Знакоперемі́жний ряд — математичний ряд, члени якого почергово набувають значень із протилежними знаками:
- .
Як і будь-який ряд, знакопереміжний ряд є збіжним тоді і тільки тоді, коли відповідна послідовність часткових сум є збіжною.
Приклади
Геометричний ряд 1/2-1/4+1/8-1/16+ є збіжним до 1/3.
(Знакопереміжний гармонічний ряд) має скінченну суму, а гармонічний ряд — ні.
Ряд Меркатора надає аналітичний вираз для натурального логарифму:
Функції синус і косинус, що використовуються в тригонометрії, в математичному аналізі можна визначити як знакопереміжні ряди, попри те, що в елементарній алгебрі вони вводяться як відношення сторін прямокутного трикутника. Дійсно,
- , та
Якщо з цих рядів вилучити закопереміжний коефіцієнт , то отримаємо гіперболічні функції і , що використовуються в математичному аналізі.
Для цілого чи додатного індексу функцію Бесселя першого роду можна визначити за допомогою закопереміжного ряду
де — це гамма-функція.
Якщо — комплексне число, тоді функція Діріхле подається у вигляді знакопереміжного ряду
що використовується в аналітичній теорії чисел.
Ознака Лейбніца
Ознака Лейбніца — ознака збіжності знакопереміжного ряду, встановлена Готфрідом Лейбніцем. Формулювання теореми: нехай дано знакопереміжний ряд
- ,
для якого виконуються такі умови:
- , починаючи з деякого номера (),
Тоді такий ряд збігається.
- Зауваження
Ряди, що задовольняють ознаці Лейбніца, називаються рядами Лейбніца.
Слід зазначити, що монотонне спадання до нуля не є необхідним для збіжності знакопереміжного ряду (тоді як для довільного ряду умова є саме необхідною умовою): ця ознака є достатньою, але не обов'язковою (наприклад, ряд збігається).
Ряд Лейбніца може абсолютно збігатися (якщо збігається ряд ), а може збігатися умовно (якщо ряд із модулів розбігається).
Розглянемо дві послідовності часткових сум ряду и .
Перша послідовність не спадає: за першою умовою.
За тією ж умовою друга послідовність не зростає: .
Друга послідовність мажорує першу, тобто для довільних . Дійсно,
- при маємо:
- при маємо:
Отже вони обидві збігаються як монотонні обмежені послідовності.
Залишилося зауважити, що: , тому вони збігаються до спільної границі , яка і є сумою початкового ряду.
Попутно ми показали, що для будь-якої часткової суми ряду є оцінка .Приклад
. Ряд з модулів має вигляд — це гармонічний ряд, який розбігається.
Тепер скористаємося ознакою Лейбніца:
- знакопереміжність виконано;
- ;
- .
Отже, оскільки всі умови виконано, ряд збігається (причому умовно, оскільки ряд з модулів розбіжний).
Оцінка залишку ряду Лейбніца
З теореми Лейбніца випливає наслідок, який дозволяє оцінити похибку обчислення неповної суми ряду (залишок ряду):
Залишок збіжного знакопереміжного ряду буде за модулем меншим від першого відкинутого доданку:
Знакозмінний ряд
Знакопереміжні ряди також іноді називають знакозмінними, проте цей термін може також означати будь-які ряди, які мають одночасно нескінченне число додатних і від'ємних членів.
Наближені суми
Наведена вище оцінка не залежить від . Отже, якщо {} монотонно збігається до , то оцінка абсолютної похибки для наближення нескінченних сум частковими є такою:
Абсолютна збіжність
Ряд абсолютно збіжний, якщо ряд — збіжний.
Теорема: Абсолютно збіжний ряд є збіжним.
Умовна збіжність
Ряд називають умовно збіжним, якщо він є збіжним, але не є абсолютно збіжним.
Наприклад, гармонічний ряд
розбіжний, тоді як його знакопереміжна версія
збігається за ознакою Лейбніца.
Перестановки
Для будь-якого ряду можна утворити новий ряд перестановкою порядку сумування. Ряд називається (безумовно збіжним), якщо після будь-якої його перестановки утворюється ряд з тією ж збіжністю, що й початковий. Абсолютно збіжні ряди є безумовно збіжними. Але теорема Рімана про умовно збіжний ряд стверджує, що умовно збіжні ряди можна подати для утворення будь-якої збіжності. Загальний принцип полягає в тому, що додавання нескінченних сум є комутативним лише для абсолютно збіжних рядів.
Наприклад, одне з хибних доведень, що , використовує порушення асоціативності для нескінченних сум.
Ще один приклад, як відомо
Але, оскільки ряд не є абсолютно збіжним, то можемо переставити члени ряду, щоб отримати ряд для :
Прискорення збіжності ряду
Насправді числове підсумування знакопереміжного ряду можна прискорити за допомогою будь-якої з різноманітних методик прискорення збіжності рядів. Однією з найдавніших методик є підсумування Ейлера, а також безліч сучасних методик, які можуть забезпечити ще швидшу збіжність рядів.
Див. також
- Ознака Діріхле — узагальнення ознаки Лейбніца
- Ряд Гранді
- [en]
Примітки
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления т. 2 стор. 302
- Mallik, AK (2007). Curious Consequences of Simple Sequences. Resonance. 12 (1): 23—37. doi:10.1007/s12045-007-0004-7.
Література
- Иванов Г. Е. Глава 9. Числовые ряды. §3. Ряды со знакопеременными членами // Лекции по математическому анализу. — М. : МФТИ, 2000. — Т. 1. — С. 299—303. — 800 прим. — .
- , Справочник по математике. — Изд. 7-е, стереотипное. — М. : Государственное издательство технико-теоретической литературы, 1967. — С. 296.
- [en] (1967) Infinite Series, pp 73–6, Macmillan Publishers.
- Weisstein, Eric W. Alternating Series(англ.) на сайті Wolfram MathWorld.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Ne plutati zi chleni yakogo tezh nabuvayut znachen z protilezhnimi znakami ale ne obov yazkovo po cherzi Znakoperemi zhnij ryad matematichnij ryad chleni yakogo pochergovo nabuvayut znachen iz protilezhnimi znakami n 1 an n 1 1 n 1bn bn gt 0 displaystyle sum n 1 infty a n sum n 1 infty 1 n 1 b n quad b n gt 0 Yak i bud yakij ryad znakoperemizhnij ryad ye zbizhnim todi i tilki todi koli vidpovidna poslidovnist chastkovih sum ye zbizhnoyu PrikladiGeometrichnij ryad 1 2 1 4 1 8 1 16 displaystyle cdots ye zbizhnim do 1 3 Znakoperemizhnij garmonichnij ryad maye skinchennu sumu a garmonichnij ryad ni Ryad Merkatora nadaye analitichnij viraz dlya naturalnogo logarifmu n 1 1 n 1nxn ln 1 x displaystyle sum n 1 infty frac 1 n 1 n x n ln 1 x Funkciyi sinus i kosinus sho vikoristovuyutsya v trigonometriyi v matematichnomu analizi mozhna viznachiti yak znakoperemizhni ryadi popri te sho v elementarnij algebri voni vvodyatsya yak vidnoshennya storin pryamokutnogo trikutnika Dijsno sin x n 0 1 nx2n 1 2n 1 displaystyle sin x sum n 0 infty 1 n frac x 2n 1 2n 1 ta cos x n 0 1 nx2n 2n displaystyle cos x sum n 0 infty 1 n frac x 2n 2n Yaksho z cih ryadiv viluchiti zakoperemizhnij koeficiyent 1 n displaystyle 1 n to otrimayemo giperbolichni funkciyi sh displaystyle sh i ch displaystyle ch sho vikoristovuyutsya v matematichnomu analizi Dlya cilogo chi dodatnogo indeksu a displaystyle alpha funkciyu Besselya pershogo rodu mozhna viznachiti za dopomogoyu zakoperemizhnogo ryadu Ja x m 0 1 mm G m a 1 x2 2m a displaystyle J alpha x sum m 0 infty frac 1 m m Gamma m alpha 1 left frac x 2 right 2m alpha de G z displaystyle Gamma z ce gamma funkciya Yaksho s displaystyle s kompleksne chislo todi funkciya Dirihle podayetsya u viglyadi znakoperemizhnogo ryadu h s n 1 1 n 1ns 11s 12s 13s 14s displaystyle eta s sum n 1 infty 1 n 1 over n s frac 1 1 s frac 1 2 s frac 1 3 s frac 1 4 s cdots sho vikoristovuyetsya v analitichnij teoriyi chisel Oznaka LejbnicaOznaka Lejbnica oznaka zbizhnosti znakoperemizhnogo ryadu vstanovlena Gotfridom Lejbnicem Formulyuvannya teoremi nehaj dano znakoperemizhnij ryad S n 1 1 n 1bn bn 0 displaystyle S sum n 1 infty 1 n 1 b n quad b n geq 0 dlya yakogo vikonuyutsya taki umovi bn bn 1 displaystyle b n geq b n 1 pochinayuchi z deyakogo nomera n N displaystyle n geq N limn bn 0 displaystyle lim n to infty b n 0 Todi takij ryad zbigayetsya Zauvazhennya Ryadi sho zadovolnyayut oznaci Lejbnica nazivayutsya ryadami Lejbnica Slid zaznachiti sho monotonne spadannya do nulya ne ye neobhidnim dlya zbizhnosti znakoperemizhnogo ryadu todi yak dlya dovilnogo ryadu umova limn bn 0 displaystyle lim n to infty b n 0 ye same neobhidnoyu umovoyu cya oznaka ye dostatnoyu ale ne obov yazkovoyu napriklad ryad n 2 1 nn 1 n displaystyle sum n 2 infty frac 1 n n 1 n zbigayetsya Ryad Lejbnica mozhe absolyutno zbigatisya yaksho zbigayetsya ryad n 1 bn displaystyle sum n 1 infty b n a mozhe zbigatisya umovno yaksho ryad iz moduliv rozbigayetsya DovedennyaRozglyanemo dvi poslidovnosti chastkovih sum ryadu Rn b1 b2 b2n displaystyle R n b 1 b 2 ldots b 2n i Ln b1 b2 b2n 1 displaystyle L n b 1 b 2 ldots b 2n 1 Persha poslidovnist ne spadaye Rn Rn 1 b2n 2 b2n 1 0 displaystyle R n R n 1 b 2n 2 b 2n 1 leq 0 za pershoyu umovoyu Za tiyeyu zh umovoyu druga poslidovnist ne zrostaye Ln Ln 1 b2n 2 b2n 3 0 displaystyle L n L n 1 b 2n 2 b 2n 3 geq 0 Druga poslidovnist mazhoruye pershu tobto Ln Rm displaystyle L n geq R m dlya dovilnih m n N displaystyle m n in mathbb N Dijsno pri m n displaystyle m geq n mayemo Ln Rm Lm Rm b2m 1 gt 0 displaystyle L n R m geq L m R m b 2m 1 gt 0 pri m n displaystyle m leq n mayemo Ln Rm Ln Rn b2n 1 gt 0 displaystyle L n R m geq L n R n b 2n 1 gt 0 Otzhe voni obidvi zbigayutsya yak monotonni obmezheni poslidovnosti Zalishilosya zauvazhiti sho limm n Rn Lm 0 displaystyle lim m n R n L m 0 tomu voni zbigayutsya do spilnoyi granici S displaystyle S yaka i ye sumoyu pochatkovogo ryadu Poputno mi pokazali sho dlya bud yakoyi chastkovoyi sumi ryadu Sn displaystyle S n ye ocinka S Sn lt bn 1 displaystyle S S n lt b n 1 Priklad n 1 1 n 11n displaystyle sum n 1 infty 1 n 1 frac 1 n Ryad z moduliv maye viglyad n 1 1n displaystyle sum n 1 infty frac 1 n ce garmonichnij ryad yakij rozbigayetsya Teper skoristayemosya oznakoyu Lejbnica znakoperemizhnist vikonano 1n 1 lt 1n n displaystyle frac 1 n 1 lt frac 1 n forall n limn 1n 0 displaystyle lim n to infty frac 1 n 0 Otzhe oskilki vsi umovi vikonano ryad zbigayetsya prichomu umovno oskilki ryad z moduliv rozbizhnij Ocinka zalishku ryadu Lejbnica Z teoremi Lejbnica viplivaye naslidok yakij dozvolyaye ociniti pohibku obchislennya nepovnoyi sumi ryadu zalishok ryadu Sn i 1n 1 ibi displaystyle S n sum i 1 n 1 i b i Zalishok zbizhnogo znakoperemizhnogo ryadu Rn S Sn displaystyle R n S S n bude za modulem menshim vid pershogo vidkinutogo dodanku Rn lt bn 1 displaystyle left R n right lt b n 1 DovedennyaPoslidovnist S2k displaystyle S 2k monotonno zrostaye oskilki S2k i 2i n b2i 1 b2i displaystyle S 2k sum limits i 2 i n left b 2i 1 b 2i right a viraz b2i 1 b2i displaystyle b 2i 1 b 2i nevid yemnij za bud yakogo cilogo i displaystyle i Poslidovnist S2k 1 displaystyle S 2k 1 monotonno spadaye oskilki S2k 1 S2k 1 b2k b2k 1 displaystyle S 2k 1 S 2k 1 left b 2k b 2k 1 right a viraz u duzhkah nevid yemnij Yak vzhe dovedeno pid chas dovedennya samoyi teoremi Lejbnica v oboh cih poslidovnostej S2k displaystyle S 2k i S2k 1 displaystyle S 2k 1 odnakova granicya pri k displaystyle k to infty Tak otrimano S2k s S2k 1 displaystyle S 2k leqslant s leqslant S 2k 1 i takozh s S2k 1 displaystyle s leqslant S 2k 1 Zvidsi 0 s S2k S2k 1 S2k b2k 1 displaystyle 0 leqslant s S 2k leqslant S 2k 1 S 2k b 2k 1 i 0 S2k 1 s S2k 1 S2k b2k displaystyle 0 leqslant S 2k 1 s leqslant S 2k 1 S 2k b 2k Otzhe dlya bud yakogo k displaystyle k vikonuyetsya s Sk bk 1 displaystyle left s S k right leqslant b k 1 sho j potribno bulo dovesti Znakozminnij ryadZnakoperemizhni ryadi takozh inodi nazivayut znakozminnimi prote cej termin mozhe takozh oznachati bud yaki ryadi yaki mayut odnochasno neskinchenne chislo dodatnih i vid yemnih chleniv Nablizheni sumiNavedena vishe ocinka ne zalezhit vid n displaystyle n Otzhe yaksho an displaystyle a n monotonno zbigayetsya do 0 displaystyle 0 to ocinka absolyutnoyi pohibki dlya nablizhennya neskinchennih sum chastkovimi ye takoyu k 0 1 kak k 0m 1 kak am 1 displaystyle left sum k 0 infty 1 k a k sum k 0 m 1 k a k right leq a m 1 Absolyutna zbizhnistRyad an displaystyle sum a n absolyutno zbizhnij yaksho ryad an displaystyle sum a n zbizhnij Teorema Absolyutno zbizhnij ryad ye zbizhnim DovedennyaPripustimo sho ryad an displaystyle sum a n absolyutno zbizhnij Todi an displaystyle sum a n ye zbizhnim i z cogo viplivaye sho 2 an displaystyle sum 2 a n takozh zbizhnij Oskilki 0 an an 2 an displaystyle 0 leq a n a n leq 2 a n todi ryad an an displaystyle sum a n a n ye zbizhnim za oznakoyu porivnyannya ryadiv Tomu an displaystyle sum a n ye zbizhnim yak riznicya dvoh zbizhnih ryadiv an an an an displaystyle sum a n sum a n a n sum a n Umovna zbizhnistRyad nazivayut umovno zbizhnim yaksho vin ye zbizhnim ale ne ye absolyutno zbizhnim Napriklad garmonichnij ryad n 1 1n displaystyle sum n 1 infty frac 1 n rozbizhnij todi yak jogo znakoperemizhna versiya n 1 1 n 1n displaystyle sum n 1 infty frac 1 n 1 n zbigayetsya za oznakoyu Lejbnica PerestanovkiDlya bud yakogo ryadu mozhna utvoriti novij ryad perestanovkoyu poryadku sumuvannya Ryad nazivayetsya bezumovno zbizhnim yaksho pislya bud yakoyi jogo perestanovki utvoryuyetsya ryad z tiyeyu zh zbizhnistyu sho j pochatkovij Absolyutno zbizhni ryadi ye bezumovno zbizhnimi Ale teorema Rimana pro umovno zbizhnij ryad stverdzhuye sho umovno zbizhni ryadi mozhna podati dlya utvorennya bud yakoyi zbizhnosti Zagalnij princip polyagaye v tomu sho dodavannya neskinchennih sum ye komutativnim lishe dlya absolyutno zbizhnih ryadiv Napriklad odne z hibnih doveden sho 1 0 displaystyle 1 0 vikoristovuye porushennya asociativnosti dlya neskinchennih sum She odin priklad yak vidomo ln 2 n 1 1 n 1n 1 12 13 14 displaystyle ln 2 sum n 1 infty frac 1 n 1 n 1 frac 1 2 frac 1 3 frac 1 4 cdots Ale oskilki ryad ne ye absolyutno zbizhnim to mozhemo perestaviti chleni ryadu shob otrimati ryad dlya 12ln 2 displaystyle frac 1 2 ln 2 1 12 14 13 16 18 15 110 112 12 14 16 18 110 112 12 1 12 13 14 15 16 12ln 2 displaystyle begin aligned amp left 1 frac 1 2 right frac 1 4 left frac 1 3 frac 1 6 right frac 1 8 left frac 1 5 frac 1 10 right frac 1 12 cdots 8pt amp quad frac 1 2 frac 1 4 frac 1 6 frac 1 8 frac 1 10 frac 1 12 cdots 8pt amp quad frac 1 2 left 1 frac 1 2 frac 1 3 frac 1 4 frac 1 5 frac 1 6 cdots right frac 1 2 ln 2 end aligned Priskorennya zbizhnosti ryaduNaspravdi chislove pidsumuvannya znakoperemizhnogo ryadu mozhna priskoriti za dopomogoyu bud yakoyi z riznomanitnih metodik priskorennya zbizhnosti ryadiv Odniyeyu z najdavnishih metodik ye pidsumuvannya Ejlera a takozh bezlich suchasnih metodik yaki mozhut zabezpechiti she shvidshu zbizhnist ryadiv Div takozhOznaka Dirihle uzagalnennya oznaki Lejbnica Ryad Grandi en PrimitkiFihtengolc G M Kurs differencialnogo i integralnogo ischisleniya t 2 stor 302 Mallik AK 2007 Curious Consequences of Simple Sequences Resonance 12 1 23 37 doi 10 1007 s12045 007 0004 7 LiteraturaIvanov G E Glava 9 Chislovye ryady 3 Ryady so znakoperemennymi chlenami Lekcii po matematicheskomu analizu M MFTI 2000 T 1 S 299 303 800 prim ISBN 5 7417 0147 7 Spravochnik po matematike Izd 7 e stereotipnoe M Gosudarstvennoe izdatelstvo tehniko teoreticheskoj literatury 1967 S 296 en 1967 Infinite Series pp 73 6 Macmillan Publishers Weisstein Eric W Alternating Series angl na sajti Wolfram MathWorld