Ця стаття містить правописні, лексичні, граматичні, стилістичні або інші мовні помилки, які треба виправити. (червень 2016) |
Кінцем графу (в математиці нескінченних графів) називають напрямок, в якому граф тягнеться до нескінченності. Кінець може бути математично формалізовано як клас еквівалентності нескінченних шляхів, які описують стратегії переслідування-ухилення у іграх на графі, або як топологічні кінці топологічних просторів, пов'язаних з графом, в разі локально скінченних графів.
Кінці графів Келі використовують, щоб визначити кінці звичайно породжених груп. Скінченно породжені нескінченні групи мають один, два або нескінченно багато кінців, а [en] про кінці груп забезпечує розкладання для груп з більш ніж одним кінцем.
Визначення та характеристика
[en] сформулював визначення кінців графів у 1964 році в термінах класів еквівалентності нескінченних шляхів. Промінь в нескінченному графі є напівнескінченним простим шляхом, тобто це нескінченна послідовність вершин … , де кожна вершина з'являється більше ніж один раз у послідовності і кожні дві послідовні вершини в послідовності є двома кінцевими точками ребра в графі. Згідно з визначенням Халіна, два променя та є еквівалентними, якщо існує промінь (не обов'язково відмінний від будь-якого з перших двох), який містить нескінченно багато вершин в кожному з та . Це відношення еквівалентності: кожен промінь еквівалентний сам собі. Визначення симетричне щодо впорядкування двох променів. Можна також показати, що це відношення транзитивне. Таким чином, воно розділяє безліч всіх променів на класи еквівалентності. Халін визначив кінець як один з цих класів еквівалентності.
Існує альтернативне визначення того ж відношення еквівалентності: два променя та є еквівалентними, якщо не існує скінченної множини вершин X, что відокремлює нескінченно багато вершин з нескінченним числом вершин . Це еквівалентно визначенню Халіна: якщо промінь з визначення Халіна існує, то будь-який роздільник повинен містити нескінченне число точок і, отже, не може бути скінченним, і навпаки, якщо не існує, то шлях, який чергується стільки раз, скільки можливо між та повинен формувати необхідний скінченний роздільник. Кінці також мають більш конкретну характеристику з точки зору укриттів — функцій, які описують стратегії ухилення для ігор переслідування-ухилення на графі G. Розглядається гра, у якій грабіжник намагається вивернутися від множини поліцейських при переході від вершини до вершини уздовж ребер . У поліції є вертольоти, тому бандит повинен рухатися по ребрах; Однак грабіжник вміє помічати наближення поліції та може вибрати напрям руху до приземення вертольотів. Однією з головних переваг є функція β, яка відображає кожну множину розташування поліцейських до однієї із зв'язкових компонент підграфу, утвореного видаленням ; розбійник може ухилитися від поліції, рухаючись в кожному раунді гри в вершину цієї компоненти. Укриття повинні задовольняти властивості узгодження, тобто грабіжник не може переміщатися через вершини, на яких поліція вже приземлилась. якщо є підмножиною , і обидві множини та є дійсними множинами місць для даної множини поліції, тоді β() повинна бути множиною, яка містить β(). Укриття має порядок k, якщо сукупність місць поліції, для яких вона забезпечує стратегію евакуації включає в себе всі підмножини менші, ніж k вершин в графі. Зокрема, вона має порядок ℵ0, якщо він відображає кожну скінченну підмножину вершин до компоненти \ . Кожному променю в відповідає укриття порядку ℵ0, а саме, функція β, що відображає кожну скінченну множину до єдиної компоненти \ , яка містить нескінченно багато вершин променя. І навпаки, кожне укриття порядку ℵ0 може бути визначене таким чином через промінь. Два променя еквівалентні тоді і тільки тоді, коли вони визначають одне і тежукриття, так що кінці графу знаходяться у взаємно однозначній відповідності з його сховищами порядку ℵ0.
Приклади
Якщо нескінченний граф сам є променем, то він має нескінченне число променів-підграфів, по-одному з кожної вершини . Однак, всі ці промені еквівалентні один одному, так що має тільки один кінець.
Якщо ліс (тобто граф без кінцевих циклів), то перетин будь-яких двох променів — це або шлях, або промінь; два променя еквівалентні, якщо їхнім перетином є промінь. Якщо базова вершина вибирається в кожній компоненті зв'язності , то кожен кінець містить унікальний промінь, починаючи з однієї з базових вершин, так що кінці можуть бути розміщені у взаємно-однозначній відповідності з цими канонічними променями. Кожен лічильний граф має кістяковий ліс з тією ж множиною кінців, як . Однак існують незліченні нескінченні графи тільки з одним кінцем, в яких кожне кістякове дерево має нескінченно багато кінців.
Якщо є графом нескінченної сітки, то він має багато променів та довільно великі набори вершинно-неперетинних променів. Тим не менш, він має тільки один кінець. Це можна легко побачити, використовуючи характеристику кінців з точки зору укриттів: видалення будь-якої скінченної множини вершин залишає рівно одну нескінченну зв'язкову компоненту, тому є тільки одне укриття(те, яке відображає кожну скінченну множину з єдиною нескінченною зв'язною компонентою).
Зв'язок з топологічними кінцями
У теоретико-множинній топології існує поняття кінця, яке трохи схоже на поняття кінця в теорії графів, введене набагато раніше Фрейденталем (1931). Якщо топологічний простір може бути покрито вкладеною послідовністю компактів , то кінець простору — це послідовність компонентів доповнень компактних множин. Це визначення не залежить від вибору компактів: кінці, які визначаються одним таким вибором можуть бути розміщені у взаємно-однозначній відповідності з кінцями, визначеними будь-яким іншим вибором.
Нескінченний граф може бути побудований у топологічному просторі двома різними, але пов'язаними між собою способами:
- Заміна кожної вершини графа на точку і кожного ребра графа на відкритий одиничний інтервал породжує Гаусдорфів простір з графом, в якому множину вважають відкритою тоді, коли кожен перетин з ребром графа є відкритою підмножиною одиничного інтервалу.
- Заміна кожної вершини і кожного ребра графа точкою робить простір нехаусдорфовим, тобто таким, у якому відкриті множини — це множини з властивістю, що якщо вершина з належить , то належить й кожне ребро, що має як один з його кінців.
У будь-якому випадку, кожний скінченний підграф відповідає компактним підпросторам топологічного простору, і кожен компактний підпростір відповідає скінченному підграфу разом з, в разі Хаусдорфого простора, скінченним числом компактних власних підмножин ребер. Таким чином, граф може бути покритий вкладеною послідовністю компактів тоді і тільки тоді, коли вона локально скінченна, тобто граф має скінченне число ребер в кожній вершині.
Якщо граф зв'язний і локально скінченний, то він має компактне покриття, в якому множина κi це множина вершин, що знаходяться на відстані не більше i від деякої довільно обраної вихідної вершини. У цьому випадку будь-яке укриття β визначає кінець топологічного простору, в якому . І навпаки, якщо є кінцем топологічного простору, утвореного із , він визначає укриття, в якому β () є компонент, який містить Ui, де i будь-яке число, таке, що κi містить . Таким чином, для зв'язних і локально скінченних графів, топологічні кінці знаходяться у взаємно-однозначній відповідності з кінцями графів.
Для графів, які не можуть бути локально-скінченними, можна визначити топологічний простір з графу та його кінців. Цей простір може бути представлений метричним простором тоді і тільки тоді, коли граф має нормальне кістякове дерево, тобто коренева остова така, що кожне ребро графу з'єднує пару предок-нащадок. Якщо нормальний остов існує, то він має такий самий набір кінців, що й цкй граф: кожен кінець графа повинен містити рівно один нескінченний шлях в дереві.
Спеціальні види кінців
Вільні кінці
Кінець графа вважають вільним, якщо існує кінцева множина X вершин з властивістю, що відокремлює від усіх інших кінців графа графік. (з погляду укриттів, β E () не перетинається з β D ()< для будь-якого іншого кінця .) У графі з кінцевим числом кінців кожне кінець має бути вільним. Халін (1964) довів, що якщо має нескінченно багато кінців, то або існує кінець, який не є вільним, або існує нескінченне сімейство променів, які мають загальну початкову вершину і не перетинаються один з одним по-іншому.
Товсті кінці
Товстий кінець графу є кінцем, який містить нескінченне число попарно непересічних променів. Теорема сітки Халіна характеризує графіки, які містять товсті кінці: це тсаме ті графи, які мають підрозділ гексагонально-мозаїчних підграфів.
Спеціальні види графів
Симетричні і майже симетричні графи
Мохар (1991) характеризує зв'язний локально скінченний граф, як «майже симетричний», якщо існує вершина і число таке, що для будь-якої іншої вершини , існує автоморфізм графу, для якого образ знаходиться на відстані від ; те ж саме, що зв'язний локально скінченний граф є майже симетричним, якщо його група автоморфізмів має скінченне число орбіт. Мохар показує, що кожен зв'язний локально-скінченний майже симетричний граф, має число кінців або не більше двох або незліченне число; якщо він незліченний, кінці мають топологію множини Кантора. Крім того, Мохар показує, що число кінців контролює сталу Чігера
де пробігає всі скінченні непорожні множини вершин графу і де позначає множину ребер з однією кінцевою точкою в . Для майже симетричних графів з незліченною кількістю кінців, h>0; однак, для майже симетричних графів тільки з двома кінцями, h=0.
Граф Келі
Кожна група і множина генераторів групи визначають граф Келі, граф, вершинами якого є елементи групи і ребра — пари елементів (,) де є одним з генераторів. У разі звичайно породженою групи, кінці групи визначаються як кінці графу Келі для скінченної множини генераторів; це визначення інваріантно щодо вибору генераторів, у тому сенсі, що якщо обрані дві різні скінченні множини генераторів, кінці двох октав графів знаходяться у взаємно-однозначній відповідності один з одним.
Наприклад, кожна вільна група має граф Келі (для її вільних генераторів), що є деревом. Вільна група на одному генераторі має подвійний нескінченний шлях як її граф Келі, з двома кінцями. Будь-яка інша вільна група має нескінченно багато кінців.
Кожна звичайно породжена нескінченна група має або 1, 2, або нескінченно багато кінців, і теорема Сталлінгса про кінці груп забезпечує розкладання груп з більш ніж одним кінцем. Зокрема:
- Звичайно породжена нескінченна група має 2 кінці тоді і тільки тоді, коли вона має циклічну підгрупу скінченного індексу.
- Звичайно породжена нескінченна група має нескінченно багато кінців тоді і тільки тоді, коли вона є або нетривіальним вільним твором з об'єднаною підгрупою, або з скінченним об'єднанням.
- Всі інші звичайно породжені нескінченні групи мають рівно один кінець.
Примітки
- However, as Krön та Möller, (2008) point out, ends of graphs were already considered by Freudenthal, (1945).
- E.g., this is the form of the equivalence relation used by Diestel та Kühn, (2003).
- The haven nomenclature, and the fact that two rays define the same haven if and only if they are equivalent, is due to Robertson, Seymour та Thomas, (1991). Diestel та Kühn, (2003) proved that every haven comes from an end, completing the bijection between ends and havens, using a different nomenclature in which they called havens «directions».
- More precisely, in the original formulation of this result by Halin, (1964) in which ends are defined as equivalence classes of rays, every equivalence class of rays of G contains a unique nonempty equivalence class of rays of the spanning forest. In terms of havens, there is a one-to-one correspondence of havens of order ℵ0 between G and its spanning tree T for which for every finite set X and every corresponding pair of havens βT and βG.
- Seymour та Thomas, (1991); Thomassen, (1992); Diestel, (1992).
- Diestel та Kühn, (2003).
- Diestel, (2006).
- Halin, (1965); Diestel, (2004).
Посилання
- Diestel, Reinhard (1992), The end structure of a graph: recent results and open problems, , 100 (1-3): 313—327, doi:10.1016/0012-365X(92)90650-5, MR 1172358.
- Diestel, Reinhard (2004), A short proof of Halin's grid theorem, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 74: 237—242, doi:10.1007/BF02941538, MR 2112834.
- Diestel, Reinhard (2006), End spaces and spanning trees, , Series B, 96 (6): 846—854, doi:10.1016/j.jctb.2006.02.010, MR 2274079.
- Diestel, Reinhard; (2003), Graph-theoretical versus topological ends of graphs, , Series B, 87 (1): 197—206, doi:10.1016/S0095-8956(02)00034-5, MR 1967888.
- (1931), Über die Enden topologischer Räume und Gruppen, , 33: 692—713, doi:10.1007/BF01174375.
- (1945), Über die Enden diskreter Räume und Gruppen, Commentarii Mathematici Helvetici, 17: 1—38, doi:10.1007/bf02566233, MR 0012214.
- (1964), Über unendliche Wege in Graphen, Mathematische Annalen, 157: 125—137, doi:10.1007/bf01362670, MR 0170340.
- (1965), Über die Maximalzahl fremder unendlicher Wege in Graphen, , 30: 63—85, doi:10.1002/mana.19650300106, MR 0190031.
- Krön, Bernhard; Möller, Rögnvaldur G. (2008), (PDF), , 281 (1): 62—74, doi:10.1002/mana.200510587, MR 2376468, архів оригіналу (PDF) за 4 березня 2016, процитовано 28 червня 2016.
- (1991), (PDF), Discrete Mathematics, 95 (1-3): 193—219, doi:10.1016/0012-365X(91)90337-2, MR 1141939, архів оригіналу (PDF) за 3 березня 2016, процитовано 28 червня 2016.
- ; ; (1991), Excluding infinite minors, , 95 (1-3): 303—319, doi:10.1016/0012-365X(91)90343-Z, MR 1141945.
- ; (1991), An end-faithful spanning tree counterexample, , 113 (4): 1163—1171, doi:10.2307/2048796, MR 1045600.
- (1968), On torsion-free groups with infinitely many ends, Annals of Mathematics, Second Series, 88: 312—334, doi:10.2307/1970577, MR 0228573.
- (1971), Group theory and three-dimensional manifolds: A James K. Whittemore Lecture in Mathematics given at Yale University, 1969, Yale Mathematical Monographs, т. 4, New Haven, Conn.: Yale University Press, MR 0415622.
- (1992), Infinite connected graphs with no end-preserving spanning trees, , Series B, 54 (2): 322—324, doi:10.1016/0095-8956(92)90059-7, MR 1152455.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Cya stattya mistit pravopisni leksichni gramatichni stilistichni abo inshi movni pomilki yaki treba vipraviti Vi mozhete dopomogti vdoskonaliti cyu stattyu pogodivshi yiyi iz chinnimi movnimi standartami cherven 2016 Kincem grafu v matematici neskinchennih grafiv nazivayut napryamok v yakomu graf tyagnetsya do neskinchennosti Kinec mozhe buti matematichno formalizovano yak klas ekvivalentnosti neskinchennih shlyahiv yaki opisuyut strategiyi peresliduvannya uhilennya u igrah na grafi abo yak topologichni kinci topologichnih prostoriv pov yazanih z grafom v razi lokalno skinchennih grafiv Kinci grafiv Keli vikoristovuyut shob viznachiti kinci zvichajno porodzhenih grup Skinchenno porodzheni neskinchenni grupi mayut odin dva abo neskinchenno bagato kinciv a en pro kinci grup zabezpechuye rozkladannya dlya grup z bilsh nizh odnim kincem Viznachennya ta harakteristika en sformulyuvav viznachennya kinciv grafiv u 1964 roci v terminah klasiv ekvivalentnosti neskinchennih shlyahiv Promin v neskinchennomu grafi ye napivneskinchennim prostim shlyahom tobto ce neskinchenna poslidovnist vershin v 0 v 1 v 2 displaystyle v 0 v 1 v 2 dots de kozhna vershina z yavlyayetsya bilshe nizh odin raz u poslidovnosti i kozhni dvi poslidovni vershini v poslidovnosti ye dvoma kincevimi tochkami rebra v grafi Zgidno z viznachennyam Halina dva promenya r 0 displaystyle r 0 dots ta r 1 displaystyle r 1 dots ye ekvivalentnimi yaksho isnuye promin r 2 displaystyle r 2 dots ne obov yazkovo vidminnij vid bud yakogo z pershih dvoh yakij mistit neskinchenno bagato vershin v kozhnomu z r 0 displaystyle r 0 dots ta r 1 displaystyle r 1 dots Ce vidnoshennya ekvivalentnosti kozhen promin ekvivalentnij sam sobi Viznachennya simetrichne shodo vporyadkuvannya dvoh promeniv Mozhna takozh pokazati sho ce vidnoshennya tranzitivne Takim chinom vono rozdilyaye bezlich vsih promeniv na klasi ekvivalentnosti Halin viznachiv kinec yak odin z cih klasiv ekvivalentnosti Isnuye alternativne viznachennya togo zh vidnoshennya ekvivalentnosti dva promenya r 0 displaystyle r 0 dots tar 1 displaystyle r 1 dots ye ekvivalentnimi yaksho ne isnuye skinchennoyi mnozhini vershin X chto vidokremlyuye neskinchenno bagato vershin r 0 displaystyle r 0 dots z neskinchennim chislom vershin r 1 displaystyle r 1 dots Ce ekvivalentno viznachennyu Halina yaksho promin r 2 displaystyle r 2 dots z viznachennya Halina isnuye to bud yakij rozdilnik povinen mistiti neskinchenne chislo tochok r 2 displaystyle r 2 dots i otzhe ne mozhe buti skinchennim i navpaki yaksho r 2 displaystyle r 2 dots ne isnuye to shlyah yakij cherguyetsya stilki raz skilki mozhlivo mizh r 0 displaystyle r 0 ta r 1 displaystyle r 1 dots povinen formuvati neobhidnij skinchennij rozdilnik Kinci takozh mayut bilsh konkretnu harakteristiku z tochki zoru ukrittiv funkcij yaki opisuyut strategiyi uhilennya dlya igor peresliduvannya uhilennya na grafi G Rozglyadayetsya gra u yakij grabizhnik namagayetsya vivernutisya vid mnozhini policejskih pri perehodi vid vershini do vershini uzdovzh reber G displaystyle G U policiyi ye vertoloti tomu bandit povinen ruhatisya po rebrah Odnak grabizhnik vmiye pomichati nablizhennya policiyi ta mozhe vibrati napryam ruhu do prizemennya vertolotiv Odniyeyu z golovnih perevag ye funkciya b yaka vidobrazhaye kozhnu mnozhinu X displaystyle X roztashuvannya policejskih do odniyeyi iz zv yazkovih komponent pidgrafu utvorenogo vidalennyam X displaystyle X rozbijnik mozhe uhilitisya vid policiyi ruhayuchis v kozhnomu raundi gri v vershinu ciyeyi komponenti Ukrittya povinni zadovolnyati vlastivosti uzgodzhennya tobto grabizhnik ne mozhe peremishatisya cherez vershini na yakih policiya vzhe prizemlilas yaksho X displaystyle X ye pidmnozhinoyu Y displaystyle Y i obidvi mnozhini X displaystyle X ta Y displaystyle Y ye dijsnimi mnozhinami misc dlya danoyi mnozhini policiyi todi b X displaystyle X povinna buti mnozhinoyu yaka mistit b Y displaystyle Y Ukrittya maye poryadok k yaksho sukupnist misc policiyi dlya yakih vona zabezpechuye strategiyu evakuaciyi vklyuchaye v sebe vsi pidmnozhini menshi nizh k vershin v grafi Zokrema vona maye poryadok ℵ0 yaksho vin vidobrazhaye kozhnu skinchennu pidmnozhinu X displaystyle X vershin do komponenti G displaystyle G X displaystyle X Kozhnomu promenyu v G displaystyle G vidpovidaye ukrittya poryadku ℵ0 a same funkciya b sho vidobrazhaye kozhnu skinchennu mnozhinu X displaystyle X do yedinoyi komponenti G displaystyle G X displaystyle X yaka mistit neskinchenno bagato vershin promenya I navpaki kozhne ukrittya poryadku ℵ0 mozhe buti viznachene takim chinom cherez promin Dva promenya ekvivalentni todi i tilki todi koli voni viznachayut odne i tezhukrittya tak sho kinci grafu znahodyatsya u vzayemno odnoznachnij vidpovidnosti z jogo shovishami poryadku ℵ0 PrikladiChastina neskinchennoyi sitki grafu z vershinami v tochkah de dvi liniyi sitki zustrichayutsya Nezvazhayuchi na bezlich riznih promeniv vin maye tilki odin kinec Yaksho neskinchennij graf G displaystyle G sam ye promenem to vin maye neskinchenne chislo promeniv pidgrafiv po odnomu z kozhnoyi vershini G displaystyle G Odnak vsi ci promeni ekvivalentni odin odnomu tak sho G displaystyle G maye tilki odin kinec Yaksho G displaystyle G lis tobto graf bez kincevih cikliv to peretin bud yakih dvoh promeniv ce abo shlyah abo promin dva promenya ekvivalentni yaksho yihnim peretinom ye promin Yaksho bazova vershina vibirayetsya v kozhnij komponenti zv yaznosti G displaystyle G to kozhen kinec G displaystyle G mistit unikalnij promin pochinayuchi z odniyeyi z bazovih vershin tak sho kinci mozhut buti rozmisheni u vzayemno odnoznachnij vidpovidnosti z cimi kanonichnimi promenyami Kozhen lichilnij graf G displaystyle G maye kistyakovij lis z tiyeyu zh mnozhinoyu kinciv yak G displaystyle G Odnak isnuyut nezlichenni neskinchenni grafi tilki z odnim kincem v yakih kozhne kistyakove derevo maye neskinchenno bagato kinciv Yaksho G displaystyle G ye grafom neskinchennoyi sitki to vin maye bagato promeniv ta dovilno veliki nabori vershinno neperetinnih promeniv Tim ne mensh vin maye tilki odin kinec Ce mozhna legko pobachiti vikoristovuyuchi harakteristiku kinciv z tochki zoru ukrittiv vidalennya bud yakoyi skinchennoyi mnozhini vershin zalishaye rivno odnu neskinchennu zv yazkovu komponentu tomu ye tilki odne ukrittya te yake vidobrazhaye kozhnu skinchennu mnozhinu z yedinoyu neskinchennoyu zv yaznoyu komponentoyu Zv yazok z topologichnimi kincyamiU teoretiko mnozhinnij topologiyi isnuye ponyattya kincya yake trohi shozhe na ponyattya kincya v teoriyi grafiv vvedene nabagato ranishe Frejdentalem 1931 Yaksho topologichnij prostir mozhe buti pokrito vkladenoyu poslidovnistyu kompaktiv k 0 k 1 k 2 displaystyle kappa 0 subset kappa 1 subset kappa 2 dots to kinec prostoru ce poslidovnist komponentiv U 0 U 1 U 2 displaystyle U 0 supset U 1 supset U 2 dots dopovnen kompaktnih mnozhin Ce viznachennya ne zalezhit vid viboru kompaktiv kinci yaki viznachayutsya odnim takim viborom mozhut buti rozmisheni u vzayemno odnoznachnij vidpovidnosti z kincyami viznachenimi bud yakim inshim viborom Neskinchennij graf G displaystyle G mozhe buti pobudovanij u topologichnomu prostori dvoma riznimi ale pov yazanimi mizh soboyu sposobami Zamina kozhnoyi vershini grafa na tochku i kozhnogo rebra grafa na vidkritij odinichnij interval porodzhuye Gausdorfiv prostir z grafom v yakomu mnozhinu S displaystyle S vvazhayut vidkritoyu todi koli kozhen peretin S displaystyle S z rebrom grafa ye vidkritoyu pidmnozhinoyu odinichnogo intervalu Zamina kozhnoyi vershini i kozhnogo rebra grafa tochkoyu robit prostir nehausdorfovim tobto takim u yakomu vidkriti mnozhini ce mnozhini S displaystyle S z vlastivistyu sho yaksho vershina v displaystyle v z G displaystyle G nalezhit S displaystyle S to nalezhit j kozhne rebro sho maye v displaystyle v yak odin z jogo kinciv U bud yakomu vipadku kozhnij skinchennij pidgraf vidpovidaye kompaktnim pidprostoram topologichnogo prostoru i kozhen kompaktnij pidprostir vidpovidaye skinchennomu pidgrafu razom z v razi Hausdorfogo prostora skinchennim chislom kompaktnih vlasnih pidmnozhin reber Takim chinom graf mozhe buti pokritij vkladenoyu poslidovnistyu kompaktiv todi i tilki todi koli vona lokalno skinchenna tobto graf maye skinchenne chislo reber v kozhnij vershini Yaksho graf G displaystyle G zv yaznij i lokalno skinchennij to vin maye kompaktne pokrittya v yakomu mnozhina ki ce mnozhina vershin sho znahodyatsya na vidstani ne bilshe ivid deyakoyi dovilno obranoyi vihidnoyi vershini U comu vipadku bud yake ukrittya b viznachaye kinec topologichnogo prostoru v yakomu U i b k i displaystyle U i beta kappa i I navpaki yaksho U 0 U 1 U 2 displaystyle U 0 supset U 1 supset U 2 dots ye kincem topologichnogo prostoru utvorenogo iz G displaystyle G vin viznachaye ukrittya v yakomu b X displaystyle X ye komponent yakij mistit Ui de i bud yake chislo take sho ki mistit X displaystyle X Takim chinom dlya zv yaznih i lokalno skinchennih grafiv topologichni kinci znahodyatsya u vzayemno odnoznachnij vidpovidnosti z kincyami grafiv Dlya grafiv yaki ne mozhut buti lokalno skinchennimi mozhna viznachiti topologichnij prostir z grafu ta jogo kinciv Cej prostir mozhe buti predstavlenij metrichnim prostorom todi i tilki todi koli graf maye normalne kistyakove derevo tobto koreneva ostova taka sho kozhne rebro grafu z yednuye paru predok nashadok Yaksho normalnij ostov isnuye to vin maye takij samij nabir kinciv sho j ckj graf kozhen kinec grafa povinen mistiti rivno odin neskinchennij shlyah v derevi Specialni vidi kincivVilni kinci Kinec E displaystyle E grafa G displaystyle G vvazhayut vilnim yaksho isnuye kinceva mnozhina X vershin z vlastivistyu sho X displaystyle X vidokremlyuye E displaystyle E vid usih inshih kinciv grafa grafik z poglyadu ukrittiv b E X displaystyle X ne peretinayetsya z b D X displaystyle X lt dlya bud yakogo inshogo kincya D displaystyle D U grafi z kincevim chislom kinciv kozhne kinec maye buti vilnim Halin 1964 doviv sho yaksho G displaystyle G maye neskinchenno bagato kinciv to abo isnuye kinec yakij ne ye vilnim abo isnuye neskinchenne simejstvo promeniv yaki mayut zagalnu pochatkovu vershinu i ne peretinayutsya odin z odnim po inshomu Tovsti kinci Tovstij kinec grafu G displaystyle G ye kincem yakij mistit neskinchenne chislo poparno neperesichnih promeniv Teorema sitki Halina harakterizuye grafiki yaki mistyat tovsti kinci ce tsame ti grafi yaki mayut pidrozdil geksagonalno mozayichnih pidgrafiv Specialni vidi grafivSimetrichni i majzhe simetrichni grafi Mohar 1991 harakterizuye zv yaznij lokalno skinchennij graf yak majzhe simetrichnij yaksho isnuye vershina V displaystyle V i chislo D displaystyle D take sho dlya bud yakoyi inshoyi vershini w displaystyle w isnuye avtomorfizm grafu dlya yakogo obraz V displaystyle V znahoditsya na vidstani D displaystyle D vid w displaystyle w te zh same sho zv yaznij lokalno skinchennij graf ye majzhe simetrichnim yaksho jogo grupa avtomorfizmiv maye skinchenne chislo orbit Mohar pokazuye sho kozhen zv yaznij lokalno skinchennij majzhe simetrichnij graf maye chislo kinciv abo ne bilshe dvoh abo nezlichenne chislo yaksho vin nezlichennij kinci mayut topologiyu mnozhini Kantora Krim togo Mohar pokazuye sho chislo kinciv kontrolyuye stalu Chigera h inf V V displaystyle h inf left frac partial V V right de V displaystyle V probigaye vsi skinchenni neporozhni mnozhini vershin grafu i de V displaystyle partial V poznachaye mnozhinu reber z odniyeyu kincevoyu tochkoyu v V displaystyle V Dlya majzhe simetrichnih grafiv z nezlichennoyu kilkistyu kinciv h gt 0 odnak dlya majzhe simetrichnih grafiv tilki z dvoma kincyami h 0 Graf Keli Graf Keli vilnoyi grupi na dvoh generatorah a ta b Kinci grupi znahodyatsya u vzayemno odnoznachnij vidpovidnosti z promenyami neskinchenni shlyahi vid odinichnogo elementa e do periferiyi na malyunku Kozhna grupa i mnozhina generatoriv grupi viznachayut graf Keli graf vershinami yakogo ye elementi grupi i rebra pari elementiv x displaystyle x g x displaystyle gx de g displaystyle g ye odnim z generatoriv U razi zvichajno porodzhenoyu grupi kinci grupi viznachayutsya yak kinci grafu Keli dlya skinchennoyi mnozhini generatoriv ce viznachennya invariantno shodo viboru generatoriv u tomu sensi sho yaksho obrani dvi rizni skinchenni mnozhini generatoriv kinci dvoh oktav grafiv znahodyatsya u vzayemno odnoznachnij vidpovidnosti odin z odnim Napriklad kozhna vilna grupa maye graf Keli dlya yiyi vilnih generatoriv sho ye derevom Vilna grupa na odnomu generatori maye podvijnij neskinchennij shlyah yak yiyi graf Keli z dvoma kincyami Bud yaka insha vilna grupa maye neskinchenno bagato kinciv Kozhna zvichajno porodzhena neskinchenna grupa maye abo 1 2 abo neskinchenno bagato kinciv i teorema Stallingsa pro kinci grup zabezpechuye rozkladannya grup z bilsh nizh odnim kincem Zokrema Zvichajno porodzhena neskinchenna grupa maye 2 kinci todi i tilki todi koli vona maye ciklichnu pidgrupu skinchennogo indeksu Zvichajno porodzhena neskinchenna grupa maye neskinchenno bagato kinciv todi i tilki todi koli vona ye abo netrivialnim vilnim tvorom z ob yednanoyu pidgrupoyu abo z skinchennim ob yednannyam Vsi inshi zvichajno porodzheni neskinchenni grupi mayut rivno odin kinec PrimitkiHowever as Kron ta Moller 2008 point out ends of graphs were already considered by Freudenthal 1945 E g this is the form of the equivalence relation used by Diestel ta Kuhn 2003 The haven nomenclature and the fact that two rays define the same haven if and only if they are equivalent is due to Robertson Seymour ta Thomas 1991 Diestel ta Kuhn 2003 proved that every haven comes from an end completing the bijection between ends and havens using a different nomenclature in which they called havens directions More precisely in the original formulation of this result by Halin 1964 in which ends are defined as equivalence classes of rays every equivalence class of rays of G contains a unique nonempty equivalence class of rays of the spanning forest In terms of havens there is a one to one correspondence of havens of order ℵ0 between G and its spanning tree T for which b T X b G X displaystyle beta T X subset beta G X for every finite set X and every corresponding pair of havens bT and bG Seymour ta Thomas 1991 Thomassen 1992 Diestel 1992 Diestel ta Kuhn 2003 Diestel 2006 Halin 1965 Diestel 2004 PosilannyaDiestel Reinhard 1992 The end structure of a graph recent results and open problems 100 1 3 313 327 doi 10 1016 0012 365X 92 90650 5 MR 1172358 Diestel Reinhard 2004 A short proof of Halin s grid theorem Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 74 237 242 doi 10 1007 BF02941538 MR 2112834 Diestel Reinhard 2006 End spaces and spanning trees Series B 96 6 846 854 doi 10 1016 j jctb 2006 02 010 MR 2274079 Diestel Reinhard 2003 Graph theoretical versus topological ends of graphs Series B 87 1 197 206 doi 10 1016 S0095 8956 02 00034 5 MR 1967888 1931 Uber die Enden topologischer Raume und Gruppen 33 692 713 doi 10 1007 BF01174375 1945 Uber die Enden diskreter Raume und Gruppen Commentarii Mathematici Helvetici 17 1 38 doi 10 1007 bf02566233 MR 0012214 1964 Uber unendliche Wege in Graphen Mathematische Annalen 157 125 137 doi 10 1007 bf01362670 MR 0170340 1965 Uber die Maximalzahl fremder unendlicher Wege in Graphen 30 63 85 doi 10 1002 mana 19650300106 MR 0190031 Kron Bernhard Moller Rognvaldur G 2008 PDF 281 1 62 74 doi 10 1002 mana 200510587 MR 2376468 arhiv originalu PDF za 4 bereznya 2016 procitovano 28 chervnya 2016 1991 PDF Discrete Mathematics 95 1 3 193 219 doi 10 1016 0012 365X 91 90337 2 MR 1141939 arhiv originalu PDF za 3 bereznya 2016 procitovano 28 chervnya 2016 1991 Excluding infinite minors 95 1 3 303 319 doi 10 1016 0012 365X 91 90343 Z MR 1141945 1991 An end faithful spanning tree counterexample 113 4 1163 1171 doi 10 2307 2048796 MR 1045600 1968 On torsion free groups with infinitely many ends Annals of Mathematics Second Series 88 312 334 doi 10 2307 1970577 MR 0228573 1971 Group theory and three dimensional manifolds A James K Whittemore Lecture in Mathematics given at Yale University 1969 Yale Mathematical Monographs t 4 New Haven Conn Yale University Press MR 0415622 1992 Infinite connected graphs with no end preserving spanning trees Series B 54 2 322 324 doi 10 1016 0095 8956 92 90059 7 MR 1152455