Підтримка
www.wikidata.uk-ua.nina.az
Logika pershogo poryadku chislennya predikativ ce formalna sistema v matematichnij logici v yakij dopuskayutsya vislovlennya vidnosno zminnih fiksovanih funkcij i predikativ Ye rozshirennyam logiki vislovlyuvan V svoyu chergu ye chastkovim vipadkom en ViznachennyaMovi logiki pershogo poryadku buduyutsya na osnovi signaturi sho skladayetsya iz mnozhini funkcionalnih simvoliv F displaystyle mathcal F i mnozhini predikatnih simvoliv P displaystyle mathcal P Z kozhnim funkcionalnim i predikatnim simvolom pov yazana arnist chislo agrumentiv Krim togo vikoristovuyutsya dodatkovi simvoli Simvoli zminnih zazvichaj x y z x 1 y 1 z 1 x 2 y 2 z 2 displaystyle x y z x 1 y 1 z 1 x 2 y 2 z 2 i t d Propozicijni zv yazki displaystyle lor land neg to Kvantori zagalnosti displaystyle forall ta isnuvannya displaystyle exists Sluzhbovi simvoli duzhki i koma Perelicheni simvoli razom iz simvolami z P displaystyle mathcal P i F displaystyle mathcal F utvoryuyut Alfavit logiki pershogo poryadku Skladnishi konstrukciyi viznachayutsya induktivno Term ce simvol zminnoyi abo maye vid f t 1 t n displaystyle f t 1 ldots t n de f displaystyle f funkcionalnij simvol arnosti n displaystyle n a t 1 t n displaystyle t 1 ldots t n termi Atom maye vid p t 1 t n displaystyle p t 1 ldots t n de p displaystyle p predikatnij simvol arnosti n displaystyle n a t 1 t n displaystyle t 1 ldots t n atomi Formula ce abo atom abo odna z nastupnih konstrukcij F F 1 F 2 F 1 F 2 F 1 F 2 x F x F displaystyle neg F F 1 lor F 2 F 1 land F 2 F 1 to F 2 forall xF exists xF de F F 1 F 2 displaystyle F F 1 F 2 formuli a x displaystyle x zminna Zminna x displaystyle x nazivayetsya zv yazanoyu v formuli F displaystyle F yaksho F displaystyle F maye vid x G displaystyle forall xG abo x G displaystyle exists xG abo mozhe buti predstavlena v odnij z form H F 1 F 2 F 1 F 2 F 1 F 2 displaystyle neg H F 1 lor F 2 F 1 land F 2 F 1 to F 2 prichomu x displaystyle x vzhe zv yazana v H displaystyle H F 1 displaystyle F 1 i F 2 displaystyle F 2 Yaksho x displaystyle x ne zv yazana v F displaystyle F yiyi nazivayut nezv yazanoyu v F displaystyle F Formulu bez nezv yazanih zminnih nazivayut zamknutoyu formuloyu Teoriyeyu pershogo poryadku nazivayut dovilnu mnozhinu zamknutih formul AksiomatikaNastupna sistema logichnih aksiom logiki pershogo poryadku mistit usi aksiomi chislennya vislovlen u navedenomu vipadku aksiomi Lukashevicha ta dvi dodatkovi aksiomi A B A displaystyle A to B to A A B C A B A C displaystyle A to B to C to A to B to A to C A B B A displaystyle neg A to neg B to B to A x A A t x displaystyle forall xA to A t x x A B A x B displaystyle forall x A to B to A to forall xB yaksho x displaystyle x ne prisutnij v A displaystyle A v nezvyazanomu stani U chetvertij aksiomi A t x displaystyle A t x formula oderzhana vnaslidok pidstanovki terma t displaystyle t zamist zminnoyi x displaystyle x v formuli A displaystyle A Pidstanovka deyakogo terma zamist zminnoyi mozhliva ne v usih vipadkah Umovi isnuvannya takoyi pidstanovki ta yiyi rezultat mozhna viznachiti induktivno Yaksho A displaystyle A atomarna formula to term t displaystyle t mozhe zaminiti dovilnu zminnu x displaystyle x ciyeyi formuli Rezultat poznachayetsya A t x displaystyle A t x Yaksho A displaystyle A maye viglyad B displaystyle lnot B todi pidstanovka t displaystyle t zamist x displaystyle x mozhliva lishe todi koli taka pidstanovka mozhliva dlya formuli B displaystyle B i A t x displaystyle A t x todi dorivnyuye B t x displaystyle lnot B t x Yaksho A displaystyle A maye viglyad B C displaystyle B to C todi pidstanovka t displaystyle t zamist x displaystyle x mozhliva lishe todi koli taka pidstanovka mozhliva dlya formul B displaystyle B i C displaystyle C A t x displaystyle A t x todi rivna B t x C t x displaystyle B t x to C t x Yaksho A displaystyle A maye viglyad y B displaystyle forall yB todi pidstanovka t displaystyle t zamist x displaystyle x mozhliva u dvoh vipadkah Zminna x displaystyle x zustrichayetsya u formuli B displaystyle B lishe u zv yazanomu stani zminna y displaystyle y ne zustrichayetsya u termi t displaystyle t i pidstanovka t displaystyle t zamist x displaystyle x mozhliva u formuli B displaystyle B Todi rezultat viznachayetsya nastupnim chinom Yaksho x displaystyle x dorivnyuye y displaystyle y to A t x displaystyle A t x dorivnyuye y B displaystyle forall yB Yaksho x displaystyle x ne dorivnyuye y displaystyle y to A t x displaystyle A t x dorivnyuye y B t x displaystyle forall yB t x Okrim togo ye dva pravila vivodu Modus ponens A A B B displaystyle frac A A to B B Pravilo uzagalnennya GEN A x A displaystyle frac A forall xA Ci aksiomi i pravila vivodu ye shemami i A B C displaystyle A B C mozhna zaminyati dovilnimi formulami V cij aksiomatici vikoristovuyutsya lishe dvi propozicijni zv yazki displaystyle neg to i kvantor zagalnosti displaystyle forall Inshi propozicijni zv yazki i kvantor isnuvannya mozhna viznachiti nastupnim chinom A B displaystyle A lor B poznachaye A B displaystyle lnot A to lnot B A B displaystyle A land B poznachaye A B displaystyle lnot A to B x A displaystyle exists xA poznachaye x A displaystyle lnot forall x lnot A Usi navedeni vishe aksiomi nazivayutsya logichnimi Yaksho ne isnuye inshih aksiom to taku formalnu sistemu nazivayut chislennyam predikativ pershogo poryadku Chislennya predikativ pershogo poryadku ye prikladom teoriyi pershogo poryadku Usi teoriyi pershogo poryadku viznachayutsya podibno do chislennya predikativ pershogo poryadku odnak voni mayut dodatkovi aksiomi yaki she nazivayut vlasnimi aksiomami teoriyi Vivedennya formul i teorem Nehaj S displaystyle Sigma deyaka mnozhina formul movi pershogo poryadku a A displaystyle A deyaka zadana formula Todi kazhut sho formula A displaystyle A vivoditsya z mnozhini formul S displaystyle Sigma poznachayetsya S A displaystyle Sigma vdash A yaksho isnuye taka skinchenna poslidovnist formul A 1 A 2 A n A displaystyle A 1 A 2 ldots A n A de dlya kozhnoyi formuli A i displaystyle A i A i displaystyle A i ye aksiomoyu abo A i displaystyle A i nalezhit mnozhini S displaystyle Sigma abo A i displaystyle A i vivoditsya z poperednih formul poslidovnosti za dopomogoyu kotrogos iz pravil vivodu Yaksho pri comu mnozhina S displaystyle Sigma porozhnya formula A displaystyle A vivoditsya lishe za dopomogoyu aksiom i pravil vivodu to formula A displaystyle A nazivayetsya teoremoyu dlya cogo vikoristovuyetsya poznachennya A displaystyle vdash A Mnozhina S displaystyle Sigma formul nazivayetsya nesuperechlivoyu yaksho dlya dovilnoyi formuli A displaystyle A ne vikonuyetsya odnochasno S A displaystyle Sigma vdash A i S A displaystyle Sigma vdash lnot A Priklad vivedennya Dovedemo sho A x A B x B displaystyle A forall xA to B vdash forall xB Priklad vivodu Nomer Formula Sposib oderzhannya 1 A displaystyle A Gipoteza 2 x A displaystyle forall xA Pravilo uzagalnennya i 1 3 x A B displaystyle forall xA to B Gipoteza 4 B displaystyle B 2 3 i modus ponens 5 x B displaystyle forall xB Pravilo uzagalnennya i 4 Prikladi teorij pershogo poryadkuTeoriya grup U comu vipadku mayemo odin funkcionalnij simvol arnosti 0 poznachimo jogo e displaystyle e odin funkcionalnij simvol arnosti 2 poznachimo jogo displaystyle circ i odin predikatnij simvol arnosti 2 poznachimo jogo displaystyle Takozh pisatimemo x y displaystyle x y i x y displaystyle x circ y zamist x y displaystyle x y i x y displaystyle circ x y Vlasni formuli teoriyi x y z x y z x y z displaystyle forall x forall y forall z x circ y circ z x circ y circ z vlastivist asociativnosti x e x x displaystyle forall x e circ x x vlastivist nejtralnogo elementa x y x y e displaystyle forall x exists y x circ y e isnuvannya obernenogo elementa x x x displaystyle forall x x x refleksivnist rivnosti x y x y y x displaystyle forall x forall y x y to y x simetrichnist rivnosti x y z x y y z x z displaystyle forall x forall y forall z x y to y z to x z tranzitivnist rivnosti x y z x y z x z y x z y z displaystyle forall x forall y forall z x y to z circ x z circ y land x circ z y circ z pidstanovka rivnosti Teoriya abelevih grup Vikoristovuyutsya usi poznachennya i aksiomi poperednogo punktu a takozh dodatkova aksioma komutativnosti x y x y y x displaystyle forall x forall y x circ y y circ x SemantikaU klasichnij logici interpretaciya formul logiki pershogo poryadku zadayetsya na modeli pershogo poryadku yaka viznachayetsya takimi danimi en D displaystyle mathcal D Semantichna funkciya s displaystyle sigma sho vidobrazhaye kozhen n displaystyle n arnij funkcionalnij simvol f displaystyle f iz F displaystyle mathcal F v n displaystyle n arnu funkciyu s f D D D displaystyle sigma f mathcal D times ldots times mathcal D rightarrow mathcal D kozhen n displaystyle n arnij predikatnij simvol p displaystyle p iz P displaystyle mathcal P v n displaystyle n arne vidnoshennya s p D D displaystyle sigma p subseteq mathcal D times ldots times mathcal D Pripustimo s displaystyle s funkciya sho vidobrazhaye kozhnu zminnu v deyakij element iz D displaystyle mathcal D yaku i nazivatimemo pidstanovkoyu Interpretaciya t s displaystyle t s termu t displaystyle t naD displaystyle mathcal D vidnosno pidstanovki s displaystyle s zadayetsya induktivno x s s x displaystyle x s s x yaksho x displaystyle x zminna f x 1 x n s s f x 1 s x n s displaystyle f x 1 ldots x n s sigma f x 1 s ldots x n s Podibnim chinom viznachayetsya istinnist s displaystyle models s formul na D displaystyle mathcal D vidnosno s displaystyle s D s p t 1 t n displaystyle mathcal D models s p t 1 ldots t n todi i tilki todi koli s p x 1 s x n s displaystyle sigma p x 1 s ldots x n s D s ϕ displaystyle mathcal D models s neg phi todi i tilki todi koli D s ϕ displaystyle mathcal D models s phi hibno D s ϕ ps displaystyle mathcal D models s phi land psi todi i tilki todi koli D s ϕ displaystyle mathcal D models s phi i D s ps displaystyle mathcal D models s psi istinni D s ϕ ps displaystyle mathcal D models s phi lor psi todi i tilki todi koli D s ϕ displaystyle mathcal D models s phi abo D s ps displaystyle mathcal D models s psi istinno D s ϕ ps displaystyle mathcal D models s phi to psi todi i tilki todi koli z D s ϕ displaystyle mathcal D models s phi viplivaye D s ps displaystyle mathcal D models s psi D s x ϕ displaystyle mathcal D models s exists x phi todi i tilki todi koli D s ϕ displaystyle mathcal D models s phi dlya deyakoyi pidstanovki s displaystyle s yaka vidriznyayetsya vid s displaystyle s tilki na zminnij x displaystyle x D s x ϕ displaystyle mathcal D models s forall x phi todi i tilki todi koli D s ϕ displaystyle mathcal D models s phi dlya vsih pidstanovok s displaystyle s yaki vidriznyayutsya vid s displaystyle s tilki na zminnij x displaystyle x Formula ϕ displaystyle phi istinna na D displaystyle mathcal D sho poznachayetsya D ϕ displaystyle mathcal D models phi yaksho D s ϕ displaystyle mathcal D models s phi dlya vsih pidstanovok s displaystyle s Formula ϕ displaystyle phi nazivayetsya zagalnoznachimoyu poznachayetsya ϕ displaystyle models phi yaksho D ϕ displaystyle mathcal D models phi dlya vsih modelej D displaystyle mathcal D Formula ϕ displaystyle phi nazivayetsya vikonuvanoyu yaksho D ϕ displaystyle mathcal D models phi hocha b dlya odniyeyi D displaystyle mathcal D VlastivostiKorektnist i povnota Navedena vishe sistema aksiom i pravil vivodu ye korektnoyu tobto dlya bud yakoyi mnozhini formul S displaystyle Sigma iz S A displaystyle Sigma vdash A viplivaye S A displaystyle Sigma vDash A Takozh dana sistema ye povnoyu iz S A displaystyle Sigma vDash A viplivaye S A displaystyle Sigma vdash A Zokrema z cih tverdzhen viplivaye sho dlya chislennya predikativ pershogo poryadku zagalnoznachimi formuli zbigayutsya iz teoremami formalnoyi sistemi Takozh u bud yakij teoriyi pershogo poryadku vsi vivedeni u nij formuli zbigayutsya z formulami istinnimi v usih modelyah ciyeyi teoriyi Kompaktnist Deyaka mnozhina formul ye vikonuvanoyu todi i tilki todi koli vikonuvanimi ye vsi yiyi skinchenni pidmnozhini Nerozv yaznist Na vidminu vid logiki vislovlen logika pershogo poryadku ye nerozv yaznoyu u razi nayavnosti prinajmni odnogo predikata arnosti ne menshe 2 za vinyatkom rivnosti tobto nemaye efektivnogo metodu viznachennya isnuye chi ne isnuye vivedennya deyakoyi formuli u pevnij teoriyi pershogo poryadku Div takozhLogika predikativ Chislennya vislovlen Predikatna logika Kvantor Pravilo rezolyucij Chislennya sekvencij Logika drugogo poryadku Teorema Lovengejma Skolema Normalna forma SkolemaLiteraturaSilogistika Filosofskij enciklopedichnij slovnik V I Shinkaruk gol redkol ta in Kiyiv Institut filosofiyi imeni Grigoriya Skovorodi NAN Ukrayini Abris 2002 S 578 742 s 1000 ekz BBK 87ya2 ISBN 966 531 128 X Chislennya predikativ FES s 714 Gilbert D Akkerman V Osnovy teoreticheskoj logiki M 1947 Klini S K Vvedenie v metamatematiku M 1957 Mendelson E Vvedenie v matematicheskuyu logiku M 1976 Novikov P S Elementy matematicheskoj logiki M 1959 Cherch A Vvedenie v matematicheskuyu logiku t I M 1960 Filosofskij slovnik za red V I Shinkaruka 2 ge vid pererob i dop K Golovna red URE 1986
Топ