Гіперболічний рух — це рух об'єкта з постійним Власне прискорення в спеціальній теорії відносності. Його називають гіперболічним рухом, тому що рівняння, що описує траєкторію об'єкта в просторі-часі, є гіперболою, як це можна побачити, якщо побудувати графік на діаграмі Мінковського, координати якої представляють відповідну інерціальну (неприскорену) систему. Цей рух має кілька цікавих особливостей, зокрема, той факт, що фотон можна випередити, якщо мати достатню перевагу на старті, як це можна побачити на діаграми.
Історія
Герман Мінковський (1908) показав зв'язок між точкою на світовій лінії та величиною 4-прискорення та «гіперболи викривлення» (нім. Krümmungshyperbel). У контексті [en], Макс Борн (1909) згодом ввів термін «гіперболічний рух» (нім. Hyperbelbewegung) для випадку постійної величини 4-прискорення, і потім надав детальний опис заряджених частинок у гіперболічному русі та ввів відповідну «гіперболічно прискорену систему відліку» (нім. hyperbolisch beschleunigtes Bezugsystem). Формули Борна були спрощені та розширені Арнольдом Зоммерфельдом (1910). З першими оглядами можна ознайомитись у підручниках Макса фон Лауе (1911, 1921) або Вольфганга Паулі (1921). Див. також Galeriu (2015) або Gourgoulhon (2013), і розділ «Історія статті» [en].
Світова лінія
Власне прискорення частинки визначається як прискорення, яке «відчуває» частинка, коли вона прискорюється від однієї інерціальної системи відліку до іншої. Якщо власне прискорення спрямоване паралельно лінії руху, воно пов'язане зі звичайним 3-прискоренням [en] формулою
де — миттєва швидкість частинки, — фактор Лоренца, — це швидкість світла, а — координатний час. Розв'язання рівняння руху дає шукані формули, які можна виразити через координатний час а також власний час . Для спрощення всі початкові значення часу, місця та швидкості можна встановити рівними 0, таким чином:
-
(
)
Це призводить до рівняння , що є гіперболою в часі T і змінною простору . У цьому випадку прискорений об'єкт знаходиться на у момент часу . Якщо натомість є початкові значення, відмінні від нуля, формули для гіперболічного руху приймають наступний вигляд:
Стрімкість
Світову лінію для гіперболічного руху (яку відтепер будемо записувати як функцію власного часу) можна спростити кількома способами. Наприклад, вираз
може бути піддано просторовому зсуву на , таким чином отримуємо
- ,
у відповідності до чого спостерігач знаходиться в точці в момент часу . Крім того, задавши і вводячи стрімкість , рівняння гіперболічного руху зводяться до
-
(
)
з гіперболою .
Заряджені частинки в гіперболічному русі
Борн (1909), Зоммерфельд (1910), фон Лауе (1911), Паулі (1921) також сформулювали рівняння для електромагнітного поля заряджених частинок у гіперболічному русі. Це рівння було розширено Германом Бонді і Томасом Голдом (1955), а також Фултоном і Рорліхом (1960):
Це пов'язано з суперечливим дискусійним питанням про те, чи випромінюють заряди в безперервному гіперболічному русі чи ні, і чи узгоджується це з принципом еквівалентності — навіть якщо мова йде про ідеальну ситуацію, оскільки вічний гіперболічний рух неможливий. У той час як ранні автори, такі як Борн (1909) або Паулі (1921), стверджували, що випромінювання не виникає, пізніші автори, такі як Бонді і Голд, а також Фултон і Рорліх, показали, що випромінювання насправді виникає.
Власна система відліку
У рівнянні (2) для гіперболічного руху вираз був константою, тоді як стрімкість була змінною. Однак, як зазначив Зоммерфельд, можна визначити як змінну, а зробити константой. Це означає, що рівняння стають перетвореннями, що вказує на одночасну форму спокою прискореного тіла з гіперболічними координатами як це бачить спостерігач, що рухається
За допомогою цього перетворення власний час стає часом гіперболічно прискореної системи. Ці координати, які зазвичай називають координатами Ріндлера (подібні варіанти називаються [en]), розглядаються як окремий випадок координат Фермі або Власних координат і часто використовуються у зв'язку з ефектом Унру. При розгляді цих координат виявляється, що спостерігачі в гіперболічному русі мають видимий горизонт подій, з-за меж якого до них не може дійти жоден сигнал.
Спеціальне конформне перетворення
Менш відомим методом визначення системи відліку в гіперболічному русі є використання [en], що складається з [en], трансляції та іншої інверсії. Його зазвичай інтерпретують як калібрувальне перетворення в просторі Мінковського, хоча деякі автори альтернативно використовують його як перетворення прискорення (див. Каструп для критичного історичного огляду). Має наступну форму
Використовуючи лише один просторовий вимір , а також подальше спрощення шляхом встановлення , і використовуючи прискорення , отримуємо
з гіперболою . Виявляється, що при час стає сингулярним, на що Фултон, Рорліх і Віттен зауважують, що потрібно триматися подалі від цієї межі, тоді як Каструп (який дуже критично ставиться до цієї інтерпретації прискорення) зауважує, що це один із дивних результатів цієї інтерпретації.
Примітки
- Misner, Thorne та Wheeler, 1973, Chapter 6.
- Minkowski, Hermann (1909). Raum und Zeit. Vortrag, gehalten auf der 80. Naturforscher-Versammlung zu Köln am 21. September 1908 [Wikisource translation: Space and Time]. Jahresbericht der Deutschen Mathematiker-Vereinigung (нім.). Leipzig.
- Born, Max (1909). Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips [Теорія жорсткого електрона в кінематиці принципу відносності]. Annalen der Physik (нім.). 335 (11): 1—56. Bibcode:1909AnP...335....1B. doi:10.1002/andp.19093351102.
- Sommerfeld, Arnold (1910). Zur Relativitätstheorie II: Vierdimensionale Vektoranalysis [Про теорію відносності II: Чотиривимірний векторний аналіз]. Annalen der Physik (нім.). 338 (14): 649—689. Bibcode:1910AnP...338..649S. doi:10.1002/andp.19103381402.
- von Laue, M. (1921). Die Relativitätstheorie, Band 1 (нім.) (вид. fourth edition of "Das Relativitätsprinzip"). Vieweg. с. 89–90, 155—166.; First edition 1911, second expanded edition 1913, third expanded edition 1919.
- Pauli, Wolfgang (1921), Die Relativitätstheorie, Encyclopädie der Mathematischen Wissenschaften (нім.), 5 (2): 539—776
In English: Pauli, W. (1981). Theory of Relativity (англ.). Т. 165. Dover Publications. ISBN .{{}}
: Проігноровано|journal=
() - Galeriu, C. (2017). Electric charge in hyperbolic motion: the early history [Електричний заряд у гіперболічному русі: рання історія]. Archive for History of Exact Sciences (англ.). 71 (4): 1—16. arXiv:1509.02504. doi:10.1007/s00407-017-0191-x.
- Gourgoulhon, E. (2013). Special Relativity in General Frames: From Particles to Astrophysics (англ.). Springer. с. 396. ISBN .
- Møller, C. (1955). The theory of relativity (англ.). Oxford Clarendon Press. с. 74–75.
- Rindler, W. (1977). Essential Relativity (англ.). Springer. с. 49–50. ISBN .
- PhysicsFAQ (2016), "Relativistic rocket", see external links
- Gallant, J. (2012). Doing Physics with Scientific Notebook: A Problem Solving Approach (англ.). John Wiley & Sons. с. 437—441. ISBN .
- Müller, T., King, A., & Adis, D. (2006). A trip to the end of the universe and the twin "paradox". American Journal of Physics (англ.). 76 (4): 360—373. arXiv:physics/0612126. Bibcode:2008AmJPh..76..360M. doi:10.1119/1.2830528.
- Fraundorf, P. (2012). A traveler-centered intro to kinematics (англ.): IV—B. arXiv:1206.2877. Bibcode:2012arXiv1206.2877F.
- Pauli (1921), p. 628, used the notation where
- Sommerfeld (1910), pp. 670-671 used the form and with the imaginary angle and imaginary time .
- Bondi, H., & Gold, T. (1955). The field of a uniformly accelerated charge, with special reference to the problem of gravitational acceleration. Proceedings of the Royal Society of London (англ.). 229 (1178): 416—424. Bibcode:1955RSPSA.229..416B. doi:10.1098/rspa.1955.0098.
- Fulton, Thomas; Rohrlich, Fritz (1960). Classical radiation from a uniformly accelerated charge. Annals of Physics (англ.). 9 (4): 499—517. Bibcode:1960AnPhy...9..499F. doi:10.1016/0003-4916(60)90105-6.
- Rohrlich, Fritz (1963). The principle of equivalence. Annals of Physics (англ.). 22 (2): 169—191. Bibcode:1963AnPhy..22..169R. doi:10.1016/0003-4916(63)90051-4.
- Stephen Lyle (2008). Uniformly Accelerating Charged Particles: A Threat to the Equivalence Principle (англ.). Springer. ISBN .
- Øyvind Grøn (2012). Review Article: Electrodynamics of Radiating Charges. Advances in Mathematical Physics (англ.). 2012: 528631. doi:10.1155/2012/528631.
- Galeriu, Cǎlin (2019) "Electric charge in hyperbolic motion: the special conformal solution", European Journal of Physics 40(6) DOI:10.1088/1361-6404/ab3df6
- Kastrup, H. A. (2008). On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics. Annalen der Physik (англ.). 520 (9–10): 631—690. arXiv:0808.2730. Bibcode:2008AnP...520..631K. doi:10.1002/andp.200810324.
- Fulton, T., Rohrlich, F., & Witten, L. (1962). Physical consequences of a co-ordinate transformation to a uniformly accelerating frame. Il Nuovo Cimento (англ.). 26 (4): 652—671. Bibcode:1962NCim...26..652F. doi:10.1007/BF02781794.
Список літератури
- (Feb 1936). A New Relativity. Paper I. Fundamental Principles and Transformations Between Accelerated Systems. Physical Review. 49 (3): 254—268. Bibcode:1936PhRv...49..254P. doi:10.1103/PhysRev.49.254.
- Leigh Page & Norman I. Adams (Mar 1936). A New Relativity. Paper II. Transformation of the Electromagnetic Field Between Accelerated Systems and the Force Equation. Physical Review. 49 (6): 466—469. Bibcode:1936PhRv...49..466P. doi:10.1103/PhysRev.49.466.
- ; ; (1973), Gravitation, W. H. Freeman, Chapter 6, ISBN
- Rindler Wolfgang (1960). Hyperbolic Motion in Curved Space Time. Physical Review. 119 (6): 2082—2089. Bibcode:1960PhRv..119.2082R. doi:10.1103/PhysRev.119.2082.
- [en](1914): The Theory of Relativity, page 190.
- Naber, Gregory L., The Geometry of Minkowski Spacetime, Springer-Verlag, New York, 1992. (hardcover), (Dover paperback edition). pp 58–60.
Посилання
- Часті запитання з фізики: релятивістська ракета
- Mathpages: Accelerated Travels, чи випромінює рівномірно прискорений заряд?
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Giperbolichnij ruh ce ruh ob yekta z postijnim Vlasne priskorennya v specialnij teoriyi vidnosnosti Jogo nazivayut giperbolichnim ruhom tomu sho rivnyannya sho opisuye trayektoriyu ob yekta v prostori chasi ye giperboloyu yak ce mozhna pobachiti yaksho pobuduvati grafik na diagrami Minkovskogo koordinati yakoyi predstavlyayut vidpovidnu inercialnu nepriskorenu sistemu Cej ruh maye kilka cikavih osoblivostej zokrema toj fakt sho foton mozhna viperediti yaksho mati dostatnyu perevagu na starti yak ce mozhna pobachiti na diagrami Giperbolichnij ruh mozhna vidobraziti na diagrami Minkovskogo de ruh priskoryuvanoyi chastinki vidbuvayetsya vzdovzh osi X displaystyle X Kozhna giperbola viznachayetsya virazami x c 2 a displaystyle x pm c 2 alpha i h a t c displaystyle eta alpha tau c dec 1 a 1 displaystyle c 1 alpha 1 u rivnyanni 2 IstoriyaGerman Minkovskij 1908 pokazav zv yazok mizh tochkoyu na svitovij liniyi ta velichinoyu 4 priskorennya ta giperboli vikrivlennya nim Krummungshyperbel U konteksti en Maks Born 1909 zgodom vviv termin giperbolichnij ruh nim Hyperbelbewegung dlya vipadku postijnoyi velichini 4 priskorennya i potim nadav detalnij opis zaryadzhenih chastinok u giperbolichnomu rusi ta vviv vidpovidnu giperbolichno priskorenu sistemu vidliku nim hyperbolisch beschleunigtes Bezugsystem Formuli Borna buli sprosheni ta rozshireni Arnoldom Zommerfeldom 1910 Z pershimi oglyadami mozhna oznajomitis u pidruchnikah Maksa fon Laue 1911 1921 abo Volfganga Pauli 1921 Div takozh Galeriu 2015 abo Gourgoulhon 2013 i rozdil Istoriya statti en Svitova liniyaVlasne priskorennya a displaystyle alpha chastinki viznachayetsya yak priskorennya yake vidchuvaye chastinka koli vona priskoryuyetsya vid odniyeyi inercialnoyi sistemi vidliku do inshoyi Yaksho vlasne priskorennya spryamovane paralelno liniyi ruhu vono pov yazane zi zvichajnim 3 priskorennyam en a d u d T displaystyle a du dT formuloyu a g 3 a 1 1 u 2 c 2 3 2 d u d T displaystyle alpha gamma 3 a frac 1 left 1 u 2 c 2 right 3 2 frac du dT de u displaystyle u mittyeva shvidkist chastinki g displaystyle gamma faktor Lorenca c displaystyle c ce shvidkist svitla a T displaystyle T koordinatnij chas Rozv yazannya rivnyannya ruhu daye shukani formuli yaki mozhna viraziti cherez koordinatnij chas T displaystyle T a takozh vlasnij chas t displaystyle tau Dlya sproshennya vsi pochatkovi znachennya chasu miscya ta shvidkosti mozhna vstanoviti rivnimi 0 takim chinom u T a T 1 a T c 2 c tanh arsinh a T c X T c 2 a 1 a T c 2 1 c 2 a cosh arsinh a T c 1 c t T c 2 a ln 1 a T c 2 a T c c 2 a arsinh a T c u t c tanh a t c X t c 2 a cosh a t c 1 c T t c 2 a sinh a t c displaystyle begin array c c begin aligned u T amp frac alpha T sqrt 1 left frac alpha T c right 2 amp c tanh left operatorname arsinh frac alpha T c right X T amp frac c 2 alpha left sqrt 1 left frac alpha T c right 2 1 right amp frac c 2 alpha left cosh left operatorname arsinh frac alpha T c right 1 right c tau T amp frac c 2 alpha ln left sqrt 1 left frac alpha T c right 2 frac alpha T c right amp frac c 2 alpha operatorname arsinh frac alpha T c end aligned amp begin aligned u tau amp c tanh frac alpha tau c X tau amp frac c 2 alpha left cosh frac alpha tau c 1 right cT tau amp frac c 2 alpha sinh frac alpha tau c end aligned end array 1 Ce prizvodit do rivnyannya X c 2 a 2 c 2 T 2 c 4 a 2 displaystyle left X c 2 alpha right 2 c 2 T 2 c 4 alpha 2 sho ye giperboloyu v chasi T i zminnoyu prostoru X displaystyle X U comu vipadku priskorenij ob yekt znahoditsya na X 0 displaystyle X 0 u moment chasu T 0 displaystyle T 0 Yaksho natomist ye pochatkovi znachennya vidminni vid nulya formuli dlya giperbolichnogo ruhu prijmayut nastupnij viglyad u T u 0 g 0 a T 1 u 0 g 0 a T c 2 c tanh arsinh u 0 g 0 a T c X T X 0 c 2 a 1 u 0 g 0 a T c 2 g 0 X 0 c 2 a cosh arsinh u 0 g 0 a T c g 0 c t T c t 0 c 2 a ln c 2 u 0 g 0 a T 2 u 0 g 0 a T c u 0 g 0 c t 0 c 2 a arsinh u 0 g 0 a T c artanh u 0 c u t c tanh artanh u 0 c a t c X t X 0 c 2 a cosh artanh u 0 c a t c g 0 c T t c T 0 c 2 a sinh artanh u 0 c a t c u 0 g 0 c displaystyle scriptstyle begin array c c begin aligned u T amp frac u 0 gamma 0 alpha T sqrt 1 left frac u 0 gamma 0 alpha T c right 2 quad amp c tanh left operatorname arsinh left frac u 0 gamma 0 alpha T c right right X T amp X 0 frac c 2 alpha left sqrt 1 left frac u 0 gamma 0 alpha T c right 2 gamma 0 right amp X 0 frac c 2 alpha left cosh left operatorname arsinh left frac u 0 gamma 0 alpha T c right right gamma 0 right c tau T amp c tau 0 frac c 2 alpha ln left frac sqrt c 2 left u 0 gamma 0 alpha T right 2 u 0 gamma 0 alpha T left c u 0 right gamma 0 right amp c tau 0 frac c 2 alpha left operatorname arsinh left frac u 0 gamma 0 alpha T c right operatorname artanh left frac u 0 c right right end aligned amp begin aligned u tau amp c tanh left operatorname artanh left frac u 0 c right frac alpha tau c right X tau amp X 0 frac c 2 alpha left cosh left operatorname artanh left frac u 0 c right frac alpha tau c right gamma 0 right cT tau amp cT 0 frac c 2 alpha left sinh left operatorname artanh left frac u 0 c right frac alpha tau c right frac u 0 gamma 0 c right end aligned end array StrimkistSvitovu liniyu dlya giperbolichnogo ruhu yaku vidteper budemo zapisuvati yak funkciyu vlasnogo chasu mozhna sprostiti kilkoma sposobami Napriklad viraz X c 2 a cosh a t c 1 displaystyle X frac c 2 alpha left cosh frac alpha tau c 1 right mozhe buti piddano prostorovomu zsuvu na c 2 a displaystyle c 2 alpha takim chinom otrimuyemo X c 2 a cosh a t c displaystyle X frac c 2 alpha cosh frac alpha tau c u vidpovidnosti do chogo sposterigach znahoditsya v tochci X c 2 a displaystyle X c 2 alpha v moment chasu T 0 displaystyle T 0 Krim togo zadavshi x c 2 a displaystyle x c 2 alpha i vvodyachi strimkist h artanh u c a t c displaystyle eta operatorname artanh frac u c frac alpha tau c rivnyannya giperbolichnogo ruhu zvodyatsya doc T x sinh h X x cosh h displaystyle cT x sinh eta quad X x cosh eta 2 z giperboloyu X 2 c 2 T 2 x 2 displaystyle X 2 c 2 T 2 x 2 Zaryadzheni chastinki v giperbolichnomu rusiBorn 1909 Zommerfeld 1910 fon Laue 1911 Pauli 1921 takozh sformulyuvali rivnyannya dlya elektromagnitnogo polya zaryadzhenih chastinok u giperbolichnomu rusi Ce rivnnya bulo rozshireno Germanom Bondi i Tomasom Goldom 1955 a takozh Fultonom i Rorlihom 1960 E r 8 e a 2 r z 3 3 E z 4 e a 2 1 a 2 t 2 r 2 z 2 3 3 E f H f H z 0 H f 8 e a 2 r t 3 3 3 1 a 2 t 2 r 2 z 2 2 2 r a 2 displaystyle begin aligned E rho amp frac left 8e alpha 2 right rho z xi prime 3 E z amp frac left 4e alpha 2 right 1 alpha 2 t prime 2 rho prime 2 z prime 2 xi prime 3 E varphi amp H varphi H z 0 H varphi amp frac left 8e alpha 2 right rho t xi prime 3 xi amp sqrt left 1 alpha 2 t prime 2 rho prime 2 z prime 2 right 2 left 2 rho alpha right 2 end aligned Ce pov yazano z superechlivim diskusijnim pitannyam pro te chi viprominyuyut zaryadi v bezperervnomu giperbolichnomu rusi chi ni i chi uzgodzhuyetsya ce z principom ekvivalentnosti navit yaksho mova jde pro idealnu situaciyu oskilki vichnij giperbolichnij ruh nemozhlivij U toj chas yak ranni avtori taki yak Born 1909 abo Pauli 1921 stverdzhuvali sho viprominyuvannya ne vinikaye piznishi avtori taki yak Bondi i Gold a takozh Fulton i Rorlih pokazali sho viprominyuvannya naspravdi vinikaye Vlasna sistema vidlikuShlyah svitla cherez E poznachaye vidimij gorizont podij sposterigacha P u giperbolichnomu rusi Dokladnishe ta U rivnyanni 2 dlya giperbolichnogo ruhu viraz x displaystyle x buv konstantoyu todi yak strimkist h displaystyle eta bula zminnoyu Odnak yak zaznachiv Zommerfeld x displaystyle x mozhna viznachiti yak zminnu a h displaystyle eta zrobiti konstantoj Ce oznachaye sho rivnyannya stayut peretvorennyami sho vkazuye na odnochasnu formu spokoyu priskorenogo tila z giperbolichnimi koordinatami x y z h displaystyle x y z eta yak ce bachit sposterigach sho ruhayetsya c T x sinh h X x cosh h Y y Z z displaystyle cT x sinh eta quad X x cosh eta quad Y y quad Z z Za dopomogoyu cogo peretvorennya vlasnij chas staye chasom giperbolichno priskorenoyi sistemi Ci koordinati yaki zazvichaj nazivayut koordinatami Rindlera podibni varianti nazivayutsya en rozglyadayutsya yak okremij vipadok koordinat Fermi abo Vlasnih koordinat i chasto vikoristovuyutsya u zv yazku z efektom Unru Pri rozglyadi cih koordinat viyavlyayetsya sho sposterigachi v giperbolichnomu rusi mayut vidimij gorizont podij z za mezh yakogo do nih ne mozhe dijti zhoden signal Specialne konformne peretvorennyaMensh vidomim metodom viznachennya sistemi vidliku v giperbolichnomu rusi ye vikoristannya en sho skladayetsya z en translyaciyi ta inshoyi inversiyi Jogo zazvichaj interpretuyut yak kalibruvalne peretvorennya v prostori Minkovskogo hocha deyaki avtori alternativno vikoristovuyut jogo yak peretvorennya priskorennya div Kastrup dlya kritichnogo istorichnogo oglyadu Maye nastupnu formu X m x m a m x 2 1 2 a x a 2 x 2 displaystyle X mu frac x mu a mu x 2 1 2ax a 2 x 2 Vikoristovuyuchi lishe odin prostorovij vimir x m t x displaystyle x mu t x a takozh podalshe sproshennya shlyahom vstanovlennya x 0 displaystyle x 0 i vikoristovuyuchi priskorennya a m 0 a 2 displaystyle a mu 0 alpha 2 otrimuyemo T t 1 1 4 a 2 t 2 X a t 2 2 1 1 4 a 2 t 2 displaystyle T frac t 1 frac 1 4 alpha 2 t 2 quad X frac alpha t 2 2 left 1 frac 1 4 alpha 2 t 2 right z giperboloyu X 1 a 2 T 2 1 a 2 displaystyle left X 1 alpha right 2 T 2 1 alpha 2 Viyavlyayetsya sho pri t x 2 a displaystyle t pm x 2 alpha chas staye singulyarnim na sho Fulton Rorlih i Vitten zauvazhuyut sho potribno trimatisya podali vid ciyeyi mezhi todi yak Kastrup yakij duzhe kritichno stavitsya do ciyeyi interpretaciyi priskorennya zauvazhuye sho ce odin iz divnih rezultativ ciyeyi interpretaciyi PrimitkiMisner Thorne ta Wheeler 1973 Chapter 6 Minkowski Hermann 1909 Raum und Zeit Vortrag gehalten auf der 80 Naturforscher Versammlung zu Koln am 21 September 1908 Wikisource translation Space and Time Jahresbericht der Deutschen Mathematiker Vereinigung nim Leipzig Born Max 1909 Die Theorie des starren Elektrons in der Kinematik des Relativitatsprinzips Teoriya zhorstkogo elektrona v kinematici principu vidnosnosti Annalen der Physik nim 335 11 1 56 Bibcode 1909AnP 335 1B doi 10 1002 andp 19093351102 Sommerfeld Arnold 1910 Zur Relativitatstheorie II Vierdimensionale Vektoranalysis Pro teoriyu vidnosnosti II Chotirivimirnij vektornij analiz Annalen der Physik nim 338 14 649 689 Bibcode 1910AnP 338 649S doi 10 1002 andp 19103381402 von Laue M 1921 Die Relativitatstheorie Band 1 nim vid fourth edition of Das Relativitatsprinzip Vieweg s 89 90 155 166 First edition 1911 second expanded edition 1913 third expanded edition 1919 Pauli Wolfgang 1921 Die Relativitatstheorie Encyclopadie der Mathematischen Wissenschaften nim 5 2 539 776 In English Pauli W 1981 Theory of Relativity angl T 165 Dover Publications ISBN 0 486 64152 X a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite book title Shablon Cite book cite book a Proignorovano journal dovidka Galeriu C 2017 Electric charge in hyperbolic motion the early history Elektrichnij zaryad u giperbolichnomu rusi rannya istoriya Archive for History of Exact Sciences angl 71 4 1 16 arXiv 1509 02504 doi 10 1007 s00407 017 0191 x Gourgoulhon E 2013 Special Relativity in General Frames From Particles to Astrophysics angl Springer s 396 ISBN 978 3642372766 Moller C 1955 The theory of relativity angl Oxford Clarendon Press s 74 75 Rindler W 1977 Essential Relativity angl Springer s 49 50 ISBN 354007970X PhysicsFAQ 2016 Relativistic rocket see external links Gallant J 2012 Doing Physics with Scientific Notebook A Problem Solving Approach angl John Wiley amp Sons s 437 441 ISBN 978 0470665978 Muller T King A amp Adis D 2006 A trip to the end of the universe and the twin paradox American Journal of Physics angl 76 4 360 373 arXiv physics 0612126 Bibcode 2008AmJPh 76 360M doi 10 1119 1 2830528 Fraundorf P 2012 A traveler centered intro to kinematics angl IV B arXiv 1206 2877 Bibcode 2012arXiv1206 2877F Pauli 1921 p 628 used the notation x 4 a ch c t a displaystyle x 4 a operatorname ch frac ct a where a c 2 b displaystyle a frac c 2 b Sommerfeld 1910 pp 670 671 used the form x r cos f displaystyle x r cos varphi and l r sin f displaystyle l r sin varphi with the imaginary angle i ps displaystyle i psi and imaginary time l i c t displaystyle l ict Bondi H amp Gold T 1955 The field of a uniformly accelerated charge with special reference to the problem of gravitational acceleration Proceedings of the Royal Society of London angl 229 1178 416 424 Bibcode 1955RSPSA 229 416B doi 10 1098 rspa 1955 0098 Fulton Thomas Rohrlich Fritz 1960 Classical radiation from a uniformly accelerated charge Annals of Physics angl 9 4 499 517 Bibcode 1960AnPhy 9 499F doi 10 1016 0003 4916 60 90105 6 Rohrlich Fritz 1963 The principle of equivalence Annals of Physics angl 22 2 169 191 Bibcode 1963AnPhy 22 169R doi 10 1016 0003 4916 63 90051 4 Stephen Lyle 2008 Uniformly Accelerating Charged Particles A Threat to the Equivalence Principle angl Springer ISBN 978 3540684770 Oyvind Gron 2012 Review Article Electrodynamics of Radiating Charges Advances in Mathematical Physics angl 2012 528631 doi 10 1155 2012 528631 Galeriu Cǎlin 2019 Electric charge in hyperbolic motion the special conformal solution European Journal of Physics 40 6 DOI 10 1088 1361 6404 ab3df6 Kastrup H A 2008 On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics Annalen der Physik angl 520 9 10 631 690 arXiv 0808 2730 Bibcode 2008AnP 520 631K doi 10 1002 andp 200810324 Fulton T Rohrlich F amp Witten L 1962 Physical consequences of a co ordinate transformation to a uniformly accelerating frame Il Nuovo Cimento angl 26 4 652 671 Bibcode 1962NCim 26 652F doi 10 1007 BF02781794 Spisok literaturi Feb 1936 A New Relativity Paper I Fundamental Principles and Transformations Between Accelerated Systems Physical Review 49 3 254 268 Bibcode 1936PhRv 49 254P doi 10 1103 PhysRev 49 254 Leigh Page amp Norman I Adams Mar 1936 A New Relativity Paper II Transformation of the Electromagnetic Field Between Accelerated Systems and the Force Equation Physical Review 49 6 466 469 Bibcode 1936PhRv 49 466P doi 10 1103 PhysRev 49 466 1973 Gravitation W H Freeman Chapter 6 ISBN 0 7167 0344 0 Rindler Wolfgang 1960 Hyperbolic Motion in Curved Space Time Physical Review 119 6 2082 2089 Bibcode 1960PhRv 119 2082R doi 10 1103 PhysRev 119 2082 en 1914 The Theory of Relativity page 190 Naber Gregory L The Geometry of Minkowski Spacetime Springer Verlag New York 1992 ISBN 0 387 97848 8 hardcover ISBN 0 486 43235 1 Dover paperback edition pp 58 60 PosilannyaChasti zapitannya z fiziki relyativistska raketa Mathpages Accelerated Travels chi viprominyuye rivnomirno priskorenij zaryad