Підтримка
www.wikidata.uk-ua.nina.az
Nadnovi tipu II utvoryuyutsya v rezultati shvidkogo kolapsu yadra ta rizkogo podalshogo vibuhu masivnoyi zori masoyu ne menshe 8 i ne bilshe 40 50 mas Soncya M Cej tip viriznyayut vid inshih tipiv nadnovih za nayavnistyu vodnyu u yiyi spektri Nadnovi tipu II perevazhno sposterigayutsya v miscyah aktivnogo zoreutvorennya bagatih na molodi masivni zori spiralnih rukavah galaktik ta zonah H II ale ne v eliptichnih galaktikah yaki zdebilshogo skladayutsya zi starih malomasivnih zir Zalishok SN 1987A nadnovoyi tipu II P u Velikij Magellanovij Hmari Zori generuyut energiyu zavdyaki yadernomu sintezu elementiv Na vidminu vid Soncya masivni zori mayut dostatno masi dlya sintezu elementiv z atomnoyu masoyu bilshoyu za masu vodnyu ta geliyu hocha i pri vse vishih temperaturah ta tisku sho vede do znachno korotshoyi trivalosti zhittya takih zir Tisk virodzhenogo elektronogo gazu ta energiya stvorena takimi reakciyami yadernogo sintezu dostatni dlya protidiyi sili gravitaciyi ta utrimuyut zoryu vid kolapsu pidtrimuyuchi zoryanu rivnovagu Zorya v yadernomu sintezi utvoryuye vse vazhchi elementi pochinayuchi sintez z vodnyu vona utvoryuye gelij potim vuglec i tak dali azh do utvorennya zalizno nikelevogo yadra Yadernij sintez nikelyu ta zaliza vzhe ne daye vigrasha v energiyi tomu podalshij yadernij sintez pripinyayetsya i zalizno nikeleve yadro staye inertnim Cherez vidsutnist viroblennya energiyi yadro stiskayetsya protidiyuchi vlasnij vazi i zovnishnomu tisku v osnovnomu tiskom virodzhenogo elektronnogo gazu Koli masa stisnutogo inertnogo yadra perevishuye mezhu Chandrasekara blizko 1 4 M elektronnogo virodzhennya staye nedostatno dlya protidiyi gravitaciyi i pidtrimki zoryanoyi rivnovagi Za licheni sekundi vidbuvayetsya kataklizmichna imploziya yadra Bez pidtrimki vnutrishnogo yadra yake stisnulos zovnishnye yadro padaye vseredinu pid diyeyu sili tyazhinnya ta dosyagaye shvidkosti do 23 shvidkosti svitla a raptove stisnennya pidvishuye temperaturu vnutrishnogo yadra do 100 milyardiv K Shlyahom zvorotnogo beta rozpadu utvoryuyutsya nejtroni i nejtrino vivilnyayuchi do 1046 dzhouliv 100 foe energiyi protyagom desyatisekundnogo spalahu Kolaps vnutrishnogo yadra zupinyayetsya virodzhennyam nejtroniv sho zupinyaye imploziyu ta vidkidaye yiyi nazovni Energiya takoyi spryamovanoyi nazovni udarnoyi hvili dostatnya dlya togo shob priskoriti otochuyuchu rechovinu zori do drugoyi kosmichnoyi shvidkosti utvoryuyuchi vibuh nadnovoyi Udarna hvilya ta nadzvichajno visoki temperaturi na korotkij chas dozvolyayut sintez elementiv vazhchih za zalizo Zalezhno vid pochatkovoyi masi zori zalishok yadra utvoryuye nejtronnu zoryu abo chornu diru Cherez takij mehanizm vibuhu nadnovi cogo tipu takozh nazivayut nadnovimi z kolapsom yadra Isnuyut dekilka pidtipiv nadnovih tipu II yaki klasifikuyut za viglyadom krivoyi blisku grafika zalezhnosti svitnosti vid chasu Tak nadnovi tipu II L demonstruyut stabilne linijne znizhennya yaskravosti pislya vibuhu a nadnovi tipu II P mayut na krivij period povilnishogo znizhennya plato yaskravosti pislya chogo jde linijne znizhennya Nadnovi tipu Ib ta Ic ye takozh tipom nadnovih kolapsu yadra ale dlya masivnih zir yaki skinuli zovnishni obolonki z vodnyu ta dlya tipu Ic geliyu v rezultati v yih spektri ci elementi vidsutni UtvorennyaShozha na cibulinu struktura obolonok rozvinutoyi masivnoyi zori masshtab ne vitrimanij Zori nabagato masivnishi za Sonce mayut skladnu evolyuciyu Spochatku v yadri zori vidbuvayetsya peretvorennya vodnyu na gelij sho vivilnyaye teplovu energiyu yaka nagrivaye yadro zori ta stvoryuye tisk sho utrimuye shari zori v gidrostatichnij rivnovazi Utvorenij gelij nakopichuyetsya v yadri Temperaturya v yadri she nedostatno visoka shob viklikati jogo termoyaderne zlittya Postupovo u miru vicherpannya vodnyu v yadri vodneva termoyaderna reakciya upovilnyuyetsya i gravitaciya sprichinyaye stisnennya yadra Ce zbilshuye temperaturu ta gustinu v yadri do rivnya koli tam pochayetsya potrijna geliyeva reakciya Cya faza trivaye menshe 10 chasu isnuvannya zori i prizvodit do utvorennya vuglecyu i kisnyu U zoryah iz masami menshe 8 mas Soncya podalshih termoyadernih reakcij ne vidbuvayetsya zorya vtrachaye obolonku a yiyi yadro peretvoryuyetsya na bilij karlik yakij povilno oholodzhuyetsya Yaksho bilij karlik z chasom otrimuye bilshu masu napriklad v rezultati peretikannya rechovini v tisnij podvijnij sistemi vin mozhe peretvoritis na nadnovu tipu Ia Yaksho masa zori bilsha 8 M to stiskannya yadra yake vidbuvayetsya naprikinci fazi gorinnya geliyu stvoryuye dostatni temperaturu ta tisk shob zapustiti termoyaderni reakciyi za uchasti vuglecyu U miru evolyuciyi masivnoyi zori vona prohodit kilka stadij koli termoyaderni reakciyi v yadri pripinyayutsya i vono stiskayetsya doki tisk ta temperatura stayut dostatnimi dlya pochatku nastupnoyi stadiyi termoyadernogo gorinnya Yadra takih zir stayut rozsharovanimi yak cibulina zovnishnya gazova obolonka z vodnyu potim shar de voden peretvoryuyetsya na gelij potim shar de gelij peretvoryuyetsya na vuglec i dali vglib shari termoyadernih reakcij utvorennya vse vazhchih elementiv Stadiyi termoyadernogo gorinnya v yadri dlya zori masoyu 25 mas Soncya Proces Osnovne palivo Osnovnij produkt Zorya masoyu 25 M Temperatura K Shilnist g sm3 Trivalist Gorinnya vodnyu Voden Gelij 7 107 10 107 rokiv Potrijna alfa reakciya Gelij Vuglec Kisen 2 108 2000 106 rokiv Yaderne gorinnya vuglecyu Vuglec Neon Natrij Magnij Alyuminij 8 108 106 103 rokiv Yaderne gorinnya neonu Neon Kisen Magnij 1 6 109 107 3 rokiv Yaderne gorinnya kisnyu Kisen Kremnij Sirka Argon Kalcij 1 8 109 107 0 3 rokiv Yaderne gorinnya kremniyu Kremnij Nikel rozkladayetsya u zalizo 2 5 109 108 5 dniv Kolaps yadra Faktorom yakij obmezhuye zaznachenij cikl yadernij sintez zupinka stiskannya rozigriv perehid do sintezu vazhchogo elementu v yadri zori ye kilkist energiyi yaka vivilnyayetsya v yadernomu sintezi vona zalezhit vid energiyi zv yazku yader elementiv Kozhna nastupna stadiya yadernogo sintezu stvoryuye vazhchi yadra yaki vivilnyayut vse menshe energiyi v podalshomu sintezi Krim togo pochinayuchi z yadernogo gorinnya vuglecyu znachnimi stayut vtrati energiyi na utvorennya nejtrino sho vede do vishoyi shvidkosti reakciyi nizh yakbi cogo ne vidbuvalos Cikl trivaye doki ne utvoryuyetsya nikel 56 yakij protyagom dekilkoh misyaciv radioaktivno rozpadayetsya u kobalt 56 i dali u zalizo 56 Oskilki zalizo ta nikel mayut najvishu energiyu zv yazku yadra sered usih elementiv dali termoyadernij sintez u yadri zori energiyu viroblyati ne mozhe i pochinayetsya zrostannya nikelevo zaliznogo yadra zori Yadro zori perebuvaye pid velicheznim gravitacijnim tiskom a za vidsutnosti nastupnogo ciklu yadernogo sintezu gravitaciyi protidiye lishe tisk virodzhenih elektroniv U takomu stani materiya ye nastilki shilnoyu sho podalshe stiskannya potrebuye shob elektroni zajmali odnakovi energetichni rivni Ce odnak zaboroneno dlya fermionnih chastinok takih yak elektron ce yavishe nazivayetsya principom viklyuchennya Pauli Koli masa yadra perevishuye mezhu Chandrasekara blizko 1 4 M tisk virodzhenih elektroniv bilshe ne mozhe protidiyati gravitaciyi i vidbuvayetsya katastrofichnij kolaps Zovnishnya chastina yadra dosyagaye shvidkosti do 70 000 km s 23 shvidkosti svitla pri kolapsi do centru zori Yadro yake shvidko stiskayetsya nagrivayetsya i viroblyaye visokoenergetichni gamma promeni yaki rozkladayut yadro atoma zaliza na yadra geliyu ta vilni nejtroni fotodezintegraciya Gustina yadra zrostaye i dlya elektroniv ta protoniv staye energetichno docilnim zlitisya shlyahom zvorotnogo beta rozpadu z utvorennyam nejtroniv ta nejtrino Oskilki nejtrino slabko vzayemodiyut z normalnoyu rechovinoyu voni mozhut vijti z yadra zori unosyachi z soboyu energiyu i prishvidshuyuchi kolaps yakij trivaye protyagom kilkoh milisekund Yadro viddilyayetsya vid zovnishnih shariv zori a deyaki nejtrino poglinayutsya cimi zovnishnimi sharami sho zapuskaye vibuh nadnovoyi U vipadku nadnovih tipu II kolaps vreshti resht zupinyayetsya za rahunok nejtron nejtronnogo vidshtovhuvannya na malih vidstanyah z urahuvannyam silnoyi vzayemodiyi a takozh tisku virodzhennya nejtroniv za gustini poryadku gustini atomnogo yadra Koli kolaps zupinyayetsya rechovina yaka padala vseredinu pochinaye ruhatis nazovni stvoryuyuchi udarnu hvilyu Energiya vid ciyeyi hvili disociyuye vazhki elementi v yadri i ce zmenshuye energiyu udarnoyi hvili ta mozhe zatrimati vibuh v mezhah zovnishnogo yadra Faza kolapsu yadra nastilki shilna ta energetichna sho uniknuti kolapsu mozhut tilki nejtrino Koli protoni peretvoryuyutsya na nejtroni za rahunok zahoplennya elektroniv narodzhuyutsya elektronni nejtrino U tipovij nadnovij tipu II novonarodzhene nejtronne yadro maye pochatkovu temperaturu blizko 100 milyardiv K sho u 104 raziv bilshe temperaturi yadra Soncya Dlya narodzhennya stabilnoyi nejtronnoyi zori bilsha chastina ciyeyi energiyi maye buti skinuta inakshe nejtroni vikiplyat Ce dosyagayetsya podalshim viprominyuvannyam nejtrino Ci teplovi nejtrino utvoryuyutsya yak pari nejtrino antinejtrino vsih vidiv u kilkosti sho v dekilka raziv perevishuye kilkist nejtrino utvorenih pid chas zahoplennya elektroniv Dva mehanizmi utvorennya nejtrino peretvoryuyut gravitacijnu potencialnu energiyu kolapsu u desyatisekundnij spalah nejtrino yakij vivilnyaye blizko 1046 dzhouliv 100 foe energiyi V ramkah procesu yakij she pogano zrozumilij blizko 1044 dzhouliv 1 foe energiyi znovu poglinayutsya zatrimanoyu udarnoyu hvileyu sho sprichinyaye vibuh a Nejtrino utvoreni nadnovoyu sposterigalis u vipadku nadnovoyi SN 1987A sho dozvolilo astronomam dijti visnovku pro pravilnist teoriyi kolapsu yadra Vodni detektori nejtrino ta zafiksuvali termalni antinejtrino a zasnovanij na galiyi 71 Baksanskij instrument zafiksuvav nejtrino leptonnij zaryad 1 abo termalnogo pohodzhennya abo vid zahoplennya elektronu V masivnij rozvinenij zori a yadernij sintez elementiv stvoryuye shari ta vreshti resht nikelevo zalizne yadro b yake dosyagaye mezhi Chandrasekara ta pochinaye kolapsuvati Vnutrishnya chastina yadra stiskayetsya u nejtroni c vnaslidok chogo vadayuchij materiali vidskakuye d i formuye udarnij front yakij rozshiryuyetsya nazovni chervonij Udarna hvilya pochinaye zupinyatis e ale za rahunok vzayemodiyi z nejtrino otrimuye dodatkovu energiyu Otochyuuchij material rozkidaye vibuhom f zalishayuchi lishe degenerativnij zalishok Koli zorya poperednik maye masu menshu za priblizno 20 M v zalezhnosti vid sili vibuhu ta kilkosti materialu yakij padaye nazad virodzhenij zalishok vid kolapsu yadra utvoryuye nejtronnu zoryu a yaksho masa bula bilshoyu zalishok kolapsuye u chornu diru Teoretichna mezha dlya cogo scenariyu kolapsu yadra stanovit blizko 40 50 M Vvazhayetsya sho masivnisha zorya kolapsuye pryamo u chornu diru bez vibuhu nadnovoyi hocha neviznachenosti u modelyah kolapsu nadnovoyi roblyat rozrahunok ciyeyi mezhi nepevnim Teoretichni modeliStandartna model fiziki elementarnih chastinok ce teoriya yaka opisuye tri z chotiroh vidomih fundamentalnih vzayemodij mizh elementarnimi chastinkami z yakih stvorena vsya materiya Cya teoriya dozvolyaye robiti peredbachennya yak chastinki povedut sebe u riznih umovah Energiya odniyeyi elementarnoyi chastinki u nadnovij yak pravilo skladaye vid 1 do 150 pikodzhouliv vid desyatkiv do soten MeV tobto ye dosit maloyu shob prognozi na pidstavi Standartnoyi modeli fiziki elementarnih chastinok buli v osnovi pravilni Odnak visoka shilnist jmovirno vimagatime koriguvannya Standartnoyi modeli Zokrema roztashovani na Zemli priskoryuvachi zaryadzhenij chastinok mozhut stvoryuvati vzayemodiyu chastinok zi znachno bilshoyu energiyeyu nizh u nadnovih odnak v cih eksperimentah okremi chastinki vzayemodiyut z okremimi chastinkami a u visokij shilnosti vseredini nadnovih mozhut vinikati nespodivani novi rezultati vzayemodiya mizh nejtrino ta inshimi chastinkami u nadnovih vidbuvayetsya v mezhah slabkoyi vzayemodiyi yaka vvazhayetsya dobre zrozumiloyu a ot vzayemodiya mizh protonami ta nejtronami vklyuchaye silnu vzayemodiyu yaka vivchena znachno girshe Golovna nevirishena problema u rozuminni nadnovih tipu II vidsutnist rozuminnya togo yak potik nejtrino peredaye svoyu energiyu reshti zori sho sprichinyaye udarnu hvilyu yaka vede do vibuhu Yak navedeno vishe dlya vibuhu potribno peredati lishe 1 energiyi odnak viyavilos duzhe vazhko poyasniti yak vidbuvayetsya peredacha cogo 1 energiyi navit nezvazhayuchi na te sho vzayemodiya zaluchenih u peredachu chastinok vvazhayetsya dobre zrozumiloyu U 1990 ti roki odna z modelej cogo vklyuchala konvektivnij perevorot yakij pripuskaye sho nejtrino znizu abo materiya yaka padaye zgori zavershuye proces znishennya zori poperednika Pid chas cogo vibuhu vazhchi za zalizo elementi formuyutsya zahvatom nejtroniv a pid tiskom nejtrino yaki tisnut na mezhu nejtrinosferi u mizhzoryanij prostir vipuskayetsya gazopilova hmara yaka bilsh bagata na vazhki elementi nizh material zori z yakoyi vona pohodit lt Fizika nejtrino yaka modelyuyetsya Standartnoyu modellyu ye kritichnoyu dlya rozuminnya cogo procesu Inshim vazhlivim napryamkom doslidzhen ye gidrodinamika plazmi z yakoyi skladayetsya pomirayucha zirka te yak vona povoditsya pid chas kolapsu viznachaye koli ta yak formuyetsya udarna hvilya koli vona zatrimuyetsya i koli otrimuye dodatkovu energiyu Zokrema deyaki teoretichni modeli vrahovuyut gidrodinamichnu nestabilnist u zatrimanij udarnij hvili vidomu yak Standing Accretion Shock Instability SASI Cya nestabilnist ye naslidkom nesferichnih perturbacij yaki oscilyuyut zatrimanu udarnu hvilyu takim chinom deformuyuchi yiyi U komp yuternih simulyaciyah SASI chasto vikoristovuyetsya u tandemi z teoriyami nejtrino dlya nadannya dodatkovoyi energiyi zatrimanij udarnij hvili Komp yuterni modeli ye dosit uspishnimi u rozrahunku povedinki nadnovih tipu II pislya formuvannya udarnoyi hvili Ignoruyuchi pershu sekundu vibuhu ta pripuskayuchi sho vibuh pochavsya astrofiziki zmogli zrobiti detalni peredbachennya pro elementi yaki utvoryuyutsya nadnovoyu ta pro ochikuvanu krivu yaskravosti nadnovoyi Krivi yaskravosti dlya nadnovih tipiv II L ta II P Harakterni krivi yaskravosti dlya nadnovih tipu II L ta II P Spektr nadnovih tipu II yak pravilo demonstruye liniyi poglinannya Balmera zmenshenij potik na harakternih chastotah de atomi vodnyu poglinayut energiyu Za nayavnistyu cih linij nadnovi tipu II viriznyayut vid nadnovih tipu Ia Koli yaskravist nadnovoyi tipu II rozglyadayetsya u chasi grafik pokazuye harakterne zrostannya do piku z podalshim postupovim znizhennyam yake v serednomu stanovit 0 008 absolyutnih zoryanih velichin na den ce znachno menshe nizh znizhennya yaskravosti u nadnovih tipu Ia Nadnovi tipu II podilyayutsya na dva pidtipi v zalezhnosti vid formi krivoyi yaskravosti Kriva yaskravosti nadnovoyi tipu II L maye postupove linijne znizhennya pislya piku yaskravosti a kriva yaskravosti tipu II P pri znizhenni maye chitkij plaskij vidrizok sho maye nazvu plato de yaskravist znizhuyetsya bilsh povilno Chistij serednij riven znizhennya yaskravosti dlya nadnovih II P stanovit 0 0075 zoryanih velichin na den u porivnyanni z 0 012 zoryanih velichin na den dlya tipu magnitudes II L lt Vvazhayetsya sho taka riznicya mizh krivimi yaskravosti viklikana tim sho nadnova tipu II L vikidaye majzhe vsyu vodnevu obolonku zori poperednika a plato u nadnovih tipu II P viklikano zminoyu u neprozorosti zovnishnogo sharu Udarna hvilya ionizuye voden zovnishnoyi obolonki zabirayuchi elektron u atomu sho znachno zbilshuye neprozorist Ce ne dozvolyaye vitik protoniv vnutrishnih shariv vibuhu A koli voden dostatno oholodzhuyetsya dlya rekombinaciyi zovnishnij shar vidnovlyuye prozorist Nadnovi tipu IIn U nadnovih tipu IIn n oznachaye vuzkij angl narrow na poznachennya nayavnosti u spektri nadnovoyi serednih abo vuzkih linij emisiyi vodnyu Liniya serednoyi shirini mozhe vkazuvati na silnu vzayemodiyu vikinutoyi vibuhom zoryanoyi rechovini z iz gadom dovkola zori mizhzoryanoyu rechovinoyu Odnak rozrahunkova shilnist mizhzoryanoyi rechovini yaka potribna dlya poyasnennya takih sposterezhen ye znachno vishoyu nizh ochikuvana pri zastosuvannya standartnoyi teoriyi zoryanoyi evolyuciyi Tomu yak pravilo pripuskayut sho visoka shilnist mizhzoryanoyi velichini sprichinena za rahunok visokih stupenyu vtrati rechovini zoryami poperednikami nadnovih tipu IIn rohrahunkovij koeficiyent vtrati masi stanovit bilshe 10 3 M rik 1 Isnuyut pevni vkazivki sho do vibuhu taki zori poperdniki buhi shozhi na yaskravi blakitni zminni zi znachnoyu vtratoyu masi Vidomimi prikladami nadnovih tipu IIn ye inshi movi ta SN 2006gy nadzvichajno visokoenergetichna nadnova mozhlivo bude takozh pidtverdzhena nadnovoyu cogo tipu Nadnovi tipu IIb Nadnovi tipu IIb vidnosyat do tipu II oskilki u pochatkovomu spektri voni mayut slabki liniyi vodnyu odnak piznishe liniya emisiyi vodnyu u spektri znikaye a kriva yaskravosti maye drugij pik zi spektrom sho bilshe nagaduye nadnovu tipu Ib Zoreyu poperednikom cogo tipu nadnovih mozhe buti gigant sho vtrativ bilshist svoyeyi vodnevoyi obolonki vnaslidok vzayemodiyi z kompanjonom u podvijnij zoryanij sistemi a pozadu lishilos perevazhno geliyeve yadro U miru rozshirennya vikinutoyi vibuhom materiyi tonkij shar vodnyu shvidko staye prozorishim i vidkrivaye glibshi shari Klasichnim prikladom nadnovoyi tipu IIb ye she odnim Kassiopeya A Nadnovi tipu IIb buli vpershe zaproponovani yak teoretichna koncepciya Ensmanom ta Vusli u 1987 roci Gipernovi kolapsari Gipernova zirka ce ridkisnij tip nadnovoyi znachno bilsh yaskravij ta energetichnij nizh klasichni nadnovi Yiyi prikladom ye tip Ic ta tip IIn Gipernovi utvoryuyutsya poyednannyam bilsh nizh odniyeyi z podij relyativistski strumeni pid chas utvorennya chornoyi diri vid padinnya materiyi na yadro nejtronnoyi zori model kolapsara vzayemodiya zi shilnoyu obolonkoyu navkolozoryanoyi materiyi model navkolozoryanoyi materiyi najbilsha masa nadnovoyi sho vibuhaye vnaslidok nestabilnosti narodzhennya elektron pozitronnih par jmovirno inshi taki yak model podvijnoyi ta kvarkovoyi zori Zorya z pochatkovimi masami bl 25 90 mas Soncya formuyut dostatno veliki yadra sho pislya vibuhu nadnovoyi chastina materiyi vpade nazad na yadro nejtronnoyi zori ta utvorit chornu diru U bagatoh vipadkah ce zmenshuye yaskravist nadnovoyi a vishe masi 90 M zorya kolapsuye pryamo u chornu diri bez vibuhu nadnovoyi Odnak yaksho zorya poperednik obertayetsya dostatno shvidko materiya yaka padaye nazad na yadro stvoryuye relyativistski strumeni yaki vipuskayut bilshe energiyi nizh sam pochatkovij vibuh Ci promeni mozhna takozh pryamo pobachili yaksho voni napravleni na Zemlyu sho stvoryuye vrazhennya she bilsh yaskravogo ob yektu U deyakih vipadkah ce stvoryuye gamma spleski hocha ne vsi gamma spleski pohodyat vid vibuhu nadnovih U deyakih vipadkah nadnova tipu II utvoryuyetsya koli zorya otochena duzhe shilnoyu hmaroyu materiyi shvidshe za vse skinutoyu pid chas spalahiv yaskravih blakitnih zminnih Cya materiya pid chas vibuhu nadnovoyi zaznaye vplivu udarnoyi hvili ta staye bilsh yaskravoyu nizh klasichna nadnova Jmovirno dlya takih nadnovih tipu IIn ye shkala yaskravosti i lishe najyaskravishi mozhna klasifikuvati yak gipernovi Nadnova sho vibuhaye vnaslidok nestabilnosti narodzhennya elektron pozitronnih par utvoryuyetsya koli kisneve yadro duzhe masivnoyi zori staye dostatno garyachim shob gamma promeni spontanno porodzhuvali elektron pozitronni pari U takomu vipadku yadro kolapsuye ale tam de kolaps zaliznogo yadra sprichinyaye endotermichnij sintez bilsh vazhkih elementiv kolaps kisnevogo yadra utvoryuye nekontrolovanij ekzotermichnij sintez yakij povnistyu rujnuye zoryu Zagalna kilkist vipushenoyi energiyi zalezhit vid pochatkovoyi masi zori znachna chastina yadra peretvoryuyetsya u Ni 56 ta vikidayetsya sho goduye nadnovu bagato misyaciv U nizhchomu diapazoni takih zir zori z masoyu bl 140 M utvoryuyut dovgotrivali nadnovi ale v inshomu klasichni a ot na najvishomu kinci zori z masoyu bl 250 M porodzhuyut nadnovi duzhe yaskravi ta duzhe dovgotrivali gipernovi She bilsh masivni zori znishuyutsya fotodizintegraciyeyu Ciyeyi stadiyi dosyagti mozhut lishe zori III populyaciyi z duzhe nizkoyu metalichnistyu Zori z bilsh vazhkimi elementami ye bilsh neprozorimi ta skidayut svoyi zovnishni obolonki doki yih masa ne zmenshits yadostatno shob vibuhnuti yak zvichajni nadnovi tipu Ib c Vvazhayetsya sho navit u nashij Galaktici zlittya starih zir z nizkoyu metalichnistyu mozhe sformuvati dostatno masivni zori yaki mozhut vibuhnuti yak nadnova sho vibuhaye vnaslidok nestabilnosti narodzhennya elektron pozitronnih par PrimitkiGilmore Gerry 2004 The Short Spectacular Life of a Superstar Science 304 5697 1915 1916 doi 10 1126 science 1100370 PMID 15218132 Staff 7 veresnya 2006 Introduction to Supernova Remnants NASA Goddard SAO Arhiv originalu za 25 chervnya 2013 Procitovano 1 travnya 2007 Richmond Michael Rochester Institute of Technology Arhiv originalu za 11 chervnya 2020 Procitovano 4 serpnya 2006 Hinshaw Gary 23 serpnya 2006 NASA WMAP Mission Arhiv originalu za 3 chervnya 2013 Procitovano 1 veresnya 2006 Woosley S Janka H T December 2005 The Physics of Core Collapse Supernovae Nature Physics 1 3 147 154 arXiv astro ph 0601261 Bibcode 2005NatPh 1 147W doi 10 1038 nphys172 Clayton Donald 1983 University of Chicago Press ISBN 978 0 226 10953 4 Arhiv originalu za 24 grudnya 2016 Procitovano 8 zhovtnya 2015 Fewell M P 1995 The atomic nuclide with the highest mean binding energy American Journal of Physics 63 7 653 658 Bibcode 1995AmJPh 63 653F doi 10 1119 1 17828 Fleurot Fabrice Laurentian University Arhiv originalu za 21 travnya 2017 Procitovano 13 serpnya 2007 Lieb E H Yau H T 1987 A rigorous examination of the Chandrasekhar theory of stellar collapse Astrophysical Journal 323 1 140 144 Bibcode 1987ApJ 323 140L doi 10 1086 165813 Fryer C L New K C B 24 sichnya 2006 Arhiv originalu za 13 grudnya 2006 Procitovano 14 grudnya 2006 Hayakawa T Iwamoto N Kajino T Shizuma T Umeda H Nomoto K 2006 Principle of Universality of Gamma Process Nucleosynthesis in Core Collapse Supernova Explosions The Astrophysical Journal 648 1 L47 L50 Bibcode 2006ApJ 648L 47H doi 10 1086 507703 Fryer C L New K B C 24 sichnya 2006 Los Alamos National Laboratory Arhiv originalu za 13 zhovtnya 2006 Procitovano 9 grudnya 2006 Mann Alfred K 1997 New York W H Freeman s 122 ISBN 0 7167 3097 9 Arhiv originalu za 5 travnya 2008 Procitovano 8 zhovtnya 2015 Gribbin Mary 2000 New Haven Yale University Press s 173 ISBN 978 0 300 09097 0 Arhiv originalu za 10 grudnya 2014 Procitovano 8 zhovtnya 2015 Barwick S Beacom J ta in 29 zhovtnya 2004 PDF American Physical Society Arhiv originalu PDF za 16 grudnya 2018 Procitovano 12 grudnya 2006 Fryer Chris L 2003 Black Hole Formation from Stellar Collapse Classical and Quantum Gravity 20 10 S73 S80 Bibcode 2003CQGra 20S 73F doi 10 1088 0264 9381 20 10 309 Fryer Chris L 1999 Mass Limits For Black Hole Formation The Astrophysical Journal 522 1 413 418 arXiv astro ph 9902315 Bibcode 1999ApJ 522 413F doi 10 1086 307647 Izzard R G Ramirez Ruiz E Tout C A 2004 Rampp M Buras R Janka H Th Raffelt G February 11 16 2002 Core collapse supernova simulations Variations of the input physics Proceedings of the 11th Workshop on Nuclear Astrophysics Ringberg Castle Tegernsee Germany s 119 125 Bibcode 2002nuas conf 119R The OPAL Collaboration Ackerstaff K ta in 1998 Submitted to 2 3 441 472 doi 10 1007 s100529800851 Arhiv originalu za 21 bereznya 2007 Procitovano 18 bereznya 2007 Staff 5 zhovtnya 2004 Nobel Foundation Arhiv originalu za 3 travnya 2007 Procitovano 30 travnya 2007 Stover Dawn 2006 Life In A Bubble Popular Science 269 6 16 Janka H Th Langanke K Marek A Martinez Pinedo G Mueller B 2006 Theory of Core Collapse Supernovae Bethe Centennial Volume of Physics Reports submitted 142 1 4 229 arXiv astro ph 0612072 Bibcode 1993JHyd 142 229H doi 10 1016 0022 1694 93 90012 X Wakana Iwakami Kei Kotake Naofumi Ohnishi Shoichi Yamada Keisuke Sawada March 10 15 2008 PDF 3D Simulations of Standing Accretion Shock Instability in Core Collapse Supernovae 14th Workshop on Nuclear Astrophysics Arhiv originalu PDF za 15 bereznya 2011 Procitovano 30 sichnya 2013 Blinnikov S I Ropke F K Sorokina E I Gieseler M Reinecke M Travaglio C Hillebrandt W Stritzinger M 2006 Theoretical light curves for deflagration models of type Ia supernova Astronomy and Astrophysics 453 1 229 240 arXiv astro ph 0603036 Bibcode 2006A amp A 453 229B doi 10 1051 0004 6361 20054594 Young Timothy R 2004 A Parameter Study of Type II Supernova Light Curves Using 6 M He Cores The Astrophysical Journal 617 2 1233 1250 arXiv astro ph 0409284 Bibcode 2004ApJ 617 1233Y doi 10 1086 425675 Rauscher T Heger A Hoffman R D Woosley S E 2002 Nucleosynthesis in Massive Stars With Improved Nuclear and Stellar Physics The Astrophysical Journal 576 1 323 348 arXiv astro ph 0112478 Bibcode 2002ApJ 576 323R doi 10 1086 341728 Doggett J B Branch D 1985 A Comparative Study of Supernova Light Curves Astronomical Journal 90 2303 2311 Bibcode 1985AJ 90 2303D doi 10 1086 113934 Swinburne University of Technology Arhiv originalu za 17 zhovtnya 2019 Procitovano 17 bereznya 2007 Filippenko A V 1997 Optical Spectra of Supernovae Annual Review of Astronomy and Astrophysics 35 309 330 Bibcode 1997ARA amp A 35 309F doi 10 1146 annurev astro 35 1 309 Pastorello A Turatto M Benetti S Cappellaro E Danziger I J Mazzali P A Patat F Filippenko A V Schlegel D J Matheson T 2002 The type IIn supernova 1995G interaction with the circumstellar medium Monthly Notices of the Royal Astronomical Society 333 1 27 38 arXiv astro ph 0201483 Bibcode 2002MNRAS 333 27P doi 10 1046 j 1365 8711 2002 05366 x Langer N 22 veresnya 2012 Presupernova Evolution of Massive Single and Binary Stars Annual Review of Astronomy and Astrophysics 50 1 107 164 arXiv 1206 5443 Bibcode 2012ARA amp A 50 107L doi 10 1146 annurev astro 081811 125534 Michael Kiewe Avishay Gal Yam Iair Arcavi Leonard Emilio Enriquez Bradley Cenko Fox Dae Sik Moon Sand Soderberg Alicia M Cccp The 2010 Caltech Core Collapse Project CCCP observations of type IIn supernovae typical properties and implications for their progenitor stars ApJ 744 10 10 arXiv 1010 2689 Bibcode 2012ApJ 744 10K doi 10 1088 0004 637X 744 1 10 Smith N Chornock R Silverman J M Filippenko A V Foley R J 2010 PDF The Astrophysical Journal 709 2 856 883 arXiv 0906 2200 Bibcode 2010ApJ 709 856S doi 10 1088 0004 637X 709 2 856 Arhiv originalu pdf za 26 zhovtnya 2019 Procitovano 7 zhovtnya 2015 Utrobin V P 1996 Nonthermal ionization and excitation in Type IIb supernova 1993J Astronomy and Astrophysics 306 5940 219 231 Bibcode 1996A amp A 306 219U Nomoto K Suzuki T Shigeyama T Kumagai S Yamaoka H Saio H 1993 A type IIb model for supernova 1993J Nature 364 6437 507 Bibcode 1993Natur 364 507N doi 10 1038 364507a0 Chevalier R A Soderberg A M 2010 Type IIb Supernovae with Compact and Extended Progenitors The Astrophysical Journal 711 L40 arXiv 0911 3408 Bibcode 2010ApJ 711L 40C doi 10 1088 2041 8205 711 1 L40 Krause O Birkmann S Usuda T Hattori T Goto M Rieke G Misselt K 2008 The Cassiopeia A supernova was of type IIb Science 320 5880 1195 1197 arXiv 0805 4557 Bibcode 2008Sci 320 1195K doi 10 1126 science 1155788 PMID 18511684 Nomoto K I Tanaka M Tominaga N Maeda K 2010 Hypernovae gamma ray bursts and first stars New Astronomy Reviews 54 3 6 191 Bibcode 2010NewAR 54 191N doi 10 1016 j newar 2010 09 022 ESO 18 chervnya 2003 Arhiv originalu za 20 lyutogo 2007 Procitovano 30 zhovtnya 2006 Kasen D Woosley S E Heger A 2011 PDF The Astrophysical Journal 734 2 102 arXiv 1101 3336 Bibcode 2011ApJ 734 102K doi 10 1088 0004 637X 734 2 102 Arhiv originalu pdf za 4 veresnya 2012 Procitovano 8 zhovtnya 2015
Топ