Оператор сліду — розширення поняття звуження функції на границю області для класичних функцій на випадок класів функцій із просторів Соболєва.
Якщо — область в евклідовому просторі і функція , то приймає значення на границі , яке позначається . Виникає питання: чи можна визначити коректно значення на границі для довільної функції (така функція не є неперервною та визначається з точністю до міри нуль, а міра Лебега множини дорівнює нулю).
Теорема
Нехай — обмежена область і є . Тоді існує такий лінійний оператор
, що:
1), якщо ; 2).
Означення
Оператор визначений у теоремі, називається оператором сліду, а — слідом функції на границі .
Доведення
1. Припустимо спочатку, що і границя області є плоскою в деякому околі точки , тобто існує таке число , що .
Позначимо
Виберемо функцію таку, що на і на . Позначимо i . Застосовуючи нерівність Юнга, виводимо
(*)
2. Якщо межа не є плоскою в околі точки , то розпрямляючи межу за допомогою вектор-відображення i застосувавши (*) виводимо нерівність
де .
3.Оскільки — компакт, то існує скінченне число точок і відкритих множин , які містять і
та . Підсумовуючи останні нерівності за отримаємо нерівність
Для довільної функції визначимо оператор . Очевидно, що він є лінійним і
(**)
4. Тепер розглянемо довільну функцію . Існує послідовність така, що
в при
Для кожної функції визначена функція і має місце нерівність (**). Тоді
.
Отже, — фундаментальна послідовність у . Границею цієї послідовності позначимо через , тобто . Очевидно, що дана границя не залежить від вибору апроксимуючої послідовності. Перейшовши до границі в нерівності
при , отримаємо
.
Див. також
Література
Мельник Т.А, Креневич А.П. Теорія просторів Соболєва та узагальнені розв’язки крайових задач: підручник – К.: ВПЦ "Київський Університет", 2017.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Operator slidu rozshirennya ponyattya zvuzhennya funkciyi na granicyu oblasti dlya klasichnih funkcij na vipadok klasiv funkcij iz prostoriv Sobolyeva Funkciya viznachena na pryamokutniku vgori chervonij kolir ta yiyi slid chervonij vnizu Yaksho W displaystyle Omega oblast v evklidovomu prostori R n displaystyle mathbb R n i funkciya U C W displaystyle U in C bar Omega to U displaystyle U prijmaye znachennya na granici W displaystyle partial Omega yake poznachayetsya U d W displaystyle U d Omega Vinikaye pitannya chi mozhna viznachiti korektno znachennya na granici W displaystyle partial Omega dlya dovilnoyi funkciyi U W 1 p W displaystyle U in W 1 p Omega taka funkciya ne ye neperervnoyu ta viznachayetsya z tochnistyu do miri nul a mira Lebega mnozhini W displaystyle partial Omega dorivnyuye nulyu TeoremaNehaj W displaystyle Omega obmezhena oblast i W displaystyle partial Omega ye C 1 p 1 displaystyle C 1 p in 1 infty Todi isnuye takij linijnij operator T W 1 p W L p W displaystyle T W 1 p Omega mapsto L p partial Omega sho 1 T U U d W displaystyle T U U d Omega yaksho U W 1 p W C W displaystyle U in W 1 p Omega cap C bar Omega 2 C gt 0 U W 1 p W T U L p W C U W 1 p W displaystyle exists C gt 0 forall U in W 1 p Omega T U L p partial Omega leqslant C U W 1 p Omega OznachennyaOperator T displaystyle T viznachenij u teoremi nazivayetsya operatorom slidu a T U displaystyle T U slidom funkciyi na granici W displaystyle partial Omega Dovedennya1 Pripustimo spochatku sho U C 1 W displaystyle U in C 1 Omega i granicya oblasti W displaystyle Omega ye ploskoyu v deyakomu okoli tochki x 0 displaystyle x 0 tobto isnuye take chislo r gt 0 displaystyle r gt 0 sho B r x 0 W B r x 0 x x n 0 B r displaystyle B r x 0 cap bar Omega B r x 0 cap x x n geqslant 0 B r Poznachimo B r B r x 0 x x n 0 displaystyle B r B r x 0 cap x x n leqslant 0 Viberemo funkciyu z C 0 B r x 0 displaystyle zeta in C 0 infty B r x 0 taku sho z 0 displaystyle zeta geqslant 0 na B r x 0 displaystyle B r x 0 i z 1 displaystyle zeta equiv 1 na B r 2 x 0 displaystyle B r 2 x 0 Poznachimo G B r 2 x 0 x x n 0 displaystyle Gamma B r 2 x 0 cap x x n 0 i x x 1 x n 1 R n 1 x n 0 displaystyle x prime x 1 x n 1 in mathbb R n 1 x n 0 Zastosovuyuchi nerivnist Yunga vivodimo G U p d x x n 0 z U p d x B r x n z U p d x B r U p x n z z p U p 1 sgn U x n U d x C B r U p i 1 n x i U p d x C U W 1 p B r p displaystyle int limits Gamma U p dx prime leqslant int limits x n 0 zeta U p dx prime int limits B r partial x n zeta U p dx int limits B r U p partial x n zeta zeta p U p 1 operatorname sgn U partial x n U dx leqslant C int limits B r U p sum i 1 n partial x i U p dx leqslant C U W 1 p B r p 2 Yaksho mezha ne ye ploskoyu v okoli B r x 0 displaystyle B r x 0 tochki x 0 W displaystyle x 0 in partial Omega to rozpryamlyayuchi mezhu za dopomogoyu vektor vidobrazhennya F B r x 0 R n displaystyle F B r x 0 mapsto mathbb R n i zastosuvavshi vivodimo nerivnist G U p d s x C U W 1 p W p displaystyle int limits Gamma U p d sigma x leqslant C U W 1 p Omega p de G W B r 2 x 0 displaystyle Gamma partial Omega cap B r 2 x 0 3 Oskilki W displaystyle partial Omega kompakt to isnuye skinchenne chislo tochok x i 0 W i 1 N displaystyle x i 0 in partial Omega i 1 N i vidkritih mnozhin G i displaystyle Gamma i yaki mistyat x i 0 displaystyle x i 0 i W i 1 N G i displaystyle partial Omega subset bigcup i 1 N Gamma i ta U L p G i p C i U W 1 p W p displaystyle U L p Gamma i p leqslant C i U W 1 p Omega p Pidsumovuyuchi ostanni nerivnosti za i 1 N displaystyle i 1 N otrimayemo nerivnist U L p W C i U W 1 p W displaystyle U L p partial Omega leqslant C i U W 1 p Omega Dlya dovilnoyi funkciyi U C 1 W displaystyle U in C 1 Omega viznachimo operator T U U W displaystyle T U U partial Omega Ochevidno sho vin ye linijnim i T U L p W C U W 1 p W displaystyle T U L p partial Omega leqslant C U W 1 p Omega 4 Teper rozglyanemo dovilnu funkciyu U W 1 p W displaystyle U in W 1 p Omega Isnuye poslidovnist U m m 1 C W displaystyle U m m 1 infty subset C infty bar Omega taka sho U m U displaystyle U m longrightarrow U v W 1 p W displaystyle W 1 p Omega pri m displaystyle m longrightarrow infty Dlya kozhnoyi funkciyi U m displaystyle U m viznachena funkciya T U m L p W displaystyle T U m in L p partial Omega i maye misce nerivnist Todi T U m T U k L p W C U m U k W 1 p W displaystyle T U m T U k L p partial Omega leqslant C U m U k W 1 p Omega Otzhe T U m m 1 displaystyle T U m m 1 infty fundamentalna poslidovnist u L p W displaystyle L p partial Omega Graniceyu ciyeyi poslidovnosti poznachimo cherez T U displaystyle T U tobto T U lim m T U m displaystyle T U lim m mapsto infty T U m Ochevidno sho dana granicya ne zalezhit vid viboru aproksimuyuchoyi poslidovnosti Perejshovshi do granici v nerivnosti T U m L p W C U m W 1 p W displaystyle T U m L p partial Omega leqslant C U m W 1 p Omega pri m displaystyle m longrightarrow infty otrimayemo T U L p W C U W 1 p W displaystyle T U L p partial Omega leqslant C U W 1 p Omega displaystyle Box Div takozhZvuzhennya funkciyi Prostir SobolyevaLiteratura Melnik T A Krenevich A P Teoriya prostoriv Sobolyeva ta uzagalneni rozv yazki krajovih zadach pidruchnik K VPC Kiyivskij Universitet 2017