Підтримка
www.wikidata.uk-ua.nina.az
Kriva liniya v evklidovomu prostori abo v mnogovidi Kriva Kriva u VikishovishiU Vikipediyi ye statti pro inshi znachennya cogo termina Kriva znachennya Parabola odna z najprostishih krivih Rivnyannya krivoyi mozhna zadavati v parametrichnij formi x i x i t displaystyle x i x i t de x i displaystyle x i koordinati tochok krivoyi v deyakij sistemi koordinat zadanij v evklidovomu prostori abo mnogovidi a t displaystyle t skalyarnij parametr jogo mozhna fizichno uyavlyati momentom chasu t time a samu krivu yak trayektoriyu ruhu tochki Rozglyanemo rivnyannya krivoyi v dekartovij sistemi koordinat n displaystyle n vimirnogo evklidovogo prostoru Vvedemo poznachennya radius vektora tochki krivoyi r x 1 x 2 x n displaystyle mathbf r x 1 x 2 x n Dotichnij vektorPohidnu za parametrom poznachatimemo krapkoyu zverhu r d r d t displaystyle dot mathbf r d mathbf r over dt x i d x i d t displaystyle dot x i dx i over dt Ochevidno sho vektor v r displaystyle mathbf v dot mathbf r u fizichnij interpretaciyi shvidkist tochki ye dotichnim do krivoyi Dovzhina krivoyiDokladnishe Dovzhina krivoyi Kvadrat vidstani mizh dvoma neskinchenno blizkimi tochkami r displaystyle mathbf r i r d r displaystyle mathbf r d mathbf r dorivnyuye 1 d s 2 d r d r i d x i 2 i d x i 2 d t 2 displaystyle 1 qquad ds 2 d mathbf r cdot d mathbf r sum i dx i 2 sum i d dot x i 2 dt 2 Dovzhina vidrizka krivoyi koli parametr t displaystyle t probigaye znachennya vid t 1 displaystyle t 1 do t 2 displaystyle t 2 dayetsya integralom 2 s t 1 t 2 d s t 1 t 2 x i x i d t displaystyle 2 qquad s int t 1 t 2 ds int t 1 t 2 sqrt dot x i dot x i dt Yaksho v integrali 2 rozglyadati verhnyu mezhu yak zminnij parametr to mayemo funkciyu s s t displaystyle s s t viznachenu z tochnistyu do konstanti tochki vidliku abo nizhnoyi mezhi v integrali 2 Cya velichina s displaystyle s takozh parametrizuye tochki nashoyi krivoyi s displaystyle s nazivayetsya naturalnim parametrom krivoyi Yaksho vektor shvidkosti v r displaystyle mathbf v dot mathbf r nide ne peretvoryuyetsya v nul to pidintegralna funkciya v 2 dodatnya a otzhe funkciya s s t displaystyle s s t vsyudi monotonno zrostaye i maye obernenu funkciyu t t s displaystyle t t s Krivina krivoyiIz rivnosti d s 2 d r d r displaystyle ds 2 d mathbf r cdot d mathbf r sliduye sho pohidna radius vektora za naturalnim parametrom krivoyi t d r d s displaystyle boldsymbol tau d mathbf r over ds ye dotichnim vektorom odinichnoyi dovzhini 3 t 2 t t 1 displaystyle 3 qquad boldsymbol tau 2 boldsymbol tau cdot boldsymbol tau 1 Diferenciyuyuchi 3 za naturalnim parametrom mayemo d d s t t 2 t d t d s 0 displaystyle d over ds boldsymbol tau cdot boldsymbol tau 2 boldsymbol tau cdot d boldsymbol tau over ds 0 Otzhe vektor k d t d s d 2 r d s 2 displaystyle mathbf k d boldsymbol tau over ds d 2 mathbf r over ds 2 ortogonalnij do krivoyi Cej vektor prijnyato rozkladati na dobutok odinichnogo vektora n displaystyle mathbf n normali do krivoyi ta skalyara k displaystyle k yakij nazivayetsya krivinoyu k k n displaystyle mathbf k k mathbf n Geometrichnij zmist kriviniPokazhemo navit dvoma sposobami sho krivina dorivnyuye obernenij velichini do radiusa R displaystyle R dotichnogo kola 4 k 1 R displaystyle 4 qquad k 1 over R Pershij sposib cherez kut mizh dotichnimi vektorami odinichnoyi dovzhini v susidnih tochkah krivoyi Nehaj v tochci z parametrom s displaystyle s mayemo dotichnij vektor t displaystyle mathbf tau a v tochci z parametrom s s D s displaystyle s s Delta s dotichnij vektor t t D t displaystyle mathbf tau mathbf tau Delta mathbf tau Ci dva vektora mayut odnakovu dovzhinu odinicyu i yaksho yihni pochatki zvesti v odnu tochku utvoryat rivnobedrenij trikutnik Yaksho kut mizh vektorami poznachiti D a displaystyle Delta alpha to dovzhina tretoyi storoni bude dorivnyuvati D t 2 sin D a 2 D a displaystyle Delta boldsymbol tau 2 sin Delta alpha over 2 approx Delta alpha Oskilki dlya kola radiusa R displaystyle R mayemo D s R D a displaystyle Delta s R Delta alpha to mayemo dlya krivini krivoyi k d t d s D t D s D a R D a 1 R displaystyle k d boldsymbol tau over ds approx Delta boldsymbol tau over Delta s Delta alpha over R Delta alpha 1 over R Drugij sposib cherez rivnyannya kola Dlya prostoti formul vizmemo pochatok koordinat evklidovogo prostoru v tochci krivoyi dlya yakoyi mi budemo shukati najblizhche kolo a takozh budemo vidrahovuvati naturalni parametri krivoyi i kola vid ciyeyi zh tochki Z tochnistyu do chleniv drugogo poryadku malosti mayemo dlya tochok krivoyi 5 r d r d s s 1 2 d 2 r d s 2 s 2 t s 1 2 k s 2 displaystyle 5 qquad mathbf r approx d mathbf r over ds s begin matrix frac 1 2 end matrix d 2 mathbf r over ds 2 s 2 mathbf tau s begin matrix frac 1 2 end matrix mathbf k s 2 Kolo radiusa R displaystyle R dotichne do vektora t displaystyle mathbf tau matime centr v ortogonalnij do t displaystyle mathbf tau giperploshini Zapishemo koordinati centra kola u viglyadi r c R n displaystyle mathbf r c R mathbf n de n displaystyle mathbf n ye dovilnim poki sho odinichnim vektorom sho lezhit u cij giperploshini Mayemo ortogonalnist n t 0 displaystyle mathbf n cdot boldsymbol tau 0 Rivnyannya tochki kola v parametrichnij formi parametrom ye centralnij kut 6 r R sin t t R 1 cos t n displaystyle 6 qquad mathbf r R sin t boldsymbol tau R 1 cos t mathbf n Vrahuyemo sho dovzhina dugi kola dorivnyuye s R t displaystyle s Rt i rozklademo ostannye rivnyannya v ryad z tochnistyu do dodankiv drugogo poryadku malosti 7 r R t t 1 2 R t 2 n t s 1 2 R n s 2 displaystyle 7 qquad mathbf r approx Rt boldsymbol tau begin matrix frac 1 2 end matrix Rt 2 mathbf n boldsymbol tau s 1 over 2R mathbf n s 2 Porivnyuyuchi rivnosti 5 i 7 mayemo sho kolo bude zbigatisya z krivoyu z tochnistyu do chleniv drugogo poryadku r r displaystyle mathbf r approx mathbf r yaksho 8 k 1 R n displaystyle 8 qquad mathbf k 1 over R mathbf n Tipi krivihZamknena kriva kriva u yakoyi pochatok zbigayetsya z kincem div takozh Teorema Zhordana Ploska kriva kriva vsi tochki yakoyi lezhat v odnij ploshini Prosta kriva te same sho kriva Zhordana Shlyah neperervne vidobrazhennya vidrizka 0 1 displaystyle 0 1 v topologichnij prostir Transcendentna kriva Tipi tochok na krivij Tochka zlamu Tochka pereginuSkrutYaksho evklidiv prostir maye rozmirnist n 3 displaystyle n geqslant 3 to mozhna postaviti pitannya pro zminu oriyentaciyi dotichnoyi ploshini v yakij lezhat dotichnij vektor t displaystyle mathbf tau ta vektor normali n displaystyle mathbf n pri rusi vzdovzh krivoyi Rozglyanemo bivektor specialnu antisimetrichnu matricyu komponenti yakoyi virazheni cherez koordinati vektoriv t displaystyle mathbf tau i n displaystyle mathbf n s t n displaystyle mathbf sigma mathbf tau wedge mathbf n s i j t i n j t j n i displaystyle sigma ij tau i n j tau j n i Velichina cogo bivektora dorivnyuye odinici ploshi kvadrata pobudovanogo na vektorah t displaystyle mathbf tau i n displaystyle mathbf n i lt j s i j 2 1 2 i j t i n j t j n i 2 1 2 i j t i 2 n j 2 t j 2 n i 2 2 t i n i t j n j t t n n t n 2 1 displaystyle sum i lt j sigma ij 2 1 over 2 sum i j tau i n j tau j n i 2 1 over 2 sum i j tau i 2 n j 2 tau j 2 n i 2 2 tau i n i tau j n j boldsymbol tau cdot boldsymbol tau mathbf n cdot mathbf n boldsymbol tau cdot mathbf n 2 1 Pohidna bivektora za naturalnim parametrom dorivnyuye s t n t n k n n t n t n displaystyle dot boldsymbol sigma dot boldsymbol tau wedge mathbf n boldsymbol tau wedge dot mathbf n k mathbf n wedge mathbf n boldsymbol tau wedge dot mathbf n boldsymbol tau wedge dot mathbf n Zvidsi robimo visnovok sho dvi ploshini s displaystyle boldsymbol sigma i s s D s displaystyle boldsymbol sigma boldsymbol sigma Delta boldsymbol sigma peretinayutsya po pryamij dotichnij do krivoyi mistyat vektor t displaystyle boldsymbol tau s t n t n D s t n n D s displaystyle boldsymbol sigma boldsymbol tau wedge mathbf n boldsymbol tau wedge dot mathbf n Delta s boldsymbol tau wedge mathbf n dot mathbf n Delta s Otzhe dotichna ploshina pri rusi vzdovzh krivoyi obertayetsya dovkola dotichnoyi pryamoyi Povorot v trivimirnomu prostori maye ochevidnij zmist v prostorah bilshoyi rozmirnosti povorot oznachaye kut mizh normalyami do spilnoyi pryamoyi Pohidna kuta povorotu za naturalnim parametrom nazivayetsya skrutom ϰ d ϕ d s t n displaystyle varkappa d phi over ds boldsymbol tau wedge dot mathbf n Formuli Frene SerreDokladnishe Trigrannik Frene Rozglyanemo detalnishe vipadok krivoyi v trivimirnomu prostori Dva odinichni vektora t displaystyle boldsymbol tau i n displaystyle mathbf n mi mozhemo dopovniti tretim yih vektornim dobutkom f t n displaystyle mathbf f boldsymbol tau times mathbf n Ci tri vektori utvoryuyut reper zminnij bazis u trivimirnomu prostori i mi mozhemo postaviti pitannya yak pohidni za naturalnim parametrom vid vektoriv repera t displaystyle dot boldsymbol tau n displaystyle dot mathbf n i f displaystyle dot mathbf f rozkladayutsya po comu zh bazisu Mi vzhe znayemo sho t k n displaystyle dot boldsymbol tau k mathbf n Zalishayetsya znajti pohidni she dvoh odinichnih vektoriv Pochnemo z odinichnogo vektora normali n displaystyle mathbf n Iz postijnosti velichini cogo vektora znahodimo 0 d d s n n 2 n n displaystyle 0 d over ds mathbf n cdot mathbf n 2 mathbf n cdot dot mathbf n Tobto pohidna n displaystyle dot mathbf n ortogonalna do samogo vektora normali n displaystyle mathbf n a tomu rozkladayetsya po dvom inshim vektoram repera 9 n a t b f displaystyle 9 qquad dot mathbf n alpha boldsymbol tau beta mathbf f Koristuyuchis cim rozkladom mozhna znajti i pohidnu f displaystyle dot mathbf f f d d s t n t n t n k n n t a t b f b t f b n displaystyle dot mathbf f d over ds boldsymbol tau times mathbf n dot boldsymbol tau times mathbf n mathbf tau times dot mathbf n k mathbf n times mathbf n mathbf tau times alpha mathbf tau beta mathbf f beta boldsymbol tau times mathbf f beta mathbf n Znajdemo koeficiyenti rozkladu a displaystyle alpha i b displaystyle beta Z ostannoyi formuli vidno sho b displaystyle beta z tochnistyu do znaku ye shvidkistyu povorotu odinichnogo vektora f displaystyle mathbf f a otzhe i dotichnoyi do krivoyi ploshini f displaystyle mathbf f ye vektorom normali do ciyeyi ploshini Otzhe cej koeficiyent ye kruchennyam b ϰ displaystyle beta varkappa Koeficiyent a displaystyle alpha mozhna znajti skalyarno pomnozhivshi rivnist 9 na t displaystyle boldsymbol tau a t n d d s t n t n k n n k displaystyle alpha boldsymbol tau cdot dot mathbf n d over ds boldsymbol tau cdot mathbf n dot boldsymbol tau cdot mathbf n k mathbf n cdot mathbf n k U pidsumku oderzhuyemo sistemu troh rivnyan t k n displaystyle dot boldsymbol tau qquad k mathbf n n k t ϰ f displaystyle dot mathbf n k boldsymbol tau qquad varkappa mathbf f f ϰ n displaystyle qquad dot mathbf f qquad varkappa mathbf n Ci rivnyannya vidkrili dva francuzki matematiki en 1852 i fr 1851 Koeficiyent ϰ displaystyle varkappa u formulah Frene Serre mozhe buti dodatnim abo vid yemnim v zalezhnosti vid togo pravoyu chi livoyu gvintovoyu liniyeyu aproksimuyetsya kriva v okoli danoyi tochki Div takozhLiniya Algebrichna kriva Vidstan Freshe Cya stattya ne mistit posilan na dzherela Vi mozhete dopomogti polipshiti cyu stattyu dodavshi posilannya na nadijni avtoritetni dzherela Material bez dzherel mozhe buti piddano sumnivu ta vilucheno zhovten 2023
Топ