Теорія множин Цермело — Френкеля (позначається ZF) — найпоширеніша аксіоматика теорії множин, і, через це, найпоширеніша основа математики.
ZFC — теорія множин Цермело — Френкеля з аксіомою вибору (AC).
ZFC містить єдине примітивне онтологічне поняття — множина, та єдине онтологічне припущення, що всі об'єкти в досліджуваному просторі (наприклад, всі математичні об'єкти) є множинами.
Вводиться єдине бінарне відношення — приналежність до множини; позначає що множина є елементом множини , та записується як .
ZFC є теорією першого порядку; в ZFC містяться аксіоми, в яких використовується логіка першого порядку. Ці аксіоми описують: порівняння, існування, побудову та впорядкування множин.
Передумови створення
Аксіоматична теорія множин — напрям у математичній логіці, присвячений вивченню фрагментів змістовної теорії множин методами математичної логіки. З цією метою фрагменти теорії множин подають у вигляді аксіоматичної теорії. В основі сучасної теорії множин лежить система аксіом, які приймають без доведення і з яких виводять усі теореми теорії множин. Передумовами створення такої теорії стало відкриття деяких парадоксів (антиномій, суперечностей) так званої «наївної» теорії множин. Серед таких парадоксів найбільш відомими є парадокси Кантора і Рассела.
Першою аксіоматикою такого роду була система Z Цермело (E. Zermelo, 1908). Однак у цій системі неможливо було природним чином формалізувати деякі розділи математики, і А.Френкель (A. Frenkel, 1922) запропонував доповнити систему Z новим принципом, який назвав аксіомою підстановки. Отриману систему називають системою аксіом Цермело — Френкеля і позначають ZF.
Аксіоми ZFC
Порівняння
Дві множини рівні тоді й тільки тоді, коли вони мають одні й ті ж елементи.
Існування
Існує така множина A, що включає в себе пусту множину {} та для будь-якого належного їй елемента B включає також і множину, сформовану як об'єднання B та її синґлетону {B}.
Існує множина без елементів.
Таку множину зазвичай позначають як ∅ або {} та називають порожньою множиною.
Побудови
Аксіома пари (Z2)
Для будь-яких множин A та B існує множина C така, що A та B є її єдиними елементами. Множина C позначається {A, B} і називається невпорядкованою парою A та B.
Тобто, якщо A = B, то існує множина C така, що вона складається з одного елемента {A, A} = {A} (який має назву ).
Аксіома булеана (Z4)
Для будь-якої множини А існує множина B, елементами якої є ті й тільки ті елементи що є підмножинами A.
Якщо ввести відношення підмножини , то формулу можна спростити:
Множину B називають булеаном множини A та позначають .
Аксіома об'єднання (Z5)
Для двох множин існує третя, яка включає в себе всі елементи обох, і тільки їх.
З аксіоми прямо випливає, що об'єднання множин також є множиною. Множина B називається об'єднанням A, і позначається ∪A.
Для будь-якої множини А і властивості P існує множина B, елементами якої є ті й тільки ті елементи множини А, які маю властивість P.
Для кожної такої властивості P (предиката, що не використовує символ B), існує окрема аксіома виділення. Тому комплект таких аксіом називають схемою.
Нехай А - множина, і P(x,y) - предикат. Тоді якщо для кожного x існує єдиний y, такий що P(x,y) істинний, тоді існує множина всіх y, для яких знайдеться такий x ∈ A, що P(x,y) істинний.
Впорядкування
Аксіома регулярності (ZF)
В будь-якій непорожній множині А є елемент B, що перетин А та B є порожньою множиною.
Якщо ввести операцію перетину множин , то формулу можна спростити:
Аксіома вибору (Z6)
Для довільного сімейства непорожніх множин, що не перетинаються, існує множина, яка має рівно один спільний елемент з кожною множиною даного сімейства, навіть якщо множин у сімействі нескінченно багато і невизначено правило вибору елемента з кожної множини.
Надлишковість
- Аксіома порожньої множини явним чи неявним чином присутня у всіх аксіоматичних теоріях множин. В ZF не є виокремленою, а включається в аксіому нескінченності.
- Аксіомна схема виділення не входить в ZF, оскільки виводиться із пізніше введеної аксіомної схеми підстановки та аксіоми порожньої множини.
- Аксіома пари виводиться із аксіоми підстановки, аксіоми порожньої множини та аксіоми булеана.
Див. також
Джерела
- Хаусдорф Ф. Теория множеств. — Москва ; Ленинград : , 1937. — 304 с. — .(рос.)
- Куратовский К., Мостовский А. Теория множеств = Set Theory (Teoria mnogości). — М. : Мир, 1970. — 416 с.(рос.)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Teoriya mnozhin Cermelo Frenkelya poznachayetsya ZF najposhirenisha aksiomatika teoriyi mnozhin i cherez ce najposhirenisha osnova matematiki ZFC teoriya mnozhin Cermelo Frenkelya z aksiomoyu viboru AC ZFC mistit yedine primitivne ontologichne ponyattya mnozhina ta yedine ontologichne pripushennya sho vsi ob yekti v doslidzhuvanomu prostori napriklad vsi matematichni ob yekti ye mnozhinami Vvoditsya yedine binarne vidnoshennya prinalezhnist do mnozhini poznachaye sho mnozhina a displaystyle a ye elementom mnozhini b displaystyle b ta zapisuyetsya yak a b displaystyle a in b ZFC ye teoriyeyu pershogo poryadku v ZFC mistyatsya aksiomi v yakih vikoristovuyetsya logika pershogo poryadku Ci aksiomi opisuyut porivnyannya isnuvannya pobudovu ta vporyadkuvannya mnozhin Peredumovi stvorennyaAksiomatichna teoriya mnozhin napryam u matematichnij logici prisvyachenij vivchennyu fragmentiv zmistovnoyi teoriyi mnozhin metodami matematichnoyi logiki Z ciyeyu metoyu fragmenti teoriyi mnozhin podayut u viglyadi aksiomatichnoyi teoriyi V osnovi suchasnoyi teoriyi mnozhin lezhit sistema aksiom yaki prijmayut bez dovedennya i z yakih vivodyat usi teoremi teoriyi mnozhin Peredumovami stvorennya takoyi teoriyi stalo vidkrittya deyakih paradoksiv antinomij superechnostej tak zvanoyi nayivnoyi teoriyi mnozhin Sered takih paradoksiv najbilsh vidomimi ye paradoksi Kantora i Rassela Pershoyu aksiomatikoyu takogo rodu bula sistema Z Cermelo E Zermelo 1908 Odnak u cij sistemi nemozhlivo bulo prirodnim chinom formalizuvati deyaki rozdili matematiki i A Frenkel A Frenkel 1922 zaproponuvav dopovniti sistemu Z novim principom yakij nazvav aksiomoyu pidstanovki Otrimanu sistemu nazivayut sistemoyu aksiom Cermelo Frenkelya i poznachayut ZF Aksiomi ZFCPorivnyannya Aksioma ekstensionalnosti ob yemnosti Z1 Dvi mnozhini rivni todi j tilki todi koli voni mayut odni j ti zh elementi A B A B C C A C B displaystyle forall A forall B A B iff forall C C in A iff C in B Isnuvannya Aksioma neskinchennosti Z7 Isnuye taka mnozhina A sho vklyuchaye v sebe pustu mnozhinu ta dlya bud yakogo nalezhnogo yij elementa B vklyuchaye takozh i mnozhinu sformovanu yak ob yednannya B ta yiyi singletonu B A A B B A B B A displaystyle exists A varnothing in A land forall B B in A Rightarrow B cup B in A Aksioma porozhnoyi mnozhini Isnuye mnozhina bez elementiv A B B A displaystyle exists A forall B lnot B in A Taku mnozhinu zazvichaj poznachayut yak abo ta nazivayut porozhnoyu mnozhinoyu Pobudovi Aksioma pari Z2 Dlya bud yakih mnozhin A ta B isnuye mnozhina C taka sho A ta B ye yiyi yedinimi elementami Mnozhina C poznachayetsya A B i nazivayetsya nevporyadkovanoyu paroyu A ta B A B C D D C D A D B displaystyle forall A forall B exists C forall D D in C iff D A lor D B Tobto yaksho A B to isnuye mnozhina C taka sho vona skladayetsya z odnogo elementa A A A yakij maye nazvu Aksioma buleana Z4 Dlya bud yakoyi mnozhini A isnuye mnozhina B elementami yakoyi ye ti j tilki ti elementi sho ye pidmnozhinami A A B C C B D D C D A displaystyle forall A exists B forall C C in B iff forall D D in C Rightarrow D in A Yaksho vvesti vidnoshennya pidmnozhini displaystyle subseteq to formulu mozhna sprostiti A B C C B C A displaystyle forall A exists B forall C C in B iff C subseteq A Mnozhinu B nazivayut buleanom mnozhini A ta poznachayut P A displaystyle mathcal P A Aksioma ob yednannya Z5 Dlya dvoh mnozhin isnuye tretya yaka vklyuchaye v sebe vsi elementi oboh i tilki yih A B C C B D C D D A displaystyle forall A exists B forall C C in B iff exists D C in D land D in A Z aksiomi pryamo viplivaye sho ob yednannya mnozhin takozh ye mnozhinoyu Mnozhina B nazivayetsya ob yednannyam A i poznachayetsya A Shema specifikaciyi aksioma vidilennya Z3 Dlya bud yakoyi mnozhini A i vlastivosti P isnuye mnozhina B elementami yakoyi ye ti j tilki ti elementi mnozhini A yaki mayu vlastivist P A B C C B C A P C displaystyle forall A exists B forall C C in B iff C in A land P C Dlya kozhnoyi takoyi vlastivosti P predikata sho ne vikoristovuye simvol B isnuye okrema aksioma vidilennya Tomu komplekt takih aksiom nazivayut shemoyu Shema peretvorennya aksioma pidstanovki ZF Nehaj A mnozhina i P x y predikat Todi yaksho dlya kozhnogo x isnuye yedinij y takij sho P x y istinnij todi isnuye mnozhina vsih y dlya yakih znajdetsya takij x A sho P x y istinnij x y P x y A B y y B x A P x y displaystyle forall x exists y P x y rightarrow forall A exists B forall y y in B iff exists x in A P x y Vporyadkuvannya Aksioma regulyarnosti ZF V bud yakij neporozhnij mnozhini A ye element B sho peretin A ta B ye porozhnoyu mnozhinoyu A B B A B B A C C A C B displaystyle forall A exists B B in A rightarrow exists B B in A land lnot exists C C in A land C in B Yaksho vvesti operaciyu peretinu mnozhin displaystyle cap to formulu mozhna sprostiti A A B B A B A displaystyle forall A A neq varnothing rightarrow exists B B in A wedge B cap A varnothing Aksioma viboru Z6 Dlya dovilnogo simejstva neporozhnih mnozhin sho ne peretinayutsya isnuye mnozhina yaka maye rivno odin spilnij element z kozhnoyu mnozhinoyu danogo simejstva navit yaksho mnozhin u simejstvi neskinchenno bagato i neviznacheno pravilo viboru elementa z kozhnoyi mnozhini NadlishkovistAksioma porozhnoyi mnozhini yavnim chi neyavnim chinom prisutnya u vsih aksiomatichnih teoriyah mnozhin V ZF ne ye viokremlenoyu a vklyuchayetsya v aksiomu neskinchennosti Aksiomna shema vidilennya ne vhodit v ZF oskilki vivoditsya iz piznishe vvedenoyi aksiomnoyi shemi pidstanovki ta aksiomi porozhnoyi mnozhini Aksioma pari vivoditsya iz aksiomi pidstanovki aksiomi porozhnoyi mnozhini ta aksiomi buleana Div takozhTeoriya mnozhin Teoriya mnozhin fon Nejmana Bernajsa Gedelya Z notaciyaDzherelaHausdorf F Teoriya mnozhestv Moskva Leningrad 1937 304 s ISBN 978 5 382 00127 2 ros Kuratovskij K Mostovskij A Teoriya mnozhestv Set Theory Teoria mnogosci M Mir 1970 416 s ros