Метрика Керра або геометрія Керра описує геометрію порожнього простору-часу навколо незарядженої аксіально-симетричної чорної діри, що обертається, з сферичним горизонтом подій. Метрика Керра — це точний розв'язок для польових рівнянь Ейнштейна в загальній теорії відносності; ці рівняння сильно нелінійні, що робить пошук точних рішень дуже важким.
Огляд
Метрика Керра є узагальненням метрики Шварцшильда, яку виявив Карл Шварцшильд 1915 року і яка описує геометрію простору-часу навколо незарядженого, сферично-симетричного тіла, яке не обертається. Відповідним рішенням для зарядженого, сферичного тіла, яке не обертається, є метрика Рейсснера — Нордстрема, яка була виявлена незабаром після цього (1916—1918 рр.). Однак, точне рішення для незарядженої чорної діри, що обертається — метрика Керра, залишалось невирішеним до 1963 року, коли воно було виявлене Роєм Керром. Природне продовження до зарядженої чорної діри, що обертається, метрика Керра — Ньюмена, була виявлена незабаром після цього, 1965 р. Ці чотири пов'язані рішення можуть бути узагальнені в таблиці:
Не обертається (J = 0) | Обертається (J ≠ 0) | |
Незаряджена (Q = 0) | Метрика Шварцшильда | Метрика Керра |
Заряджена (Q ≠ 0) | Метрика Рейсснера–Нордстрема | Метрика Керра–Ньюмена |
де Q — електричний заряд тіла, а J — кутовий момент його спіну.
За даними метрики Керра, така чорна діра, що обертається, повинна демонструвати прецесію площини (ефект Лензе — Тіррінґа), незвичайне передбачення загальної теорії відносності. Вимірювання цієї прецесії площини було основною метою експерименту . Грубо кажучи, цей ефект передбачає, що об'єкти, які наближаються до маси, яка обертається, можуть бути захоплені брати участь у її обертанні не тому, що відчувають силу або крутний момент, але швидше внаслідок кривизни простору-часу, пов'язаної з тілами, що обертаються. На досить близькій відстані всі об'єкти — навіть світло — повинні обертатися з разом чорною дірою; цей регіон називається ергосферою.
Чорні діри, які обертаються, мають поверхні, де метрика, здається, є сингулярністю; розмір і форма цих поверхонь залежить від маси і кутового моменту чорної діри. Зовнішня поверхня включає ергосферу і має форму, близьку до сплюснутої кулі. Внутрішня поверхня позначає «радіус неповернення», який ще називають «горизонт подій»; об'єкти, що пролітають через цей радіус вже ніколи більше не можуть спілкуватися зі світом за межами цього радіусу. Однак, жодна з цих поверхонь не є істинною сингулярністю, оскільки їх удавана сингулярність може бути усунена в іншій системі координат. Об'єкти між цими двома горизонтами повинні обертатися разом з обертовим тілом, як зазначалося вище; ця характеристика може бути використана для добування енергії з чорної діри, яка обертається, аж до її енергії інваріантної маси, Мс2.
Експеримент LIGO, який виявив гравітаційні хвилі, також дозволив перше пряме спостереження пари чорних дір Керра.
Математичний вираз
Метрика Керра описує геометрію простору-часу поблизу маси M, яка обертається з кутовим моментом J. Лінійний елемент у координатах Боєра-Ліндквіста становить
(
)
де координати є стандартною сферичною системою координат, яка є еквівалентною картезіанським координатам
(
)
(
)
(
)
а rs є радіусом Шварцшильда
(
)
та де параметри лінійних розмірів a, Σ та Δ були введені для стислості
(
)
(
)
(
)
Ключовою рисою метрики є множення . Існує зв'язок між часом та рухом у площині обертання, який зникає, коли кутовий момент чорної діри стає нулем.
У нерелятивістському ліміті, коли M (або, еквівалентно, rs) наближається до нуля, метрика Керра стає ортогональною метрикою координат стиснутого еліпсоїда обертання
(
)
Важливі поверхні
Метрика Керра має дві важливі фізичні поверхні, на яких вона видається сингулярною. Внутрішня поверхня відповідає горизонту подій, схожому на той, що спостерігається у метриці Шварцшильда; поверхня існує там, де чисто радіальний компонент grr метрики стає нескінченним. Розв'язання квадратичного рівняння 1/grr = 0 дає рішення:
- , яке у натуральних одиницях G=M=c=1 є:
Інша сингулярність виникає там, де чисто часовий компонент gtt метрики змінює знак з «плюса» на «мінус». Розв'язання квадратичного рівняння gtt=0 дає рішення:
- або у натуральних одиницях:
Через cos2θ у квадратному корені, ця зовнішня поверхня нагадує сплющену сферу, яка торкається внутрішньої поверхні на полюсах осі обертання, де доповнення широти θ дорівнює 0 або π; простір між двома поверхнями має назву ергосфера. В межах цього об'єму, чисто часовий компонент gtt є від'ємним, тобто поводиться як чисто просторовий метричний компонент. Відповідно, частинки в межах ергосфери вимушені обертатися спільно з внутрішньою масою для збереження свого часового характеру. Частинка, яка рухається, відчуває позитивний власний час вздовж своєї світової лінії, свого шляху крізь простір-час; однак це неможливо всередині ергосфери, де gtt є від'ємним, крім випадку, коли частинка обертається спільно з внутрішньою масою M з кутовою швидкістю не менше Ω. Тому жодна частинка не може обертатись протилежно до центральної маси всередині ергосфери.
Як і з горизонтом подій у метриці Шварцшильда, видимі сингулярності на rinner та router є ілюзією, створеною вибором координат (тобто вони є координатними сингулярностями); простір-час може плавно коригуватися ними відповідним вибором координат.
Ергосфери і процес Пенроуза
Чорна діра в цілому оточена поверхнею, яка називається горизонт подій і знаходиться на радіусі Шварцшильда для чорної діри, яка не обертається; там, де швидкість утікання дорівнює швидкості світла. Всередині цієї поверхні жоден спостерігач/частинка не може підтримувати себе на постійному радіусі, вони змушені падати всередину, і тому це іноді називають статичною межею.
Чорна діра, яка обертається, має ту саму статичну межу на своєму горизонті подій, але також вона має додаткову поверхню за межами горизонту подій під назвою «ергосфера» (яку дає у координатах Бойєра–Ліндквіста), яку можна інтуїтивно схарактеризувати як сферу, де «частота обертання навколишнього простору» прецесує зі швидкістю світла. Всередині цієї сфери прецесія більша, ніж швидкість світла, і будь-який спостерігач/частинка повинні обертатися разом з нею.
Область за межами горизонту подій, але всередині поверхню, де обертальна швидкість дорівнює швидкості світла, називається ергосферою (від грецького ергон = робота). Частинки, потрапляючи в межі ергосфери, змушені обертатися швидше і тим самим отримують енергію. Оскільки вони все ще поза горизонтом подій, вони можуть втекти від чорної діри. Чистим процесом є те, що чорна діра, яка обертається, випромінює активні частинки за рахунок своєї власної енергії. Можливість вилучення енергії спіну з чорної діри, яка обертається, вперше була запропонована математиком Роджером Пенроузом 1969 року і отримала назву процес Пенроуза. В астрофізиці, чорні діри, які обертаються, є потенційним джерелом великої кількості енергії і використовуються для пояснення високоенергетичних явищ, таких як гамма-спалахи.
Особливості геометрії Керра
Геометрія Керра має ряд вартих уваги особливостей: максимальне аналітичне розширення включає в себе послідовність асимптотично плоских зовнішніх регіонів, кожен з яких пов'язаний з ергосферою, стаціонарні граничні поверхні, горизонти подій, горизонти Коші, замкнуті схожі на часові криві і кільцеподібну сингулярність кривизни, тощо.
Внутрішня геометрія Керра є нестійкою відносно збурень у внутрішній області. Ця нестабільність означає, що хоча метрика Керра є вісь-симетрична, чорна діра, створена за допомогою гравітаційного колапсу, може такою не бути. Ця нестабільність також означає, що багато згаданих особливостей геометрії Керра, можуть не існувати всередині такої чорної діри.
Поверхня, якою світло може обертатися довкола чорної діри, називається фотонною сферою. Рішення Керра має нескінченно багато фотонних сфер, що лежать між внутрішньою і зовнішньою. У рішенні Шварцшильда для діри, яка не обертається, при а=0, внутрішня і зовнішня фотонні сфери дегенерують, тому там є тільки одна фотонна сфера для одного радіусу. Чим більше спін чорної діри, тим далі один від одного рухаються внутрішня і зовнішня фотонна сфера. Промінь світла, що рухається в напрямку, протилежному напрямку обертання чорної діри, буде на круговій орбіті на зовнішній фотонної сфері діри. Промінь світла, що рухається в тому ж напрямку, що і чорна діра, матиме кругову орбіту на внутрішній фотонній сфері. Якщо орбіта має кутовий момент, перпендикулярний осі обертання чорної діри, промінь світла обертатиметься на фотонних сферах між цими двома крайнощами. Оскільки простір-час обертається, такі орбіти демонструють прецесію, адже є зсув у змінній після завершення одного періоду у змінній .
Рівняння траєкторій
Рівняння руху для тестової частинки в просторі-часу Керра регулюються чотирма константами руху. Першим є інваріантна маса тестової частинки, обумовлена співвідношенням
де є чотири-імпульсом частинки. Крім того, є дві константи руху, які випливають з часу переведення і обертальної симетрії простору-часу Керра, енергія і компонент орбітального кутового моменту, паралельний спіну чорної діри .
- , та
Використовуючи рівняння Гамільтона — Якобі, Брендон Картер показав, що існує четверта константа руху, , яку тепер називають константою Картера. Це пов'язано з повним кутовим моментом частинки і визначається рівнянням
- .
Оскільки існує чотири (незалежні) константи руху для ступенів свободи, рівняння руху тестової частинки в просторі-часу Керра мають точне рішення.
Симетрії
Група ізометрій метрики Керра є підгрупою десятивимірної групи Пуанкаре, яка приймає двовимірний локус сингулярності до себе. Вона зберігає часові зсуви (один вимір) та обертання своєї навколо осі обертання (один вимір), а отже має два виміри. Як і група Пуанкаре, вона має чотири пов'язані компоненти: компонент ідентичності; компонент, який зворотно обертає час та довжину; компонент, який відображається через екваторіальну площину; і компонент, який робить ці дві речі разом.
У фізиці симетрії типово асоціюються зі збереженими константами руху, у відповідності з теоремою Нетер. Як показано вище, геодезичні рівняння мають чотири збережених кількості: одну з визначення геодезичності, дві, які випливають з часового зсуву та обертальної симетрії геометрії Керра. Четверта збережена кількість не випливає з симетрії у стандартному сенсі і зазвичай називається прихованою симетрією.
Чорні діри Керра як червоточини
Хоча рішення Керра здається сингулярним для коренів Δ = 0, це є координатні сингулярності, і, з відповідним вибором нових координат, рішення Керра можна плавно розширити через значення , які відповідають цим кореням. Більший з цих коренів визначає розташування горизонту подій, а менший — розташування горизонту Коші. Крива (спрямована на майбутнє, схожа на часову) може починатись назовні та проходити через горизонт подій. Після проходження горизонту подій, координата починає поводитись як часова координата, а отже повинна зменшуватись, поки крива не пройде через горизон Коші.
Регіон після горизонту Коші має декілька цікавих рис. Координата знову поводиться як просторова координата і може вільно змінюватись. Внутрішній регіон має дзеркальну симетрію, (спрямована на майбутнє, схожа на часову) крива може продовжуватись по симетричному шляху, який проходить через другий горизонт Коші, другий горизонт подій та у новий зовнішній регіон, який є ізометричним до початкового зовнішнього регіону рішення Керра. Після цього крива може втекти у нескінченність або зайти у майбутній горизонт подій нового зовнішнього регіону і повторити процес. Цей другий зовнішній регіон деколи вважають іншим всесвітом. З іншого боку, у рішенні Керра сингулярність є кільцем і крива може пройти через центр кільця. Регіон за межами дозволяє закриті схожі на часові криві. Оскільки траєкторії спостерігачів та частинок у загальній теорії відносності описуються схожими ні часові кривими, спостерігачі у цьому регіоні можуть повернутися у своє минуле. This interior solution is not likely to be physical and considered as a purely mathematical artefact.
Хоча очікується, що зовнішній регіон рішення Керра є стабільним, і що всі чорні діри, які обертаються, в кінцевому підсумку наближаються до метрики Керра, внутрішній регіон рішення представляється нестабільним, як олівець, збалансований на кінчику. Це пов'язано з ідеєю космічної цензури.
Див. також
Примітки
- (1963). . Physical Review Letters. 11 (5): 237—238. Bibcode:1963PhRvL..11..237K. doi:10.1103/PhysRevLett.11.237. Архів оригіналу за 19 липня 2008. Процитовано 23 жовтня 2017.
- Melia, Fulvio (2009). «Cracking the Einstein Code», Princeton University Press, Princeton,
- Abbot, B.P. (11 лютого 2016). Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters. 116 (061102). arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975.
- Landau, L. D.; Lifshitz, E. M. (1975). The Classical Theory of Fields (Course of Theoretical Physics, Vol. 2) (вид. revised 4th English). New York: Pergamon Press. с. 321–330. ISBN .
- Luciano Rezzolla, Olindo Zanotti: Relativistic Hydrodynamics, p. 55-57, Eq 1.249 bis 1.265
- Christopher M. Hirata: Lecture XXVI: Kerr black holes: I. Metric structure and regularity of particle orbits [ 20 травня 2017 у Wayback Machine.], p. 1, Eq. 1
- Visser, Matt The Kerr spacetime: A brief introduction arxiv.org, p. 15, Eq 60-61, p.24
- Boyer, Robert H.; Lindquist, Richard W. (1967). Maximal Analytic Extension of the Kerr Metric. J. Math. Phys. 8 (2): 265—281. Bibcode:1967JMP.....8..265B. doi:10.1063/1.1705193.
- Visser, Matt The Kerr spacetime: A brief introduction [ 18 жовтня 2019 у Wayback Machine.] arxiv.org, page 35
- (1968). . Physical Review. 174 (5): 1559—1571. Bibcode:1968PhRv..174.1559C. doi:10.1103/PhysRev.174.1559. Архів оригіналу за 10 квітня 2019. Процитовано 23 жовтня 2017.
- Misner, Thorne & Wheeler: Gravitation [ 22 серпня 2017 у Wayback Machine.], page 899 & 900
- James Bardeen, 1972: Rotating Black Holes: Locally Bonrotating Frame, Energy Extraction & Scalar Synchrotron Radiation [ 1 лютого 2022 у Wayback Machine.], page 350
- Andrew Hamilton: Black hole Penrose diagrams [ 27 жовтня 2017 у Wayback Machine.] (JILA Colorado)
- Paul Davies: About Time: Einstein's Unfinished Revolution
- Visser, Matt The Kerr spacetime: A brief introduction [ 18 жовтня 2019 у Wayback Machine.] arxiv.org, p. 13, below eq. 52
- Roy Kerr (Crafoord Prize Symposium in Astronomy): Spinning Black Holes [ 2 червня 2022 у Wayback Machine.]. (Youtube, Timestamp 26m)
- Penrose 1968
Подальше читання
- Wiltshire, David L.; Visser, Matt; & Scott, Susan M. (eds) (2009). The Kerr Spacetime: Rotating Black Holes in General Relativity. Cambridge: Cambridge University Press. ISBN .
- Stephani, Hans; Kramer, Dietrich; MacCallum, Malcolm; Hoenselaers, Cornelius; Herlt, Eduard (2003). Exact Solutions of Einstein's Field Equations. Cambridge: Cambridge University Press. ISBN .
- Meinel, Reinhard; Ansorg, Marcus; Kleinwachter, Andreas; Neugebauer, Gernot; Petroff, David (2008). Relativistic Figures of Equilibrium. Cambridge: Cambridge University Press. ISBN .
- O'Neill, Barrett (1995). The Geometry of Kerr Black Holes. Wellesley, Massachusetts: A. K. Peters. ISBN .
- D'Inverno, Ray (1992). Introducing Einstein's Relativity. Oxford: Clarendon Press. ISBN . See chapter 19 for a readable introduction at the advanced undergraduate level.
- Chandrasekhar, S. (1992). The Mathematical Theory of Black Holes. Oxford: Clarendon Press. ISBN . See chapters 6--10 for a very thorough study at the advanced graduate level.
- Griffiths, J. B. (1991). Colliding Plane Waves in General Relativity. Oxford: Oxford University Press. ISBN . See chapter 13 for the Chandrasekhar/Ferrari CPW model.
- Adler, Ronald; Bazin, Maurice; Schiffer, Menahem (1975). Introduction to General Relativity (вид. Second). New York: McGraw-Hill. ISBN . See chapter 7.
- Penrose, R. (1968). ed C. de Witt and J. Wheeler (ред.). Battelle Rencontres. W. A. Benjamin, New York. с. 222.
- Perez, Alejandro; Moreschi, Osvaldo M. (2000). Characterizing exact solutions from asymptotic physical concepts. arXiv:gr-qc/0012100v1. Characterization of three standard families of vacuum solutions as noted above.
- Sotiriou, Thomas P.; Apostolatos, Theocharis A. (2004). Corrections and Comments on the Multipole Moments of Axisymmetric Electrovacuum Spacetimes. Class. Quant. Grav. 21 (24): 5727—5733. arXiv:gr-qc/0407064. Bibcode:2004CQGra..21.5727S. doi:10.1088/0264-9381/21/24/003. arXiv eprint Gives the relativistic multipole moments for the Ernst vacuums (plus the electromagnetic and gravitational relativistic multipole moments for the charged generalization).
- (1971). Axisymmetric Black Hole Has Only Two Degrees of Freedom. Physical Review Letters. 26 (6): 331—333. Bibcode:1971PhRvL..26..331C. doi:10.1103/PhysRevLett.26.331.
- Wald, R. M. (1984). General Relativity. Chicago: The University of Chicago Press. с. 312–324. ISBN .
- Kerr, R. P.; Schild, A. (2009). Republication of: A new class of vacuum solutions of the Einstein field equations. General Relativity and Gravitation. 41 (10): 2485—2499. Bibcode:2009GReGr..41.2485K. doi:10.1007/s10714-009-0857-z.
- Krasiński, Andrzej; Verdaguer, Enric; Kerr, Roy Patrick (2009). Editorial note to: R. P. Kerr and A. Schild, A new class of vacuum solutions of the Einstein field equations. General Relativity and Gravitation. 41 (10): 2469—2484. Bibcode:2009GReGr..41.2469K. doi:10.1007/s10714-009-0856-0. «… This note is meant to be a guide for those readers who wish to verify all the details [of the derivation of the Kerr solution]…»
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Metrika Kerra abo geometriya Kerra opisuye geometriyu porozhnogo prostoru chasu navkolo nezaryadzhenoyi aksialno simetrichnoyi chornoyi diri sho obertayetsya z sferichnim gorizontom podij Metrika Kerra ce tochnij rozv yazok dlya polovih rivnyan Ejnshtejna v zagalnij teoriyi vidnosnosti ci rivnyannya silno nelinijni sho robit poshuk tochnih rishen duzhe vazhkim OglyadMetrika Kerra ye uzagalnennyam metriki Shvarcshilda yaku viyaviv Karl Shvarcshild 1915 roku i yaka opisuye geometriyu prostoru chasu navkolo nezaryadzhenogo sferichno simetrichnogo tila yake ne obertayetsya Vidpovidnim rishennyam dlya zaryadzhenogo sferichnogo tila yake ne obertayetsya ye metrika Rejssnera Nordstrema yaka bula viyavlena nezabarom pislya cogo 1916 1918 rr Odnak tochne rishennya dlya nezaryadzhenoyi chornoyi diri sho obertayetsya metrika Kerra zalishalos nevirishenim do 1963 roku koli vono bulo viyavlene Royem Kerrom Prirodne prodovzhennya do zaryadzhenoyi chornoyi diri sho obertayetsya metrika Kerra Nyumena bula viyavlena nezabarom pislya cogo 1965 r Ci chotiri pov yazani rishennya mozhut buti uzagalneni v tablici Ne obertayetsya J 0 Obertayetsya J 0 Nezaryadzhena Q 0 Metrika Shvarcshilda Metrika Kerra Zaryadzhena Q 0 Metrika Rejssnera Nordstrema Metrika Kerra Nyumena de Q elektrichnij zaryad tila a J kutovij moment jogo spinu Za danimi metriki Kerra taka chorna dira sho obertayetsya povinna demonstruvati precesiyu ploshini efekt Lenze Tirringa nezvichajne peredbachennya zagalnoyi teoriyi vidnosnosti Vimiryuvannya ciyeyi precesiyi ploshini bulo osnovnoyu metoyu eksperimentu Grubo kazhuchi cej efekt peredbachaye sho ob yekti yaki nablizhayutsya do masi yaka obertayetsya mozhut buti zahopleni brati uchast u yiyi obertanni ne tomu sho vidchuvayut silu abo krutnij moment ale shvidshe vnaslidok krivizni prostoru chasu pov yazanoyi z tilami sho obertayutsya Na dosit blizkij vidstani vsi ob yekti navit svitlo povinni obertatisya z razom chornoyu diroyu cej region nazivayetsya ergosferoyu Chorni diri yaki obertayutsya mayut poverhni de metrika zdayetsya ye singulyarnistyu rozmir i forma cih poverhon zalezhit vid masi i kutovogo momentu chornoyi diri Zovnishnya poverhnya vklyuchaye ergosferu i maye formu blizku do splyusnutoyi kuli Vnutrishnya poverhnya poznachaye radius nepovernennya yakij she nazivayut gorizont podij ob yekti sho prolitayut cherez cej radius vzhe nikoli bilshe ne mozhut spilkuvatisya zi svitom za mezhami cogo radiusu Odnak zhodna z cih poverhon ne ye istinnoyu singulyarnistyu oskilki yih udavana singulyarnist mozhe buti usunena v inshij sistemi koordinat Ob yekti mizh cimi dvoma gorizontami povinni obertatisya razom z obertovim tilom yak zaznachalosya vishe cya harakteristika mozhe buti vikoristana dlya dobuvannya energiyi z chornoyi diri yaka obertayetsya azh do yiyi energiyi invariantnoyi masi Ms2 Eksperiment LIGO yakij viyaviv gravitacijni hvili takozh dozvoliv pershe pryame sposterezhennya pari chornih dir Kerra Matematichnij virazMetrika Kerra opisuye geometriyu prostoru chasu poblizu masi M yaka obertayetsya z kutovim momentom J Linijnij element u koordinatah Boyera Lindkvista stanovit c 2 d t 2 1 r s r S c 2 d t 2 S D d r 2 S d 8 2 r 2 a 2 r s r a 2 S sin 2 8 sin 2 8 d ϕ 2 2 r s r a sin 2 8 S c d t d ϕ displaystyle begin aligned c 2 d tau 2 amp left 1 frac r s r Sigma right c 2 dt 2 frac Sigma Delta dr 2 Sigma d theta 2 amp left r 2 a 2 frac r s ra 2 Sigma sin 2 theta right sin 2 theta d phi 2 frac 2r s ra sin 2 theta Sigma c dt d phi end aligned 1 dd de koordinati r 8 ϕ displaystyle r theta phi ye standartnoyu sferichnoyu sistemoyu koordinat yaka ye ekvivalentnoyu kartezianskim koordinatam x r 2 a 2 sin 8 cos ϕ displaystyle x sqrt r 2 a 2 sin theta cos phi 7 dd y r 2 a 2 sin 8 sin ϕ displaystyle y sqrt r 2 a 2 sin theta sin phi 8 dd z r cos 8 displaystyle z r cos theta 9 dd a rs ye radiusom Shvarcshilda r s 2 G M c 2 displaystyle r s frac 2GM c 2 2 dd ta de parametri linijnih rozmiriv a S ta D buli vvedeni dlya stislosti a J M c displaystyle a frac J Mc 3 dd S r 2 a 2 cos 2 8 displaystyle Sigma r 2 a 2 cos 2 theta 4 dd D r 2 r s r a 2 displaystyle Delta r 2 r s r a 2 5 dd Klyuchovoyu risoyu metriki ye mnozhennya d t d ϕ displaystyle begin aligned dt d phi end aligned Isnuye zv yazok mizh chasom ta ruhom u ploshini obertannya yakij znikaye koli kutovij moment chornoyi diri staye nulem U nerelyativistskomu limiti koli M abo ekvivalentno rs nablizhayetsya do nulya metrika Kerra staye ortogonalnoyu metrikoyu koordinat stisnutogo elipsoyida obertannya c 2 d t 2 c 2 d t 2 S r 2 a 2 d r 2 S d 8 2 r 2 a 2 sin 2 8 d ϕ 2 displaystyle c 2 d tau 2 c 2 dt 2 frac Sigma r 2 a 2 dr 2 Sigma d theta 2 left r 2 a 2 right sin 2 theta d phi 2 6 dd Vazhlivi poverhniRoztashuvannya gorizontiv ergosfer ta kilcevoyi singulyarnosti prostoru chasu Kerra u kartezianskih koordinatah Kerra Shilda Metrika Kerra maye dvi vazhlivi fizichni poverhni na yakih vona vidayetsya singulyarnoyu Vnutrishnya poverhnya vidpovidaye gorizontu podij shozhomu na toj sho sposterigayetsya u metrici Shvarcshilda poverhnya isnuye tam de chisto radialnij komponent grr metriki staye neskinchennim Rozv yazannya kvadratichnogo rivnyannya 1 grr 0 daye rishennya r i n n e r r s r s 2 4 a 2 2 displaystyle r mathit inner frac r s pm sqrt r s 2 4a 2 2 yake u naturalnih odinicyah G M c 1 ye r i n n e r 1 1 a 2 displaystyle r mathit inner 1 pm sqrt 1 a 2 Insha singulyarnist vinikaye tam de chisto chasovij komponent gtt metriki zminyuye znak z plyusa na minus Rozv yazannya kvadratichnogo rivnyannya gtt 0 daye rishennya r o u t e r r s r s 2 4 a 2 cos 2 8 2 displaystyle r mathit outer frac r s pm sqrt r s 2 4a 2 cos 2 theta 2 abo u naturalnih odinicyah r o u t e r 1 1 a 2 cos 2 8 displaystyle r mathit outer 1 pm sqrt 1 a 2 cos 2 theta Cherez cos28 u kvadratnomu koreni cya zovnishnya poverhnya nagaduye splyushenu sferu yaka torkayetsya vnutrishnoyi poverhni na polyusah osi obertannya de dopovnennya shiroti 8 dorivnyuye 0 abo p prostir mizh dvoma poverhnyami maye nazvu ergosfera V mezhah cogo ob yemu chisto chasovij komponent gtt ye vid yemnim tobto povoditsya yak chisto prostorovij metrichnij komponent Vidpovidno chastinki v mezhah ergosferi vimusheni obertatisya spilno z vnutrishnoyu masoyu dlya zberezhennya svogo chasovogo harakteru Chastinka yaka ruhayetsya vidchuvaye pozitivnij vlasnij chas vzdovzh svoyeyi svitovoyi liniyi svogo shlyahu kriz prostir chas odnak ce nemozhlivo vseredini ergosferi de gtt ye vid yemnim krim vipadku koli chastinka obertayetsya spilno z vnutrishnoyu masoyu M z kutovoyu shvidkistyu ne menshe W Tomu zhodna chastinka ne mozhe obertatis protilezhno do centralnoyi masi vseredini ergosferi Yak i z gorizontom podij u metrici Shvarcshilda vidimi singulyarnosti na rinner ta router ye ilyuziyeyu stvorenoyu viborom koordinat tobto voni ye koordinatnimi singulyarnostyami prostir chas mozhe plavno koriguvatisya nimi vidpovidnim viborom koordinat Ergosferi i proces PenrouzaDokladnishe proces Penrouza Chorna dira v cilomu otochena poverhneyu yaka nazivayetsya gorizont podij i znahoditsya na radiusi Shvarcshilda dlya chornoyi diri yaka ne obertayetsya tam de shvidkist utikannya dorivnyuye shvidkosti svitla Vseredini ciyeyi poverhni zhoden sposterigach chastinka ne mozhe pidtrimuvati sebe na postijnomu radiusi voni zmusheni padati vseredinu i tomu ce inodi nazivayut statichnoyu mezheyu Chorna dira yaka obertayetsya maye tu samu statichnu mezhu na svoyemu gorizonti podij ale takozh vona maye dodatkovu poverhnyu za mezhami gorizontu podij pid nazvoyu ergosfera yaku daye r M 2 M 2 J 2 cos 2 8 displaystyle r M 2 M 2 J 2 cos 2 theta u koordinatah Bojyera Lindkvista yaku mozhna intuyitivno sharakterizuvati yak sferu de chastota obertannya navkolishnogo prostoru precesuye zi shvidkistyu svitla Vseredini ciyeyi sferi precesiya bilsha nizh shvidkist svitla i bud yakij sposterigach chastinka povinni obertatisya razom z neyu Oblast za mezhami gorizontu podij ale vseredini poverhnyu de obertalna shvidkist dorivnyuye shvidkosti svitla nazivayetsya ergosferoyu vid greckogo ergon robota Chastinki potraplyayuchi v mezhi ergosferi zmusheni obertatisya shvidshe i tim samim otrimuyut energiyu Oskilki voni vse she poza gorizontom podij voni mozhut vtekti vid chornoyi diri Chistim procesom ye te sho chorna dira yaka obertayetsya viprominyuye aktivni chastinki za rahunok svoyeyi vlasnoyi energiyi Mozhlivist viluchennya energiyi spinu z chornoyi diri yaka obertayetsya vpershe bula zaproponovana matematikom Rodzherom Penrouzom 1969 roku i otrimala nazvu proces Penrouza V astrofizici chorni diri yaki obertayutsya ye potencijnim dzherelom velikoyi kilkosti energiyi i vikoristovuyutsya dlya poyasnennya visokoenergetichnih yavish takih yak gamma spalahi Osoblivosti geometriyi KerraGeometriya Kerra maye ryad vartih uvagi osoblivostej maksimalne analitichne rozshirennya vklyuchaye v sebe poslidovnist asimptotichno ploskih zovnishnih regioniv kozhen z yakih pov yazanij z ergosferoyu stacionarni granichni poverhni gorizonti podij gorizonti Koshi zamknuti shozhi na chasovi krivi i kilcepodibnu singulyarnist krivizni tosho Vnutrishnya geometriya Kerra ye nestijkoyu vidnosno zburen u vnutrishnij oblasti Cya nestabilnist oznachaye sho hocha metrika Kerra ye vis simetrichna chorna dira stvorena za dopomogoyu gravitacijnogo kolapsu mozhe takoyu ne buti Cya nestabilnist takozh oznachaye sho bagato zgadanih osoblivostej geometriyi Kerra mozhut ne isnuvati vseredini takoyi chornoyi diri Poverhnya yakoyu svitlo mozhe obertatisya dovkola chornoyi diri nazivayetsya fotonnoyu sferoyu Rishennya Kerra maye neskinchenno bagato fotonnih sfer sho lezhat mizh vnutrishnoyu i zovnishnoyu U rishenni Shvarcshilda dlya diri yaka ne obertayetsya pri a 0 vnutrishnya i zovnishnya fotonni sferi degeneruyut tomu tam ye tilki odna fotonna sfera dlya odnogo radiusu Chim bilshe spin chornoyi diri tim dali odin vid odnogo ruhayutsya vnutrishnya i zovnishnya fotonna sfera Promin svitla sho ruhayetsya v napryamku protilezhnomu napryamku obertannya chornoyi diri bude na krugovij orbiti na zovnishnij fotonnoyi sferi diri Promin svitla sho ruhayetsya v tomu zh napryamku sho i chorna dira matime krugovu orbitu na vnutrishnij fotonnij sferi Yaksho orbita maye kutovij moment perpendikulyarnij osi obertannya chornoyi diri promin svitla obertatimetsya na fotonnih sferah mizh cimi dvoma krajnoshami Oskilki prostir chas obertayetsya taki orbiti demonstruyut precesiyu adzhe ye zsuv u zminnij ϕ displaystyle phi pislya zavershennya odnogo periodu u zminnij 8 displaystyle theta Rivnyannya trayektorij Animaciya orbiti testovoyi chastinki dovkola chornoyi diri sho obertayetsya Zliva vid zgori sprava vid zboku Insha trayektoriya testovoyi masi dovkola chornoyi diri sho obertayetsya chornoyi diri Kerra Na vidminu vid orbiti dovkola chornoyi diri Shvarcshilda tut orbita ne obmezhena odniyeyu ploshinoyu a bude ergodichno zapovnyuvati shozhij na tor region dovkola ekvatora Rivnyannya ruhu dlya testovoyi chastinki v prostori chasu Kerra regulyuyutsya chotirma konstantami ruhu Pershim ye invariantna masa displaystyle testovoyi chastinki obumovlena spivvidnoshennyam m 2 p a g a b p b displaystyle mu 2 p alpha g alpha beta p beta de displaystyle ye chotiri impulsom chastinki Krim togo ye dvi konstanti ruhu yaki viplivayut z chasu perevedennya i obertalnoyi simetriyi prostoru chasu Kerra energiya displaystyle i komponent orbitalnogo kutovogo momentu paralelnij spinu chornoyi diri displaystyle E p t displaystyle E p t ta L z p ϕ displaystyle L z p phi Vikoristovuyuchi rivnyannya Gamiltona Yakobi Brendon Karter pokazav sho isnuye chetverta konstanta ruhu Q displaystyle Q yaku teper nazivayut konstantoyu Kartera Ce pov yazano z povnim kutovim momentom chastinki i viznachayetsya rivnyannyam Q p 8 2 cos 2 8 a 2 m 2 E 2 L z sin 8 2 displaystyle Q p theta 2 cos 2 theta Bigg a 2 mu 2 E 2 left frac L z sin theta right 2 Bigg Oskilki isnuye chotiri nezalezhni konstanti ruhu dlya stupeniv svobodi rivnyannya ruhu testovoyi chastinki v prostori chasu Kerra mayut tochne rishennya SimetriyiGrupa izometrij metriki Kerra ye pidgrupoyu desyativimirnoyi grupi Puankare yaka prijmaye dvovimirnij lokus singulyarnosti do sebe Vona zberigaye chasovi zsuvi odin vimir ta obertannya svoyeyi navkolo osi obertannya odin vimir a otzhe maye dva vimiri Yak i grupa Puankare vona maye chotiri pov yazani komponenti komponent identichnosti komponent yakij zvorotno obertaye chas ta dovzhinu komponent yakij vidobrazhayetsya cherez ekvatorialnu ploshinu i komponent yakij robit ci dvi rechi razom U fizici simetriyi tipovo asociyuyutsya zi zberezhenimi konstantami ruhu u vidpovidnosti z teoremoyu Neter Yak pokazano vishe geodezichni rivnyannya mayut chotiri zberezhenih kilkosti odnu z viznachennya geodezichnosti dvi yaki viplivayut z chasovogo zsuvu ta obertalnoyi simetriyi geometriyi Kerra Chetverta zberezhena kilkist ne viplivaye z simetriyi u standartnomu sensi i zazvichaj nazivayetsya prihovanoyu simetriyeyu Chorni diri Kerra yak chervotochiniHocha rishennya Kerra zdayetsya singulyarnim dlya koreniv D 0 ce ye koordinatni singulyarnosti i z vidpovidnim viborom novih koordinat rishennya Kerra mozhna plavno rozshiriti cherez znachennya r displaystyle r yaki vidpovidayut cim korenyam Bilshij z cih koreniv viznachaye roztashuvannya gorizontu podij a menshij roztashuvannya gorizontu Koshi Kriva spryamovana na majbutnye shozha na chasovu mozhe pochinatis nazovni ta prohoditi cherez gorizont podij Pislya prohodzhennya gorizontu podij koordinata r displaystyle r pochinaye povoditis yak chasova koordinata a otzhe povinna zmenshuvatis poki kriva ne projde cherez gorizon Koshi Region pislya gorizontu Koshi maye dekilka cikavih ris Koordinata r displaystyle r znovu povoditsya yak prostorova koordinata i mozhe vilno zminyuvatis Vnutrishnij region maye dzerkalnu simetriyu spryamovana na majbutnye shozha na chasovu kriva mozhe prodovzhuvatis po simetrichnomu shlyahu yakij prohodit cherez drugij gorizont Koshi drugij gorizont podij ta u novij zovnishnij region yakij ye izometrichnim do pochatkovogo zovnishnogo regionu rishennya Kerra Pislya cogo kriva mozhe vtekti u neskinchennist abo zajti u majbutnij gorizont podij novogo zovnishnogo regionu i povtoriti proces Cej drugij zovnishnij region dekoli vvazhayut inshim vsesvitom Z inshogo boku u rishenni Kerra singulyarnist ye kilcem i kriva mozhe projti cherez centr kilcya Region za mezhami dozvolyaye zakriti shozhi na chasovi krivi Oskilki trayektoriyi sposterigachiv ta chastinok u zagalnij teoriyi vidnosnosti opisuyutsya shozhimi ni chasovi krivimi sposterigachi u comu regioni mozhut povernutisya u svoye minule This interior solution is not likely to be physical and considered as a purely mathematical artefact Hocha ochikuyetsya sho zovnishnij region rishennya Kerra ye stabilnim i sho vsi chorni diri yaki obertayutsya v kincevomu pidsumku nablizhayutsya do metriki Kerra vnutrishnij region rishennya predstavlyayetsya nestabilnim yak olivec zbalansovanij na kinchiku Ce pov yazano z ideyeyu kosmichnoyi cenzuri Div takozhMetrika Shvarcshilda Metrika Puankare Rozv yazok Kerra Nyumena Chorna dira sho obertayetsyaPrimitki 1963 Physical Review Letters 11 5 237 238 Bibcode 1963PhRvL 11 237K doi 10 1103 PhysRevLett 11 237 Arhiv originalu za 19 lipnya 2008 Procitovano 23 zhovtnya 2017 Melia Fulvio 2009 Cracking the Einstein Code Princeton University Press Princeton ISBN 978 0226519517 Abbot B P 11 lyutogo 2016 Observation of Gravitational Waves from a Binary Black Hole Merger Physical Review Letters 116 061102 arXiv 1602 03837 Bibcode 2016PhRvL 116f1102A doi 10 1103 PhysRevLett 116 061102 PMID 26918975 Landau L D Lifshitz E M 1975 The Classical Theory of Fields Course of Theoretical Physics Vol 2 vid revised 4th English New York Pergamon Press s 321 330 ISBN 978 0 08 018176 9 Luciano Rezzolla Olindo Zanotti Relativistic Hydrodynamics p 55 57 Eq 1 249 bis 1 265 Christopher M Hirata Lecture XXVI Kerr black holes I Metric structure and regularity of particle orbits 20 travnya 2017 u Wayback Machine p 1 Eq 1 Visser Matt The Kerr spacetime A brief introduction arxiv org p 15 Eq 60 61 p 24 Boyer Robert H Lindquist Richard W 1967 Maximal Analytic Extension of the Kerr Metric J Math Phys 8 2 265 281 Bibcode 1967JMP 8 265B doi 10 1063 1 1705193 Visser Matt The Kerr spacetime A brief introduction 18 zhovtnya 2019 u Wayback Machine arxiv org page 35 1968 Physical Review 174 5 1559 1571 Bibcode 1968PhRv 174 1559C doi 10 1103 PhysRev 174 1559 Arhiv originalu za 10 kvitnya 2019 Procitovano 23 zhovtnya 2017 Misner Thorne amp Wheeler Gravitation 22 serpnya 2017 u Wayback Machine page 899 amp 900 James Bardeen 1972 Rotating Black Holes Locally Bonrotating Frame Energy Extraction amp Scalar Synchrotron Radiation 1 lyutogo 2022 u Wayback Machine page 350 Andrew Hamilton Black hole Penrose diagrams 27 zhovtnya 2017 u Wayback Machine JILA Colorado Paul Davies About Time Einstein s Unfinished Revolution Visser Matt The Kerr spacetime A brief introduction 18 zhovtnya 2019 u Wayback Machine arxiv org p 13 below eq 52 Roy Kerr Crafoord Prize Symposium in Astronomy Spinning Black Holes 2 chervnya 2022 u Wayback Machine Youtube Timestamp 26m Penrose 1968Podalshe chitannyaWiltshire David L Visser Matt amp Scott Susan M eds 2009 The Kerr Spacetime Rotating Black Holes in General Relativity Cambridge Cambridge University Press ISBN 978 0 521 88512 6 Stephani Hans Kramer Dietrich MacCallum Malcolm Hoenselaers Cornelius Herlt Eduard 2003 Exact Solutions of Einstein s Field Equations Cambridge Cambridge University Press ISBN 0 521 46136 7 Meinel Reinhard Ansorg Marcus Kleinwachter Andreas Neugebauer Gernot Petroff David 2008 Relativistic Figures of Equilibrium Cambridge Cambridge University Press ISBN 978 0 521 86383 4 O Neill Barrett 1995 The Geometry of Kerr Black Holes Wellesley Massachusetts A K Peters ISBN 1 56881 019 9 D Inverno Ray 1992 Introducing Einstein s Relativity Oxford Clarendon Press ISBN 0 19 859686 3 See chapter 19 for a readable introduction at the advanced undergraduate level Chandrasekhar S 1992 The Mathematical Theory of Black Holes Oxford Clarendon Press ISBN 0 19 850370 9 See chapters 6 10 for a very thorough study at the advanced graduate level Griffiths J B 1991 Colliding Plane Waves in General Relativity Oxford Oxford University Press ISBN 0 19 853209 1 See chapter 13 for the Chandrasekhar Ferrari CPW model Adler Ronald Bazin Maurice Schiffer Menahem 1975 Introduction to General Relativity vid Second New York McGraw Hill ISBN 0 07 000423 4 See chapter 7 Penrose R 1968 ed C de Witt and J Wheeler red Battelle Rencontres W A Benjamin New York s 222 Perez Alejandro Moreschi Osvaldo M 2000 Characterizing exact solutions from asymptotic physical concepts arXiv gr qc 0012100v1 Characterization of three standard families of vacuum solutions as noted above Sotiriou Thomas P Apostolatos Theocharis A 2004 Corrections and Comments on the Multipole Moments of Axisymmetric Electrovacuum Spacetimes Class Quant Grav 21 24 5727 5733 arXiv gr qc 0407064 Bibcode 2004CQGra 21 5727S doi 10 1088 0264 9381 21 24 003 arXiv eprint Gives the relativistic multipole moments for the Ernst vacuums plus the electromagnetic and gravitational relativistic multipole moments for the charged generalization 1971 Axisymmetric Black Hole Has Only Two Degrees of Freedom Physical Review Letters 26 6 331 333 Bibcode 1971PhRvL 26 331C doi 10 1103 PhysRevLett 26 331 Wald R M 1984 General Relativity Chicago The University of Chicago Press s 312 324 ISBN 0 226 87032 4 Kerr R P Schild A 2009 Republication of A new class of vacuum solutions of the Einstein field equations General Relativity and Gravitation 41 10 2485 2499 Bibcode 2009GReGr 41 2485K doi 10 1007 s10714 009 0857 z Krasinski Andrzej Verdaguer Enric Kerr Roy Patrick 2009 Editorial note to R P Kerr and A Schild A new class of vacuum solutions of the Einstein field equations General Relativity and Gravitation 41 10 2469 2484 Bibcode 2009GReGr 41 2469K doi 10 1007 s10714 009 0856 0 This note is meant to be a guide for those readers who wish to verify all the details of the derivation of the Kerr solution