiv oskilki navit todi holodna pastka vse odno zapobigatime vtrati vodyanoyi pari u kosmos i tomu atmosfera Zemli vse she zanadto holodna shob ce stalosya hocha ostatochne nagrivannya Soncya v miru jogo starinnya lishe poslabit holodnu pastku protyagom nastupnih milyardiv rokiv zrobivshi zemnu atmosferu she teplishoyu sho shtovhaye holodnu pastku she vishe v atmosferu a otzhe sprichinyayuchi vtratu zdatnosti zapobigti disociaciyi vodyanoyi pari na voden i kisen pid diyeyu ultrafioletovih promeniv Soncya ta vihodu vodnyu u kosmos cherez sho Zemlya ostatochno vtratit svoyi okeani v kosmos priblizno za 1 milyard rokiv zadovgo do togo yak Sonce nareshti peretvoryuyetsya na chervonogo giganta Yak zaznachayut en i en u svoyij knizi en potochnij proces faktichnoyi vtrati okeaniv buv zadokumentovanij lishe dvichi vpershe pid chas misiyi Apollon 16 na Misyac hocha vipadkovo koli astronavti sposterigali za Zemleyu za dopomogoyu unikalnoyi kameri en yaka bula stvorena ta vikoristana lishe odin raz dlya ciyeyi konkretnoyi misiyi oskilki takij proces mozhna sposterigati lishe v ultrafioletovomu svitli ta lishe z Misyacya cherez vidsutnist atmosferi yaka blokuvala b ultrafioletove svitlo a takozh u 1990 h za dopomogoyu doslidzhen astronavtiv zroblenih pid chas perebuvannya na bortu kosmichnogo chovnika Suputnik Saturna Titan maye duzhe slabku holodnu pastku yaka zdatna zatrimati lishe chastinu jogo atmosfernogo metanu Takim chinom pripuskayetsya sho Titan ye najblizhchim analogom togo yak viglyadatime zemna atmosfera koli zemna holodna pastka vijde z ladu z metanom zamist vodi ta vuglevodnevimi produktami fotohimichnih reakcij zamist kisnyu j ozonu Vvazhayetsya sho holodni pastki pracyuyut dlya kisnyu na Ganimedi PrimitkiLucey P G 2009 The Poles of the Moon Elements 5 1 41 6 doi 10 2113 gselements 5 1 41 Rubanenko Lior Aharonson Oded 2017 Stability of ice on the Moon with rough topography Icarus 296 99 109 Bibcode 2017Icar 296 99R doi 10 1016 j icarus 2017 05 028 Watson Kenneth Murray Bruce C Brown Harrison 1961 The behavior of volatiles on the lunar surface PDF Journal of Geophysical Research 66 9 3033 45 Bibcode 1961JGR 66 3033W doi 10 1029 JZ066i009p03033 Vasavada A Paige David A Wood Stephen E 1999 Near Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits Icarus 141 2 179 93 Bibcode 1999Icar 141 179V doi 10 1006 icar 1999 6175 Buhl David Welch William J Rea Donald G 1968 Reradiation and thermal emission from illuminated craters on the lunar surface Journal of Geophysical Research 73 16 5281 95 Bibcode 1968JGR 73 5281B doi 10 1029 JB073i016p05281 Paige D A Siegler M A Zhang J A Hayne P O Foote E J Bennett K A Vasavada A R Greenhagen B T Schofield J T 2010 Diviner Lunar Radiometer Observations of Cold Traps in the Moon s South Polar Region Science 330 6003 479 82 Bibcode 2010Sci 330 479P doi 10 1126 science 1187726 PMID 20966246 Harmon J Perillat P J Slade M A 2001 High Resolution Radar Imaging of Mercury s North Pole Icarus 149 1 1 15 Bibcode 2001Icar 149 1H doi 10 1006 icar 2000 6544 Neumann G A Cavanaugh J F Sun X Mazarico E M Smith D E Zuber M T Mao D Paige D A Solomon S C 2012 Bright and Dark Polar Deposits on Mercury Evidence for Surface Volatiles Science 339 6117 296 300 Bibcode 2013Sci 339 296N doi 10 1126 science 1229764 PMID 23196910 Rubanenko L Mazarico E Neumann G A Paige D A 2017 Evidence for Surface and Subsurface Ice Inside Micro Cold Traps on Mercury s North Pole 48th Lunar and Planetary Science Conference 48 1964 1461 Bibcode 2017LPI 48 1461R Chabot N L Ernst C M Denevi B W Nair H Deutsch A N Blewett D T Murchie S L Neumann G A Mazarico E 2014 Images of surface volatiles in Mercury s polar craters acquired by the MESSENGER spacecraft Geology 42 12 1051 4 Bibcode 2014Geo 42 1051C doi 10 1130 G35916 1 Schorghofer Norbert Mazarico Erwan Platz Thomas Preusker Frank Schroder Stefan E Raymond Carol A Russell Christopher T 2016 The permanently shadowed regions of dwarf planet Ceres Geophysical Research Letters 43 13 6783 9 Bibcode 2016GeoRL 43 6783S doi 10 1002 2016GL069368 Brewer A W Oct 1949 Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere Quarterly Journal of the Royal Meteorological Society 75 326 351 363 Bibcode 1949QJRMS 75 351B doi 10 1002 qj 49707532603 Strow Thompson 1977 Astronomy Fundamentals and Frontiers Quinn amp Boden s 425 Lewis B R Vardavas I M Carver J H June 1983 The aeronomic dissociation of water vapor by solar H Lyman a radiation Journal of Geophysical Research 88 A6 4935 4940 Bibcode 1983JGR 88 4935L doi 10 1029 JA088iA06p04935 Nicolet Marcel July 1984 On the photodissociation of water vapour in the mesosphere Planetary and Space Science 32 7 871 880 Bibcode 1984P amp SS 32 871N doi 10 1016 0032 0633 84 90011 4 Caldeira K Kasting J F December 1992 The life span of the biosphere revisited Nature 360 6406 721 23 Bibcode 1992Natur 360 721C doi 10 1038 360721a0 PMID 11536510 S2CID 4360963 Titan and Earth s Future Atmospheres Lost to Space NASA Solar System Exploration 26 serpnya 2009 Lunine J I Feb 2009 Titan as an analog of Earth s past and future EPJ Web of Conferences 1 267 274 Bibcode 2009EPJWC 1 267L doi 10 1140 epjconf e2009 00926 7 Vidal R A Bahr D Baragiola R A Peters M 1997 Oxygen on Ganymede Laboratory Studies Science 276 5320 1839 42 Bibcode 1997Sci 276 1839V doi 10 1126 science 276 5320 1839 PMID 9188525