Опуклий аналіз — це гілка математики, присвячена вивченню властивостей опуклих функцій і опуклих множин, часто застосовується в опуклому програмуванні, підгалузі теорії оптимізації.
Опуклі множини
Опукла множина — це множина для деякого векторного простору X, така що для будь-яких і
- .
Опукла функція
Опукла функція — це будь-яка розширена дійснозначна функція , яка задовольняє нерівності Єнсена, тобто, для будь-яких і будь-якого
- .
Еквівалентно, опуклою функцією є будь-яка (розширена) дійснозначна функція, така що її надграфік
є опуклою множиною.
Опукле спряження
Опукле спряження розширеної (не обов'язково опуклої) функції — це функція , де X* — спряжений простір простору X, така що
Подвійне спряження
Подвійне спряження функції — це спряження спряження, що зазвичай записують як . Подвійне спряження корисне, коли потрібно показати, що виконується сильна або слабка двоїстість (за допомогою [en]).
Для будь-кого нерівність випливає з нерівності Фенхеля. Для [en] f = f** тоді й лише тоді, коли f опукла і напівнеперервна знизу за теоремою Фенхеля — Моро.
Опукла мінімізація
(Пряма) задача опуклого програмування, це задача вигляду
така що є опуклою функцією, а є опуклою множиною.
Двоїста задача
Принцип двоїстості в оптимізації стверджує, що задачу оптимізації можна розглядати з двох точок зору як пряму задачу або двоїсту задачу.
Загалом, якщо дано [en] відокремлюваних локально опуклих просторів та функцію , можна визначити пряму задачу як знаходження такого , що Іншими словами, — це інфімум (точна нижня границя) функції .
Якщо є обмеження, їх можна вбудувати у функцію , якщо покласти , де — [en]. Нехай тепер (для іншої двоїстої пари ) — [en], така що .
Двоїста задача для цієї функції збурення відносно вибраної задачі визначається як
де F* — опукле спряження за обома змінними функції F.
Розрив двоїстості — це різниця правої та лівої частин нерівності
де — опукле спряження від обох змінних, а означає супремум (точна верхня границя) .
Цей принцип збігається зі слабкою двоїстістю. Якщо обидві сторони рівні, кажуть, задача задовольняє умовам сильної двоїстості.
Існує багато умов для сильної двоїстості, такі як:
- F = F**, де F — [en] для прямої та двоїстої задач, а F** — подвійне спряження функції F;
- пряма задача є задачею лінійного програмування;
- Умова Слейтера для задач опуклого програмування.
Двоїстість Лагранжа
Для опуклої задачі мінімізації з обмеженнями-нерівностями
- за умов для i = 1, …, m .
двоїстою задачею Лагранжа буде
- за умов для i = 1, …, m ,
де цільова функція є двоїстою функцією Лагранжа, визначеною так:
Примітки
- Rockafellar, 1997.
- Zălinescu, 2002, с. 75–79.
- Borwein, Lewis, 2006, с. 76–77.
- Двоїста пара — це трійка , де — векторний простір над полем , — множина всіх лінійних відображень , а третій елемент — білінійна форма .
- Boţ, Wanka, Grad, 2009.
- Csetnek, 2010.
- Zălinescu, 2002, с. 106–113.
- Borwein, Lewis, 2006.
- Boyd, Vandenberghe, 2004.
Література
- Осипенко К. Ю. Оптимизация. Ч. 1. Выпуклый анализ (консп. лекций). М.: МГУ. 57 с.
- Осипенко К. Ю. Выпуклый анализ (программа курса и консп. лекций). М.: МГУ. 68 с.
- Петров Н. Н. Выпуклый анализ (консп. лекций). Ижевск: УдмГУ, 2009. 160 с.
- Жадан В. Г. Методы оптимизации. Часть I. Введение в выпуклый анализ и теорию оптимизации: учеб. пос. для студ. вузов по направл. … «Прикладные математика и физика». Москва : МФТИ, 2014. . (Ч. I). 271 с. Выпуск 300 шт.
- Элементы выпуклого и сильно выпуклого анализа: учебное пособие для студентов высших учебных заведений, обучающихся по направлению «Прикладные математика и физика» и смежным направлениям и специальностям / Е. С. Половинкин, М. В. Балашов. — 2-е изд., испр. и доп. — М. : Физматлит, 2007. — 438 с.; 22 см — (Физтеховский учебник).;
- Выпуклый анализ (консп. лекций. Мехмат МГУ, экономич. поток, 2009 г.). М.: МГУ.
- Jonathan Borwein, Adrian Lewis. Convex Analysis and Nonlinear Optimization: Theory and Examples. — 2. — Springer, 2006. — .
- Stephen Boyd, Lieven Vandenberghe. Convex Optimization. — Cambridge University Press, 2004. — .
- R. Tyrrell Rockafellar. Convex Analysis = 1970. — Princeton, NJ : Princeton University Press, 1997. — .
- Radu Ioan Boţ, Gert Wanka, Sorin-Mihai Grad. Duality in Vector Optimization. — Springer, 2009. — .
- Constantin Zălinescu. Convex analysis in general vector spaces. — River Edge, NJ : World Scientific Publishing Co., Inc, 2002. — С. 106–113. — .
- Ernö Robert Csetnek. Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators. — Logos Verlag Berlin GmbH, 2010. — .
- Jonathan Borwein, Adrian Lewis. Convex Analysis and Nonlinear Optimization: Theory and Examples. — 2. — Springer, 2006. — .
- Hiriart-Urruty J.-B., Lemaréchal C. Fundamentals of convex analysis. — Berlin : Springer-Verlag, 2001. — .
- Ivan Singer. Abstract convex analysis. — New York : John Wiley & Sons, Inc, 1997. — С. xxii+491. — (Canadian Mathematical Society series of monographs and advanced texts) — .
- Stoer J., Witzgall C. Convexity and optimization in finite dimensions. — Berlin : Springer, 1970. — Т. 1. — .
- Kusraev A.G., Kutateladze S.S. Subdifferentials: Theory and Applications. — Dordrecht : Kluwer Academic Publishers, 1995. — .
- Кусраев А. Г., Кутателадзе С. С. Субдифференциалы. Теория и приложения. Ч. 2. — 2-е, перераб. — Новосибирск : Изд-во Ин-та математики, 2003. — ISBN 5–86134–116–8.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Opuklij analiz ce gilka matematiki prisvyachena vivchennyu vlastivostej opuklih funkcij i opuklih mnozhin chasto zastosovuyetsya v opuklomu programuvanni pidgaluzi teoriyi optimizaciyi 3 vimirnij opuklij mnogogrannik Opuklij analiz vklyuchaye ne tilki vivchennya opuklih pidmnozhin evklidovih prostoriv ale j vivchennya opuklih funkcij na abstraktnih prostorah Opukli mnozhiniOpukla mnozhina ce mnozhina C X displaystyle C subseteq X dlya deyakogo vektornogo prostoru X taka sho dlya bud yakih x y C displaystyle x y in C i l 0 1 displaystyle lambda in 0 1 l x 1 l y C displaystyle lambda x 1 lambda y in C Opukla funkciyaOpukla funkciya ce bud yaka rozshirena dijsnoznachna funkciya f X R displaystyle f X to mathbb R cup pm infty yaka zadovolnyaye nerivnosti Yensena tobto dlya bud yakih x y X displaystyle x y in X i bud yakogo l 0 1 displaystyle lambda in 0 1 f l x 1 l y l f x 1 l f y displaystyle f lambda x 1 lambda y leqslant lambda f x 1 lambda f y Ekvivalentno opukloyu funkciyeyu ye bud yaka rozshirena dijsnoznachna funkciya taka sho yiyi nadgrafik x r X R f x r displaystyle left x r in X times mathbf R f x leqslant r right ye opukloyu mnozhinoyu Opukle spryazhennyaOpukle spryazhennya rozshirenoyi ne obov yazkovo opukloyi funkciyi f X R displaystyle f X to mathbb R cup pm infty ce funkciya f X R displaystyle f X to mathbb R cup pm infty de X spryazhenij prostir prostoru X taka sho f x sup x X x x f x displaystyle f x sup x in X left langle x x rangle f x right Podvijne spryazhennya Podvijne spryazhennya funkciyi f X R displaystyle f X to mathbb R cup pm infty ce spryazhennya spryazhennya sho zazvichaj zapisuyut yak f X R displaystyle f X to mathbb R cup pm infty Podvijne spryazhennya korisne koli potribno pokazati sho vikonuyetsya silna abo slabka dvoyistist za dopomogoyu en Dlya bud kogo x X displaystyle x in X nerivnist f x f x displaystyle f x leqslant f x viplivaye z nerivnosti Fenhelya Dlya en f f todi j lishe todi koli f opukla i napivneperervna znizu za teoremoyu Fenhelya Moro Opukla minimizaciya Pryama zadacha opuklogo programuvannya ce zadacha viglyadu inf x M f x displaystyle inf x in M f x taka sho f X R displaystyle f X to mathbb R cup pm infty ye opukloyu funkciyeyu a M X displaystyle M subseteq X ye opukloyu mnozhinoyu Dvoyista zadacha Princip dvoyistosti v optimizaciyi stverdzhuye sho zadachu optimizaciyi mozhna rozglyadati z dvoh tochok zoru yak pryamu zadachu abo dvoyistu zadachu Zagalom yaksho dano en vidokremlyuvanih lokalno opuklih prostoriv X X displaystyle left X X right ta funkciyu f X R displaystyle f X to mathbb R cup infty mozhna viznachiti pryamu zadachu yak znahodzhennya takogo x displaystyle hat x sho f x inf x X f x displaystyle f hat x inf x in X f x Inshimi slovami f x displaystyle f hat x ce infimum tochna nizhnya granicya funkciyi f displaystyle f Yaksho ye obmezhennya yih mozhna vbuduvati u funkciyu f displaystyle f yaksho poklasti f f I c o n s t r a i n t s displaystyle tilde f f I mathrm constraints de I displaystyle I en Nehaj teper F X Y R displaystyle F X times Y to mathbb R cup infty dlya inshoyi dvoyistoyi pari Y Y displaystyle left Y Y right en taka sho F x 0 f x displaystyle F x 0 tilde f x Dvoyista zadacha dlya ciyeyi funkciyi zburennya vidnosno vibranoyi zadachi viznachayetsya yak sup y Y F 0 y displaystyle sup y in Y F 0 y de F opukle spryazhennya za oboma zminnimi funkciyi F Rozriv dvoyistosti ce riznicya pravoyi ta livoyi chastin nerivnosti sup y Y F 0 y inf x X F x 0 displaystyle sup y in Y F 0 y leqslant inf x in X F x 0 de F displaystyle F opukle spryazhennya vid oboh zminnih a sup displaystyle sup oznachaye supremum tochna verhnya granicya sup y Y F 0 y inf x X F x 0 displaystyle sup y in Y F 0 y leqslant inf x in X F x 0 Cej princip zbigayetsya zi slabkoyu dvoyististyu Yaksho obidvi storoni rivni kazhut zadacha zadovolnyaye umovam silnoyi dvoyistosti Isnuye bagato umov dlya silnoyi dvoyistosti taki yak F F de F en dlya pryamoyi ta dvoyistoyi zadach a F podvijne spryazhennya funkciyi F pryama zadacha ye zadacheyu linijnogo programuvannya Umova Slejtera dlya zadach opuklogo programuvannya Dvoyistist Lagranzha Dlya opukloyi zadachi minimizaciyi z obmezhennyami nerivnostyami min x f x displaystyle min x f x za umov g i x 0 displaystyle g i x leqslant 0 dlya i 1 m dd dd dvoyistoyu zadacheyu Lagranzha bude sup u inf x L x u displaystyle sup u inf x L x u za umov u i x 0 displaystyle u i x geqslant 0 dlya i 1 m dd dd de cilova funkciyaL x u displaystyle L x u ye dvoyistoyu funkciyeyu Lagranzha viznachenoyu tak L x u f x j 1 m u j g j x displaystyle L x u f x sum j 1 m u j g j x PrimitkiRockafellar 1997 Zălinescu 2002 s 75 79 Borwein Lewis 2006 s 76 77 Dvoyista para ce trijka X X displaystyle left X X langle rangle right de X displaystyle X vektornij prostir nad polem F displaystyle F X displaystyle X mnozhina vsih linijnih vidobrazhen ϕ X F displaystyle phi colon X to F a tretij element bilinijna forma X X F ϕ x ϕ x displaystyle X times X to F colon phi x mapsto phi x Boţ Wanka Grad 2009 Csetnek 2010 Zălinescu 2002 s 106 113 Borwein Lewis 2006 Boyd Vandenberghe 2004 LiteraturaOsipenko K Yu Optimizaciya Ch 1 Vypuklyj analiz konsp lekcij M MGU 57 s Osipenko K Yu Vypuklyj analiz programma kursa i konsp lekcij M MGU 68 s Petrov N N Vypuklyj analiz konsp lekcij Izhevsk UdmGU 2009 160 s Zhadan V G Metody optimizacii Chast I Vvedenie v vypuklyj analiz i teoriyu optimizacii ucheb pos dlya stud vuzov po napravl Prikladnye matematika i fizika Moskva MFTI 2014 ISBN 978 5 7417 0514 8 Ch I 271 s Vypusk 300 sht Elementy vypuklogo i silno vypuklogo analiza uchebnoe posobie dlya studentov vysshih uchebnyh zavedenij obuchayushihsya po napravleniyu Prikladnye matematika i fizika i smezhnym napravleniyam i specialnostyam E S Polovinkin M V Balashov 2 e izd ispr i dop M Fizmatlit 2007 438 s 22 sm Fiztehovskij uchebnik ISBN 978 5 9221 0896 6 Vypuklyj analiz konsp lekcij Mehmat MGU ekonomich potok 2009 g M MGU Jonathan Borwein Adrian Lewis Convex Analysis and Nonlinear Optimization Theory and Examples 2 Springer 2006 ISBN 978 0 387 29570 1 Stephen Boyd Lieven Vandenberghe Convex Optimization Cambridge University Press 2004 ISBN 978 0 521 83378 3 R Tyrrell Rockafellar Convex Analysis 1970 Princeton NJ Princeton University Press 1997 ISBN 978 0 691 01586 6 Radu Ioan Boţ Gert Wanka Sorin Mihai Grad Duality in Vector Optimization Springer 2009 ISBN 978 3 642 02885 4 Constantin Zălinescu Convex analysis in general vector spaces River Edge NJ World Scientific Publishing Co Inc 2002 S 106 113 ISBN 981 238 067 1 Erno Robert Csetnek Overcoming the failure of the classical generalized interior point regularity conditions in convex optimization Applications of the duality theory to enlargements of maximal monotone operators Logos Verlag Berlin GmbH 2010 ISBN 978 3 8325 2503 3 Jonathan Borwein Adrian Lewis Convex Analysis and Nonlinear Optimization Theory and Examples 2 Springer 2006 ISBN 978 0 387 29570 1 Hiriart Urruty J B Lemarechal C Fundamentals of convex analysis Berlin Springer Verlag 2001 ISBN 978 3 540 42205 1 Ivan Singer Abstract convex analysis New York John Wiley amp Sons Inc 1997 S xxii 491 Canadian Mathematical Society series of monographs and advanced texts ISBN 0 471 16015 6 Stoer J Witzgall C Convexity and optimization in finite dimensions Berlin Springer 1970 T 1 ISBN 978 0 387 04835 2 Kusraev A G Kutateladze S S Subdifferentials Theory and Applications Dordrecht Kluwer Academic Publishers 1995 ISBN 978 94 011 0265 0 Kusraev A G Kutateladze S S Subdifferencialy Teoriya i prilozheniya Ch 2 2 e pererab Novosibirsk Izd vo In ta matematiki 2003 ISBN 5 86134 116 8