Піфагорова четвірка — кортеж цілих чисел таких, що , при цьому d > 0. Піфагорова четвірка визначає прямокутний паралелепіпед із довжинами сторін |a|, |b| та |c|, діагональ якого має довжину d. Піфагорові четвірки також називають піфагоровими блоками.
Параметризація простих четвірок
Множина простих піфагорових четвірок, тобто тих, для яких НСД(a,b,c) = 1, має параметризацію
де m, n, p, q — натуральні цілі, НСД(m,n,p,q) = 1 і m + n + p + q ≡ 1 (mod 2). Таким чином, усі прості піфагорові четвірки описує тотожність Лебега
Альтернативна параметризація
Всі піфагорові четвірки (включно з непростими та з повтореннями) можна отримати з двох натуральних чисел a і b в такий спосіб: Якщо і мають різну парність, візьмемо будь-який множник p числа такий, що . Тоді і Зауважимо, що
Схожий метод існує для парних з додатковим обмеженням, що має бути парним дільником числа Такого методу немає для випадку, коли обидва числа a і b непарні.
Властивості
Найбільше число, яке завжди ділить добуток abcd, дорівнює 12. Четвірка з найменшим добутком — (1, 2, 2, 3).
Зв'язок з кватерніонами та раціональними ортогональними матрицями
Проста піфагорова четвірка , параметризована за допомогою , відповідає першому стовпцю матричного подання спряження за допомогою кватерніона Гурвіца , звуженого до підпростору , натягнутого на
де стовпці попарно ортогональні і кожен має норму d. Більш того, , і фактично всі 3 × 3 ортогональні матриці з раціональними коефіцієнтами з'являються в такий спосіб.
Піфагорові четвірки з нормою d<30
a | b | c | d |
---|---|---|---|
1 | 2 | 2 | 3 |
2 | 3 | 6 | 7 |
1 | 4 | 8 | 9 |
2 | 6 | 9 | 11 |
4 | 4 | 7 | 9 |
6 | 6 | 7 | 11 |
3 | 4 | 12 | 13 |
2 | 5 | 14 | 15 |
2 | 10 | 11 | 15 |
1 | 12 | 12 | 17 |
8 | 9 | 12 | 17 |
1 | 6 | 18 | 19 |
6 | 6 | 17 | 19 |
6 | 10 | 15 | 19 |
4 | 5 | 20 | 21 |
4 | 8 | 19 | 21 |
4 | 13 | 16 | 21 |
8 | 11 | 16 | 21 |
3 | 6 | 22 | 23 |
3 | 14 | 18 | 23 |
6 | 13 | 18 | 23 |
9 | 12 | 20 | 25 |
12 | 15 | 16 | 25 |
2 | 7 | 26 | 27 |
2 | 10 | 25 | 27 |
2 | 14 | 23 | 27 |
7 | 14 | 22 | 27 |
10 | 10 | 23 | 27 |
3 | 16 | 24 | 29 |
11 | 12 | 24 | 29 |
12 | 16 | 21 | 29 |
Кубічні піфагорові четвірки
Існує окремий тип кубічних піфагорових четвірок (англ. Pythagorean cubic quadruples), тобто таких наборів натуральних чисел , які задовольняють рівняння:
Кубчні піфагорові четвірки можна згенерувати за допомогою спеціальних матриць. Кубічною піфагоровою четвіркою з найменшою нормою є: . Іншими (але не єдиними) прикладами кубічних піфагорових четвірок є:
a | b | c | d |
---|---|---|---|
4 | 17 | 22 | 25 |
16 | 23 | 41 | 44 |
16 | 47 | 108 | 111 |
64 | 107 | 405 | 408 |
64 | 155 | 664 | 667 |
Див. також
Примітки
- R. A. Beauregard, E. R. Suryanarayan. Pythagorean boxes // Math. Magazine. — 2001. — Т. 74 (16 червня). — С. 222—227.
- R. D. Carmichael. Diophantine Analysis. — New York : John Wiley & Sons, 1915. — Т. 16. — (MATHEMATICAL MONOGRAPHS)
- L. E. Dickson, Some relations between the theory of numbers and other branches of mathematics, in Villat (Henri), ed., Conférence générale, Comptes rendus du Congrès international des mathématiciens, Strasbourg, Toulouse, 1921, pp. 41—56; reprint Nendeln/Liechtenstein: Kraus Reprint Limited, 1967; Collected Works 2, pp. 579—594.
- R. Spira. The diophantine equation // Amer. Math. Monthly. — 1962. — Т. 69 (16 червня). — С. 360—365.
- Lebesgue Identity. оригіналу за 23 січня 2022. Процитовано 23 січня 2022.
- В. Серпинский. Пифагоровы треугольники. — М. : Учпедгиз, 1959. — С. 68.
- Des MacHale, Christian van den Bosch. Generalising a result about Pythagorean triples // Mathematical Gazette. — 2012. — Т. 96 (1 березня). — С. 91—96.
- J. Cremona. Letter to the Editor // Amer. Math. Monthly. — 1987. — Т. 94 (16 червня). — С. 757—758.
- Scheinman, Dr. Louis J. (1 лютого 2006). On the Solution of the Cubic Pythagorean Diophantine Equation $x^3 + y^3 + z^3 = a^3$. Missouri Journal of Mathematical Sciences. Т. 18, № 1. doi:10.35834/2006/1801003. ISSN 0899-6180. Процитовано 19 січня 2024.
- Mouanda, Joachim Moussounda (2023). On Matrix Solutions in M9(N) of the Cubic Pythagorean Diophantine Equation X^3 + Y^3 + Z^3 = D^3 (PDF) (англійською) . Blessington Christian University, Mathematics Department Nkayi, Республіка Конго: Blessington Christian University. с. 1—6.
Посилання
- Weisstein, Eric W. Піфагорова четвірка(англ.) на сайті Wolfram MathWorld.
- Weisstein, Eric W. Тотожність Лебега(англ.) на сайті Wolfram MathWorld.
- Carmichael. Diophantine Analysis у проєкті «Гутенберг»
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Pifagorova chetvirka kortezh cilih chisel a b c d displaystyle a b c d takih sho a 2 b 2 c 2 d 2 displaystyle a 2 b 2 c 2 d 2 pri comu d gt 0 Pifagorova chetvirka a b c d displaystyle a b c d viznachaye pryamokutnij paralelepiped iz dovzhinami storin a b ta c diagonal yakogo maye dovzhinu d Pifagorovi chetvirki takozh nazivayut pifagorovimi blokami Parametrizaciya prostih chetvirokMnozhina prostih pifagorovih chetvirok tobto tih dlya yakih NSD a b c 1 maye parametrizaciyu a m 2 n 2 p 2 q 2 displaystyle a m 2 n 2 p 2 q 2 b 2 m q n p displaystyle b 2 mq np c 2 n q m p displaystyle c 2 nq mp d m 2 n 2 p 2 q 2 displaystyle d m 2 n 2 p 2 q 2 de m n p q naturalni cili NSD m n p q 1 i m n p q 1 mod 2 Takim chinom usi prosti pifagorovi chetvirki opisuye totozhnist Lebega m 2 n 2 p 2 q 2 2 2 m q 2 n p 2 2 n q 2 m p 2 m 2 n 2 p 2 q 2 2 displaystyle m 2 n 2 p 2 q 2 2 2mq 2np 2 2nq 2mp 2 m 2 n 2 p 2 q 2 2 Alternativna parametrizaciyaVsi pifagorovi chetvirki vklyuchno z neprostimi ta z povtorennyami mozhna otrimati z dvoh naturalnih chisel a i b v takij sposib Yaksho a displaystyle a i b displaystyle b mayut riznu parnist vizmemo bud yakij mnozhnik p chisla a 2 b 2 displaystyle a 2 b 2 takij sho p 2 lt a 2 b 2 displaystyle p 2 lt a 2 b 2 Todi c a 2 b 2 p 2 2 p displaystyle c a 2 b 2 p 2 2p i d a 2 b 2 p 2 2 p displaystyle d a 2 b 2 p 2 2p Zauvazhimo sho p d c displaystyle p d c Shozhij metod isnuye dlya a b displaystyle a b parnih z dodatkovim obmezhennyam sho 2 p displaystyle 2p maye buti parnim dilnikom chisla a 2 b 2 displaystyle a 2 b 2 Takogo metodu nemaye dlya vipadku koli obidva chisla a i b neparni VlastivostiNajbilshe chislo yake zavzhdi dilit dobutok abcd dorivnyuye 12 Chetvirka z najmenshim dobutkom 1 2 2 3 Zv yazok z kvaternionami ta racionalnimi ortogonalnimi matricyamiProsta pifagorova chetvirka a b c d displaystyle a b c d parametrizovana za dopomogoyu m n p q displaystyle m n p q vidpovidaye pershomu stovpcyu matrichnogo podannya E a displaystyle E alpha spryazhennya a a displaystyle alpha cdot overline alpha za dopomogoyu kvaterniona Gurvica a m n i p j q k displaystyle alpha m ni pj qk zvuzhenogo do pidprostoru H displaystyle mathbb H natyagnutogo na i j k displaystyle i j k E a m 2 n 2 p 2 q 2 2 n p 2 m q 2 m p 2 n q 2 m q 2 n p m 2 n 2 p 2 q 2 2 p q 2 m n 2 n q 2 m p 2 m n 2 p q m 2 n 2 p 2 q 2 displaystyle E alpha begin pmatrix m 2 n 2 p 2 q 2 amp 2np 2mq amp 2mp 2nq 2mq 2np amp m 2 n 2 p 2 q 2 amp 2pq 2mn 2nq 2mp amp 2mn 2pq amp m 2 n 2 p 2 q 2 end pmatrix de stovpci poparno ortogonalni i kozhen maye normu d Bilsh togo 1 d E a displaystyle frac 1 d E alpha SO 3 Q displaystyle in text SO 3 mathbb Q i faktichno vsi 3 3 ortogonalni matrici z racionalnimi koeficiyentami z yavlyayutsya v takij sposib Pifagorovi chetvirki z normoyu d lt 30a b c d 1 2 2 3 2 3 6 7 1 4 8 9 2 6 9 11 4 4 7 9 6 6 7 11 3 4 12 13 2 5 14 15 2 10 11 15 1 12 12 17 8 9 12 17 1 6 18 19 6 6 17 19 6 10 15 19 4 5 20 21 4 8 19 21 4 13 16 21 8 11 16 21 3 6 22 23 3 14 18 23 6 13 18 23 9 12 20 25 12 15 16 25 2 7 26 27 2 10 25 27 2 14 23 27 7 14 22 27 10 10 23 27 3 16 24 29 11 12 24 29 12 16 21 29Kubichni pifagorovi chetvirkiIsnuye okremij tip kubichnih pifagorovih chetvirok angl Pythagorean cubic quadruples tobto takih naboriv naturalnih chisel a b c d displaystyle a b c d yaki zadovolnyayut rivnyannya a 3 b 3 c 3 d 3 displaystyle a 3 b 3 c 3 d 3 Kubchni pifagorovi chetvirki mozhna zgeneruvati za dopomogoyu specialnih matric Kubichnoyu pifagorovoyu chetvirkoyu z najmenshoyu normoyu ye a 3 b 4 c 5 d 6 displaystyle a 3 b 4 c 5 d 6 Inshimi ale ne yedinimi prikladami kubichnih pifagorovih chetvirok ye a b c d 4 17 22 25 16 23 41 44 16 47 108 111 64 107 405 408 64 155 664 667Div takozhChisla Pifagora Teorema de Gua Kvaternioni i povoroti prostoru Formula Ejlera Rodrigesa dlya obertannya v trivimirnomu prostori Gipoteza Ejlera Chislo taksi Zadacha pro chotiri kubi Rivnyannya Yakobi MaddenaPrimitkiR A Beauregard E R Suryanarayan Pythagorean boxes Math Magazine 2001 T 74 16 chervnya S 222 227 R D Carmichael Diophantine Analysis New York John Wiley amp Sons 1915 T 16 MATHEMATICAL MONOGRAPHS L E Dickson Some relations between the theory of numbers and other branches of mathematics in Villat Henri ed Conference generale Comptes rendus du Congres international des mathematiciens Strasbourg Toulouse 1921 pp 41 56 reprint Nendeln Liechtenstein Kraus Reprint Limited 1967 Collected Works 2 pp 579 594 R Spira The diophantine equation x 2 y 2 z 2 m 2 displaystyle x 2 y 2 z 2 m 2 Amer Math Monthly 1962 T 69 16 chervnya S 360 365 Lebesgue Identity originalu za 23 sichnya 2022 Procitovano 23 sichnya 2022 V Serpinskij Pifagorovy treugolniki M Uchpedgiz 1959 S 68 Des MacHale Christian van den Bosch Generalising a result about Pythagorean triples Mathematical Gazette 2012 T 96 1 bereznya S 91 96 J Cremona Letter to the Editor Amer Math Monthly 1987 T 94 16 chervnya S 757 758 Scheinman Dr Louis J 1 lyutogo 2006 On the Solution of the Cubic Pythagorean Diophantine Equation x 3 y 3 z 3 a 3 Missouri Journal of Mathematical Sciences T 18 1 doi 10 35834 2006 1801003 ISSN 0899 6180 Procitovano 19 sichnya 2024 Mouanda Joachim Moussounda 2023 On Matrix Solutions in M9 N of the Cubic Pythagorean Diophantine Equation X 3 Y 3 Z 3 D 3 PDF anglijskoyu Blessington Christian University Mathematics Department Nkayi Respublika Kongo Blessington Christian University s 1 6 PosilannyaWeisstein Eric W Pifagorova chetvirka angl na sajti Wolfram MathWorld Weisstein Eric W Totozhnist Lebega angl na sajti Wolfram MathWorld Carmichael Diophantine Analysis u proyekti Gutenberg