Асимптоти́чна гілка (або відгалу́ження) гіга́нтів (АВГ, англ. asymptotic giant branch, AGB) — це ділянка на діаграмі Герцшпрунга — Рассела, утворена зорями малої та помірної маси, які перебувають на стадії термоядерних реакцій у подвійному шаровому джерелі. Цю стадію проходять усі зорі малої та помірної маси (0,6—10 M☉) на пізній стадії еволюції.
При спостереженні зоря асимптотичного відгалуження гігантів виглядає як яскравий червоний гігант зі світністю у тисячі світностей Сонця. Її внутрішня будова характеризується інертним вуглецево-кисневим ядром, шаром ядерного горіння гелію (з утворенням вуглецю), шаром гелію, e якому ядерні реакції не відбуваються, далі шаром ядерного горіння водню (з утворенням гелію) та нарешті дуже великою оболонкою з речовини, за характеристиками схожої на зорі головної послідовності.
Еволюція зорі
Коли зоря спалює запаси водню в ядрі, процеси ядерного синтезу сповільнюються, виділення енергії зменшується. Це призводить до охолодження зорі (внаслідок витрат на випромінювання) та її стискання. Температура ядра внаслідок стискання зростає й ядерні реакції за участі гідрогену продовжуються в шарі навколо інертного гелієвого ядра. Світність зорі значно зростає, зовнішні шари розширюються й вона перетворюється на червоного гіганта, рухаючись на діаграмі Герцшпрунга — Рассела уздовж відгалуження червоних гігантів.
На вершині відгалуження червоних гігантів, коли температура ядра досягає приблизно 3×108 K, починається потрійна альфа-реакція (горіння гелію), що зупиняє охолодження зорі та зростання яскравості. Зорі малої та середньої маси починають рухатись по діаграмі вниз вліво, уздовж горизонтального відгалуження (для зір II населення) або червоного згущення (для зір I населення). Після завершення горіння гелію в ядрі, зоря знову починає рухатись по діаграмі вгору вправо й її шлях майже паралельний попередньому треку червоних гігантів, звідки й походить назва асимптотичне відгалуження гігантів. Зорі на цій стадії еволюції називають «зорями АВГ».
Стадія АВГ
Стадію АВГ поділяють на дві частини — раннє АВГ (E-AGB) та термально пульсуюче (TP-AGB). На ранньому АВГ головним джерелом енергії є ядерна реакція гелію в оболонці довкола ядра, що складається переважно з вуглецю та кисню. Протягом цього періоду зоря розширюється й знову стає червоним гігантом. Її радіус може зрости до 200 R☉ (близько однієї астрономічної одиниці, тобто в Сонячній системі вона майже сягнула б орбіти Землі).
Після того як у гелієвій оболонці закінчується «паливо», починається стадія термальних пульсацій. Тепер зоря отримує енергію з ядерної реакції водневого шарового джерела, яке огортає тонкий внутрішній гелієвий шар та заважає стабільній реакції в цьому шарі. Однак із періодичністю 10 000—100 000 років гелій, який утворився в ядерних реакціях із водню, накопичується та врешті-решт гелієва оболонка вибухово спалахує; цей процес відомий як спалах гелієвого шарового джерела. Яскравість спалаху оболонки має пік у тисячі разів більший за звичайну яскравість такої зорі, але протягом наступних десятків чи сотень років експоненційно зменшується. Спалах оболонки спричиняє розширення та охолодження зорі, що зупиняє горіння водневої оболонки та спричиняє сильну конвекцію у зоні між водневою та гелієвою оболонками. Коли горіння гелієвої оболонки наближається до низу водневої, зростання температури знову запалює горіння водню, і цикл повторюється. Значне, але коротке зростання яскравості внаслідок спалаху гелієвої оболонки спричиняє зростання видимої яскравості на декілька десятих видимої зоряної величини на декілька сотень років. Ця зміна не пов'язана з пульсаціями, що характерні для зір цього типу та відбуваються з періодами від десятків до сотень днів.
Під час термальної пульсації, яка триває декілька сотень років, речовина з ядра зорі може підніматись та змішуватись з зовнішніми оболонками, змінюючи хімічний склад поверхні зоря; цей процес має назву зачерпування (англ. dredge-up). Унаслідок зачерпування зорі АВГ можуть у своєму спектрі демонструвати елементи S-процесу, а сильне (великомасштабне) зачерпування може призвести до формування вуглецевої зорі. Усі зачерпування після термальних пульсацій називаються третіми, оскільки перше зачерпування відбувається, коли зоря перебуває на відгалуженні червоних гігантів, а друге — на стадії E-AGB. У деяких випадках другого зачерпування може не бути, але зачерпування після термальних пульсацій все одно називають третіми. Після декількох перших термальних пульсацій їхня інтенсивність швидко зростає, тому треті зачерпування як правило є найглибшими і з найбільшою ймовірністю винесуть на поверхню зорі речовину ядра.
Зорі АВГ переважно є довгоперіодичними змінними та інтенсивно втрачають масу внаслідок зоряного вітру, а термальні пульсації призводять до періодів більшої інтенсивності втрати маси, що у поєднанні може призвести до від'єднання оболонки. Протягом стадії АВГ зоря може втратити до 50—70 % своєї маси.
Навколозоряні оболонки зір АВГ
Наслідком інтенсивної втрати маси зорями АВГ є те, що вони оточені протяжною навколозоряною оболонкою. За середнього часу перебування на АВГ у один мільярд років та швидкості зоряного вітру 10 км/с, максимальний радіус такої оболонки можна грубо оцінити у 3×1014 км (30 світлових років). Це максимальне значення, оскільки з відстанню від зорі, речовина зоряного вітру починає змішуватись з міжзоряною речовиною, а також розрахунок зроблено з припущенням, що не має різниці у швидкості між зорею та міжзоряним газом. З погляду динаміки, найбільш цікавими є відстані неподалік від зорі, де починається зоряний вітер та визначається рівень втрати маси. Але зовнішні шари навколозоряної оболонки цікаві хімічними процесами. А через їх розмір та меншу оптичну товщину, їх ще й легше спостерігати.
Температура навколозоряної оболонки визначається тепловими властивостями газу та пилу, але в будь-якому випадку вона падає з відстанню від фотосфери (яка має температуру 2000—3000 K). Хімічна картина навколозоряної оболонки зорі АВГ за відстанню від зорі передбачається приблизно такою:
- фотосфера: місцева хімія термодинамічної рівноваги;
- пульсуюча зоряна оболонка: хімія ударної хвилі;
- зона формування пилу: хімічно тиха;
- міжзоряна ультрафіолетова радіація та фотоліз молекул — складна хімія.
Тут відмінність між багатими на кисень та на вуглець зорями впливатиме на те, які сполуки будуть конденсуватись першими: оксиди чи карбіди, оскільки менш поширений із цих двох елементів швидше залишиться в газовій формі як COx. У зоні формування пилу, вогнетривкі елементи та похідні (Fe, Si, MgO, тощо) переходять з газової форми у пил. І цей новосформований пил негайно починає брати участь у каталізованих реакціях поверхні. Зоряні вітри зір АВГ є місцем формування космічного пилу та вважаються основним місцем його утворення у Всесвіті.
Зоряні вітри зір АВГ (мірид та OH/IR зір) також часто є джерелами мазерного випромінювання. Випромінюють молекули SiO, H2O та OH.
Після того, які ці зорі втрачають майже всю свою оболонку (лишається майже «голе» ядро), вони розвиваються далі у коротку фазу протопланетарної туманності, а кінцевою стадією оболонки є планетарна туманність (PNe).
Пізня термальна пульсація
Близько чверті зір після AGB проходять через епізод, який отримав назву «вдруге народжена». На цій стадії вуглецево-кисневе ядро оточене шаром гелію та зовнішнім шаром водню. Якщо знову починається ядерне горіння гелію, відбувається термальна пульсація, і зоря швидко повертається на стадію AGB, стаючи воднево-виродженим зоряним об'єктом з ядерною реакцією гелію. Якщо на момент такої термальної пульсації у зорі ще збереглася оболонка з ядерною реакцією водню, вона отримує назву «пізня термальна пульсація», якщо ядерна реакція водню вже відсутня, пульсація називається «дуже пізньою термальною пульсацією».
У зовнішній атмосфері такої «вдруге народженої» зорі формується зоряний вітер і зоря знову починає рухатись по еволюційному треку по діаграмі Герцшпрунга — Рассела. Однак ця стадія є дуже короткою — всього бл. 200 років, перш ніж зоря знову повертається на шлях до стадії білого карлика. У спостереженнях ця стадія пізньої термальної пульсації виглядає майже ідентично до зорі Вольфа — Райє посеред її власної планетарної туманності.
Над-AGB-зорі
Зорі з масою, наближеною до верхньої межі АВГ, демонструють деякі особливі характеристики й отримали назву над-AGB-зорі (англ. super-AGB stars). Вони мають маси не менше 7 M☉ і до 9—10 M☉ (деколи більше) і є перехідними до більш масивних надгігантів, в яких відбувається повноцінне ядерне горіння елементів, важчих за гелій. Під час потрійної альфа-реакції утворюється не лише вуглець, а й деякі важчі елементи: переважно кисень, трохи магнію, неону та навіть важчих елементів. У над-AGB-зорях утворюється частково вироджене вуглецево-кисневе ядро, досить велике, щоб почалося ядерне горіння вуглецю в спалахах, схожих на раніші гелієві спалахи. У цьому діапазоні мас друге зачерпування дуже сильне і внаслідок нього ядро залишається меншим маси, необхідної для ядерного горіння неону, яке відбувається у надгігантах більшої маси. Розмір термальних пульсацій та третіх зачерпувань натомість менший у порівнянні з AGB-зорями менших мас, а от частота термальних пульсацій значно вища. Деякі над-AGB-зорі можуть вибухати як наднові електронного захоплення, але більшість переходять у стадію киснево-неонового білого карлика. Оскільки зорі цього типу значно поширеніші, ніж надгіганти більших мас, вони можуть бути попередниками значної частина наднових, які спостерігаються; фіксація прикладів таких наднових з попередниками може надати цінне підтвердження моделей наднових, які зараз засновані на багатьох припущеннях.
Див. також
Примітки
- Еволюція зір // Астрономічний енциклопедичний словник / за заг. ред. І. А. Климишина та А. О. Корсунь. — Львів : Голов. астроном. обсерваторія НАН України : Львів. нац. ун-т ім. Івана Франка, 2003. — С. 142—144. — .
- Lattanzio, J.; Forestini, M. (1999). Le Bertre, T.; Lebre, A.; Waelkens, C. (ред.). Nucleosynthesis in AGB Stars. IAU Symposium. Т. 191. с. 31. Bibcode:1999IAUS..191...31L. ISBN .
- Iben, I. (1967). Stellar Evolution.VI. Evolution from the Main Sequence to the Red-Giant Branch for Stars of Mass 1 M☉, 1.25 M☉, and 1.5 M☉. The Astrophysical Journal. 147: 624. Bibcode:1967ApJ...147..624I. doi:10.1086/149040.
- Vassiliadis, E.; Wood, P. R. (1993). Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss. The Astrophysical Journal. 413 (2): 641. Bibcode:1993ApJ...413..641V. doi:10.1086/173033.
- Асимптотичне відгалуження гігантів // Астрономічний енциклопедичний словник / за заг. ред. І. А. Климишина та А. О. Корсунь. — Львів : Голов. астроном. обсерваторія НАН України : Львів. нац. ун-т ім. Івана Франка, 2003. — С. 28. — .
- Marigo, P. та ін. (2008). Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP-AGB models. Astronomy and Astrophysics. 482 (3): 883. arXiv:0711.4922. Bibcode:2008A&A...482..883M. doi:10.1051/0004-6361:20078467.
- Зачерпування // Астрономічний енциклопедичний словник / за заг. ред. І. А. Климишина та А. О. Корсунь. — Львів : Голов. астроном. обсерваторія НАН України : Львів. нац. ун-т ім. Івана Франка, 2003. — С. 165. — .
- Горбаньова Тетяна Іванівна. Спостережувані прояви процесів зачерпування в зорях малих мас : Дис... канд. наук:. — 2008..
- Gallino, R. та ін. (1998). Evolution and Nucleosynthesis in Low‐Mass Asymptotic Giant Branch Stars. II. Neutron Capture and thes‐Process. The Astrophysical Journal. 497 (1): 388. Bibcode:1998ApJ...497..388G. doi:10.1086/305437.
- Mowlavi, N. (1999). On the third dredge-up phenomenon in asymptotic giant branch stars. Astronomy and Astrophysics. 344: 617. arXiv:astro-ph/9903473. Bibcode:1999A&A...344..617M.
- Wood, P. R.; Olivier, E. A.; Kawaler, S. D. (2004). Long Secondary Periods in Pulsating Asymptotic Giant Branch Stars: An Investigation of Their Origin. The Astrophysical Journal. 604 (2): 800. Bibcode:2004ApJ...604..800W. doi:10.1086/382123.
- Habing, H. J. (1996). Circumstellar envelopes and Asymptotic Giant Branch stars. . 7 (2): 97. Bibcode:1996A&ARv...7...97H. doi:10.1007/PL00013287.
- Klochkova, V. G. (2014). Circumstellar envelope manifestations in the optical spectra of evolved stars. . 69 (3): 279. arXiv:1408.0599. Bibcode:2014AstBu..69..279K. doi:10.1134/S1990341314030031.
- Woitke, P. (2006). Too little radiation pressure on dust in the winds of oxygen-rich AGB stars. Astronomy and Astrophysics. 460 (2): L9. arXiv:astro-ph/0609392. Bibcode:2006A&A...460L...9W. doi:10.1051/0004-6361:20066322.
- Deacon, R. M.; Chapman, J. M.; Green, A. J.; Sevenster, M. N. (2007). H2O Maser Observations of Candidate Post‐AGB Stars and Discovery of Three High‐Velocity Water Sources. The Astrophysical Journal. 658 (2): 1096. arXiv:astro-ph/0702086. Bibcode:2007ApJ...658.1096D. doi:10.1086/511383.
- Werner, K.; Herwig, F. (2006). The Elemental Abundances in Bare Planetary Nebula Central Stars and the Shell Burning in AGB Stars. Publications of the Astronomical Society of the Pacific. 118 (840): 183. arXiv:astro-ph/0512320. Bibcode:2006PASP..118..183W. doi:10.1086/500443.
- Aerts, C.; Christensen-Dalsgaard, J.; Kurtz, D. W. (2010). Asteroseismology. Springer. с. 37–38. ISBN .
- Duerbeck, H. W. (2002). The final helium flash object V4334 Sgr (Sakurai's Object) - an overview. У Sterken, C.; Kurtz, D. W. (ред.). Observational aspects of pulsating B and A stars. ASP Conference Series. Т. 256. San Francisco: . с. 237–248. Bibcode:2002ASPC..256..237D. ISBN .
- Siess, L. (2006). Evolution of massive AGB stars. Astronomy and Astrophysics. 448 (2): 717. Bibcode:2006A&A...448..717S. doi:10.1051/0004-6361:20053043.
- Eldridge, J. J.; Tout, C. A. (2004). Exploring the divisions and overlap between AGB and super-AGB stars and supernovae. Memorie della Società Astronomica Italiana. 75: 694. arXiv:astro-ph/0409583. Bibcode:2004MmSAI..75..694E.
Подальше читання
- Langer, N. (PDF). Stars and Stellar evolution lecture notes. University of Bonn/Argelander-Institut für Astronomie. Архів оригіналу (PDF) за 13 жовтня 2014. Процитовано 5 листопада 2015.
- Habing, H. J.; Olofsson, H. (2004). Asymptotic Giant Branch Stars. Springer Science+Business Media. ISBN .
{{}}
: Пропущений або порожній|url=
() - McCausland, R. J. H.; Conlon, E. S.; Dufton, P. L.; Keenan, F. P. (1992). Hot post-asymptotic giant branch stars at high galactic latitudes. The Astrophysical Journal. 394 (1): 298—304. Bibcode:1992ApJ...394..298M. doi:10.1086/171582.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Ne plutati z Vidgaluzhennyam chervonih gigantiv Asimptoti chna gilka abo vidgalu zhennya giga ntiv AVG angl asymptotic giant branch AGB ce dilyanka na diagrami Gercshprunga Rassela utvorena zoryami maloyi ta pomirnoyi masi yaki perebuvayut na stadiyi termoyadernih reakcij u podvijnomu sharovomu dzhereli Cyu stadiyu prohodyat usi zori maloyi ta pomirnoyi masi 0 6 10 M na piznij stadiyi evolyuciyi Evolyuciya zir riznih mas predstavlena na diagrami Gercshprunga Rassela Asimptotichne vidgaluzhennya gigantiv poznacheno AGB ta navedeno dlya zori masoyu 2 masi Soncya Pri sposterezhenni zorya asimptotichnogo vidgaluzhennya gigantiv viglyadaye yak yaskravij chervonij gigant zi svitnistyu u tisyachi svitnostej Soncya Yiyi vnutrishnya budova harakterizuyetsya inertnim vuglecevo kisnevim yadrom sharom yadernogo gorinnya geliyu z utvorennyam vuglecyu sharom geliyu e yakomu yaderni reakciyi ne vidbuvayutsya dali sharom yadernogo gorinnya vodnyu z utvorennyam geliyu ta nareshti duzhe velikoyu obolonkoyu z rechovini za harakteristikami shozhoyi na zori golovnoyi poslidovnosti Evolyuciya zoriKoli zorya spalyuye zapasi vodnyu v yadri procesi yadernogo sintezu spovilnyuyutsya vidilennya energiyi zmenshuyetsya Ce prizvodit do oholodzhennya zori vnaslidok vitrat na viprominyuvannya ta yiyi stiskannya Temperatura yadra vnaslidok stiskannya zrostaye j yaderni reakciyi za uchasti gidrogenu prodovzhuyutsya v shari navkolo inertnogo geliyevogo yadra Svitnist zori znachno zrostaye zovnishni shari rozshiryuyutsya j vona peretvoryuyetsya na chervonogo giganta ruhayuchis na diagrami Gercshprunga Rassela uzdovzh vidgaluzhennya chervonih gigantiv Na vershini vidgaluzhennya chervonih gigantiv koli temperatura yadra dosyagaye priblizno 3 108 K pochinayetsya potrijna alfa reakciya gorinnya geliyu sho zupinyaye oholodzhennya zori ta zrostannya yaskravosti Zori maloyi ta serednoyi masi pochinayut ruhatis po diagrami vniz vlivo uzdovzh gorizontalnogo vidgaluzhennya dlya zir II naselennya abo chervonogo zgushennya dlya zir I naselennya Pislya zavershennya gorinnya geliyu v yadri zorya znovu pochinaye ruhatis po diagrami vgoru vpravo j yiyi shlyah majzhe paralelnij poperednomu treku chervonih gigantiv zvidki j pohodit nazva asimptotichne vidgaluzhennya gigantiv Zori na cij stadiyi evolyuciyi nazivayut zoryami AVG Stadiya AVG Formuvannya planetarnoyi tumannosti naprikinci perebuvannya zori na stadiyi asimptotichnogo vidgaluzhennya gigantiv Stadiyu AVG podilyayut na dvi chastini rannye AVG E AGB ta termalno pulsuyuche TP AGB Na rannomu AVG golovnim dzherelom energiyi ye yaderna reakciya geliyu v obolonci dovkola yadra sho skladayetsya perevazhno z vuglecyu ta kisnyu Protyagom cogo periodu zorya rozshiryuyetsya j znovu staye chervonim gigantom Yiyi radius mozhe zrosti do 200 R blizko odniyeyi astronomichnoyi odinici tobto v Sonyachnij sistemi vona majzhe syagnula b orbiti Zemli Pislya togo yak u geliyevij obolonci zakinchuyetsya palivo pochinayetsya stadiya termalnih pulsacij Teper zorya otrimuye energiyu z yadernoyi reakciyi vodnevogo sharovogo dzherela yake ogortaye tonkij vnutrishnij geliyevij shar ta zavazhaye stabilnij reakciyi v comu shari Odnak iz periodichnistyu 10 000 100 000 rokiv gelij yakij utvorivsya v yadernih reakciyah iz vodnyu nakopichuyetsya ta vreshti resht geliyeva obolonka vibuhovo spalahuye cej proces vidomij yak spalah geliyevogo sharovogo dzherela Yaskravist spalahu obolonki maye pik u tisyachi raziv bilshij za zvichajnu yaskravist takoyi zori ale protyagom nastupnih desyatkiv chi soten rokiv eksponencijno zmenshuyetsya Spalah obolonki sprichinyaye rozshirennya ta oholodzhennya zori sho zupinyaye gorinnya vodnevoyi obolonki ta sprichinyaye silnu konvekciyu u zoni mizh vodnevoyu ta geliyevoyu obolonkami Koli gorinnya geliyevoyi obolonki nablizhayetsya do nizu vodnevoyi zrostannya temperaturi znovu zapalyuye gorinnya vodnyu i cikl povtoryuyetsya Znachne ale korotke zrostannya yaskravosti vnaslidok spalahu geliyevoyi obolonki sprichinyaye zrostannya vidimoyi yaskravosti na dekilka desyatih vidimoyi zoryanoyi velichini na dekilka soten rokiv Cya zmina ne pov yazana z pulsaciyami sho harakterni dlya zir cogo tipu ta vidbuvayutsya z periodami vid desyatkiv do soten dniv Pid chas termalnoyi pulsaciyi yaka trivaye dekilka soten rokiv rechovina z yadra zori mozhe pidnimatis ta zmishuvatis z zovnishnimi obolonkami zminyuyuchi himichnij sklad poverhni zorya cej proces maye nazvu zacherpuvannya angl dredge up Unaslidok zacherpuvannya zori AVG mozhut u svoyemu spektri demonstruvati elementi S procesu a silne velikomasshtabne zacherpuvannya mozhe prizvesti do formuvannya vuglecevoyi zori Usi zacherpuvannya pislya termalnih pulsacij nazivayutsya tretimi oskilki pershe zacherpuvannya vidbuvayetsya koli zorya perebuvaye na vidgaluzhenni chervonih gigantiv a druge na stadiyi E AGB U deyakih vipadkah drugogo zacherpuvannya mozhe ne buti ale zacherpuvannya pislya termalnih pulsacij vse odno nazivayut tretimi Pislya dekilkoh pershih termalnih pulsacij yihnya intensivnist shvidko zrostaye tomu treti zacherpuvannya yak pravilo ye najglibshimi i z najbilshoyu jmovirnistyu vinesut na poverhnyu zori rechovinu yadra Zori AVG perevazhno ye dovgoperiodichnimi zminnimi ta intensivno vtrachayut masu vnaslidok zoryanogo vitru a termalni pulsaciyi prizvodyat do periodiv bilshoyi intensivnosti vtrati masi sho u poyednanni mozhe prizvesti do vid yednannya obolonki Protyagom stadiyi AVG zorya mozhe vtratiti do 50 70 svoyeyi masi Navkolozoryani obolonki zir AVG Naslidkom intensivnoyi vtrati masi zoryami AVG ye te sho voni otocheni protyazhnoyu navkolozoryanoyu obolonkoyu Za serednogo chasu perebuvannya na AVG u odin milyard rokiv ta shvidkosti zoryanogo vitru 10 km s maksimalnij radius takoyi obolonki mozhna grubo ociniti u 3 1014 km 30 svitlovih rokiv Ce maksimalne znachennya oskilki z vidstannyu vid zori rechovina zoryanogo vitru pochinaye zmishuvatis z mizhzoryanoyu rechovinoyu a takozh rozrahunok zrobleno z pripushennyam sho ne maye riznici u shvidkosti mizh zoreyu ta mizhzoryanim gazom Z poglyadu dinamiki najbilsh cikavimi ye vidstani nepodalik vid zori de pochinayetsya zoryanij viter ta viznachayetsya riven vtrati masi Ale zovnishni shari navkolozoryanoyi obolonki cikavi himichnimi procesami A cherez yih rozmir ta menshu optichnu tovshinu yih she j legshe sposterigati Temperatura navkolozoryanoyi obolonki viznachayetsya teplovimi vlastivostyami gazu ta pilu ale v bud yakomu vipadku vona padaye z vidstannyu vid fotosferi yaka maye temperaturu 2000 3000 K Himichna kartina navkolozoryanoyi obolonki zori AVG za vidstannyu vid zori peredbachayetsya priblizno takoyu fotosfera misceva himiya termodinamichnoyi rivnovagi pulsuyucha zoryana obolonka himiya udarnoyi hvili zona formuvannya pilu himichno tiha mizhzoryana ultrafioletova radiaciya ta fotoliz molekul skladna himiya Tut vidminnist mizh bagatimi na kisen ta na vuglec zoryami vplivatime na te yaki spoluki budut kondensuvatis pershimi oksidi chi karbidi oskilki mensh poshirenij iz cih dvoh elementiv shvidshe zalishitsya v gazovij formi yak COx U zoni formuvannya pilu vognetrivki elementi ta pohidni Fe Si MgO tosho perehodyat z gazovoyi formi u pil I cej novosformovanij pil negajno pochinaye brati uchast u katalizovanih reakciyah poverhni Zoryani vitri zir AVG ye miscem formuvannya kosmichnogo pilu ta vvazhayutsya osnovnim miscem jogo utvorennya u Vsesviti Zoryani vitri zir AVG mirid ta OH IR zir takozh chasto ye dzherelami mazernogo viprominyuvannya Viprominyuyut molekuli SiO H2O ta OH Pislya togo yaki ci zori vtrachayut majzhe vsyu svoyu obolonku lishayetsya majzhe gole yadro voni rozvivayutsya dali u korotku fazu protoplanetarnoyi tumannosti a kincevoyu stadiyeyu obolonki ye planetarna tumannist PNe Piznya termalna pulsaciya Blizko chverti zir pislya AGB prohodyat cherez epizod yakij otrimav nazvu vdruge narodzhena Na cij stadiyi vuglecevo kisneve yadro otochene sharom geliyu ta zovnishnim sharom vodnyu Yaksho znovu pochinayetsya yaderne gorinnya geliyu vidbuvayetsya termalna pulsaciya i zorya shvidko povertayetsya na stadiyu AGB stayuchi vodnevo virodzhenim zoryanim ob yektom z yadernoyu reakciyeyu geliyu Yaksho na moment takoyi termalnoyi pulsaciyi u zori she zbereglasya obolonka z yadernoyu reakciyeyu vodnyu vona otrimuye nazvu piznya termalna pulsaciya yaksho yaderna reakciya vodnyu vzhe vidsutnya pulsaciya nazivayetsya duzhe piznoyu termalnoyu pulsaciyeyu U zovnishnij atmosferi takoyi vdruge narodzhenoyi zori formuyetsya zoryanij viter i zorya znovu pochinaye ruhatis po evolyucijnomu treku po diagrami Gercshprunga Rassela Odnak cya stadiya ye duzhe korotkoyu vsogo bl 200 rokiv persh nizh zorya znovu povertayetsya na shlyah do stadiyi bilogo karlika U sposterezhennyah cya stadiya piznoyi termalnoyi pulsaciyi viglyadaye majzhe identichno do zori Volfa Rajye posered yiyi vlasnoyi planetarnoyi tumannosti Nad AGB zori Zori z masoyu nablizhenoyu do verhnoyi mezhi AVG demonstruyut deyaki osoblivi harakteristiki j otrimali nazvu nad AGB zori angl super AGB stars Voni mayut masi ne menshe 7 M i do 9 10 M dekoli bilshe i ye perehidnimi do bilsh masivnih nadgigantiv v yakih vidbuvayetsya povnocinne yaderne gorinnya elementiv vazhchih za gelij Pid chas potrijnoyi alfa reakciyi utvoryuyetsya ne lishe vuglec a j deyaki vazhchi elementi perevazhno kisen trohi magniyu neonu ta navit vazhchih elementiv U nad AGB zoryah utvoryuyetsya chastkovo virodzhene vuglecevo kisneve yadro dosit velike shob pochalosya yaderne gorinnya vuglecyu v spalahah shozhih na ranishi geliyevi spalahi U comu diapazoni mas druge zacherpuvannya duzhe silne i vnaslidok nogo yadro zalishayetsya menshim masi neobhidnoyi dlya yadernogo gorinnya neonu yake vidbuvayetsya u nadgigantah bilshoyi masi Rozmir termalnih pulsacij ta tretih zacherpuvan natomist menshij u porivnyanni z AGB zoryami menshih mas a ot chastota termalnih pulsacij znachno visha Deyaki nad AGB zori mozhut vibuhati yak nadnovi elektronnogo zahoplennya ale bilshist perehodyat u stadiyu kisnevo neonovogo bilogo karlika Oskilki zori cogo tipu znachno poshirenishi nizh nadgiganti bilshih mas voni mozhut buti poperednikami znachnoyi chastina nadnovih yaki sposterigayutsya fiksaciya prikladiv takih nadnovih z poperednikami mozhe nadati cinne pidtverdzhennya modelej nadnovih yaki zaraz zasnovani na bagatoh pripushennyah Div takozhVugleceva zorya Mira Miridi Planetarna tumannist Chervoni gigantiPrimitkiEvolyuciya zir Astronomichnij enciklopedichnij slovnik za zag red I A Klimishina ta A O Korsun Lviv Golov astronom observatoriya NAN Ukrayini Lviv nac un t im Ivana Franka 2003 S 142 144 ISBN 966 613 263 X Lattanzio J Forestini M 1999 Le Bertre T Lebre A Waelkens C red Nucleosynthesis in AGB Stars IAU Symposium T 191 s 31 Bibcode 1999IAUS 191 31L ISBN 978 1 886733 90 9 Iben I 1967 Stellar Evolution VI Evolution from the Main Sequence to the Red Giant Branch for Stars of Mass 1 M 1 25 M and 1 5 M The Astrophysical Journal 147 624 Bibcode 1967ApJ 147 624I doi 10 1086 149040 Vassiliadis E Wood P R 1993 Evolution of low and intermediate mass stars to the end of the asymptotic giant branch with mass loss The Astrophysical Journal 413 2 641 Bibcode 1993ApJ 413 641V doi 10 1086 173033 Asimptotichne vidgaluzhennya gigantiv Astronomichnij enciklopedichnij slovnik za zag red I A Klimishina ta A O Korsun Lviv Golov astronom observatoriya NAN Ukrayini Lviv nac un t im Ivana Franka 2003 S 28 ISBN 966 613 263 X Marigo P ta in 2008 Evolution of asymptotic giant branch stars II Optical to far infrared isochrones with improved TP AGB models Astronomy and Astrophysics 482 3 883 arXiv 0711 4922 Bibcode 2008A amp A 482 883M doi 10 1051 0004 6361 20078467 Zacherpuvannya Astronomichnij enciklopedichnij slovnik za zag red I A Klimishina ta A O Korsun Lviv Golov astronom observatoriya NAN Ukrayini Lviv nac un t im Ivana Franka 2003 S 165 ISBN 966 613 263 X Gorbanova Tetyana Ivanivna Sposterezhuvani proyavi procesiv zacherpuvannya v zoryah malih mas Dis kand nauk 2008 Gallino R ta in 1998 Evolution and Nucleosynthesis in Low Mass Asymptotic Giant Branch Stars II Neutron Capture and thes Process The Astrophysical Journal 497 1 388 Bibcode 1998ApJ 497 388G doi 10 1086 305437 Mowlavi N 1999 On the third dredge up phenomenon in asymptotic giant branch stars Astronomy and Astrophysics 344 617 arXiv astro ph 9903473 Bibcode 1999A amp A 344 617M Wood P R Olivier E A Kawaler S D 2004 Long Secondary Periods in Pulsating Asymptotic Giant Branch Stars An Investigation of Their Origin The Astrophysical Journal 604 2 800 Bibcode 2004ApJ 604 800W doi 10 1086 382123 Habing H J 1996 Circumstellar envelopes and Asymptotic Giant Branch stars 7 2 97 Bibcode 1996A amp ARv 7 97H doi 10 1007 PL00013287 Klochkova V G 2014 Circumstellar envelope manifestations in the optical spectra of evolved stars 69 3 279 arXiv 1408 0599 Bibcode 2014AstBu 69 279K doi 10 1134 S1990341314030031 Woitke P 2006 Too little radiation pressure on dust in the winds of oxygen rich AGB stars Astronomy and Astrophysics 460 2 L9 arXiv astro ph 0609392 Bibcode 2006A amp A 460L 9W doi 10 1051 0004 6361 20066322 Deacon R M Chapman J M Green A J Sevenster M N 2007 H2O Maser Observations of Candidate Post AGB Stars and Discovery of Three High Velocity Water Sources The Astrophysical Journal 658 2 1096 arXiv astro ph 0702086 Bibcode 2007ApJ 658 1096D doi 10 1086 511383 Werner K Herwig F 2006 The Elemental Abundances in Bare Planetary Nebula Central Stars and the Shell Burning in AGB Stars Publications of the Astronomical Society of the Pacific 118 840 183 arXiv astro ph 0512320 Bibcode 2006PASP 118 183W doi 10 1086 500443 Aerts C Christensen Dalsgaard J Kurtz D W 2010 Asteroseismology Springer s 37 38 ISBN 978 1 4020 5178 4 Duerbeck H W 2002 The final helium flash object V4334 Sgr Sakurai s Object an overview U Sterken C Kurtz D W red Observational aspects of pulsating B and A stars ASP Conference Series T 256 San Francisco s 237 248 Bibcode 2002ASPC 256 237D ISBN 1 58381 096 X Siess L 2006 Evolution of massive AGB stars Astronomy and Astrophysics 448 2 717 Bibcode 2006A amp A 448 717S doi 10 1051 0004 6361 20053043 Eldridge J J Tout C A 2004 Exploring the divisions and overlap between AGB and super AGB stars and supernovae Memorie della Societa Astronomica Italiana 75 694 arXiv astro ph 0409583 Bibcode 2004MmSAI 75 694E Podalshe chitannyaLanger N PDF Stars and Stellar evolution lecture notes University of Bonn Argelander Institut fur Astronomie Arhiv originalu PDF za 13 zhovtnya 2014 Procitovano 5 listopada 2015 Habing H J Olofsson H 2004 Asymptotic Giant Branch Stars Springer Science Business Media ISBN 978 0 387 00880 6 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Propushenij abo porozhnij url dovidka McCausland R J H Conlon E S Dufton P L Keenan F P 1992 Hot post asymptotic giant branch stars at high galactic latitudes The Astrophysical Journal 394 1 298 304 Bibcode 1992ApJ 394 298M doi 10 1086 171582