Радіолінія водню 21 см (радіолінія гідрогену 21 см) — радіовипромінювання атомарного водню на хвилі 21 см (1420 МГц). Ця лінія лежить у мікрохвильовому діапазоні та є найважливішою для вивчення міжзоряного середовища в радіоастрономії. Дослідження лінії дає важливу інформацію про розподіл гідрогену в галактиках, оскільки нейтральний водень в основному стані становить більшу частину міжзоряної речовини, а виявити його можна лише за випромінюванням у цій лінії.
Механізм
Випромінювання в лінії зумовлене надтонким розщепленням основного енергетичного стану нейтрального атома водню на два близькі підрівні: верхній (збуджений) рівень відповідає паралельним спінам ядра та електрона, а нижній (основний) — антипаралельним. Перехід атома з верхнього рівня на нижній призводить до випромінювання кванта з частотою 1 420 405 751,7667 ± 0,0009 Hz, що еквівалентно довжині хвилі 21,106 114 542 см у вакуумі. Різниця в енергії між рівнями дорівнює енергії фотона, що випромінюється. Зі співвідношення Ейнштейна—Планка: , де ν — частота випромінювання (1420405751,7667 Гц), а h — стала Планка, можна визначити, що вона становить ~ 5,874 33 µeV.
Цей перехід є забороненим (в електродипольному наближенні), однак він дозволений у магнітодипольному наближенні, щоправда, із надзвичайно малим коефіцієнтом — 2,9× 10−15 с−1, тобто, середній час існування збудженого стану становить близько 11 мільйонів років. Спонтанний перехід у лабораторних умовах має дуже низьку потужність випромінювання, але в астрономічних масштабах, завдяки поширеності атомарного гідрогену в нашій Галактиці та в інших галактиках, радіолінія досить інтенсивна. Завдяки довгому існуванню атома в збудженому стані, лінія має надзвичайно малу природну ширину. Її розширення відбувається внаслідок доплерівського зсуву, зумовленого рухом окремих гідрогенових хмар, ненульову температуру в них та зееманове розщеплення лінії в галактичному магнітному полі.
Збудження атомів (тобто, перехід до квантового стану з більшою енергією) відбувається внаслідок зіткнення між ними, якщо кінетична енергія більша за різницю між енергетичними рівнями. Зі співвідношення , де k — стала Больцмана (8,617× 10−5еВ·K−1), можна розрахувати температуру, за якої відбуватиметься збудження. Вона становить ~0,068 К.
Історія
Можливість випромінювання атомом гідрогену радіохвиль на частоті 1420,4058 МГц (внаслідок переходу між двома близькими енергетичними підрівнями основного стану) теоретично передбачив 1945 року Хендрік Ван де Хюлст, однак він сумнівався, що таке випромінювання може бути виявлено. 1949 року Й. С. Шкловський розрахував інтенсивність випромінювання міжзоряного гідрогену й показав, що її достатньо для виявлення лінії засобами радіоастрономії.
Випромінювання на хвилі 21 см виявили 1951 року. Майже одночасно це зробили Х. Ювен та Е. Перселл із Гарвардського університету і голландські астрономи К. Мюллер та Я. Оорт, а згодом — Крістіансен та Хіндман з Австралії.
Застосування
Радіолінія 21 см лежить у мікрохвильовому діапазоні, в якому земна атмосфера майже прозора, тому її можна спостерігати безпосередньо з поверхні Землі. Спостереження в цій лінії є ефективним засобом вивчення Всесвіту.
Галактична астрономія
Атомарний гідроген в основному енергетичному стані становить близько половини міжзоряної речовини в нашій Галактиці. Ніяким іншим випромінюванням він себе не виявляє, тому радіолінія 21 см дає дуже цінну, здебільшого унікальну інформацію про речовину в міжзоряному просторі. Фактично, інтенсивність випромінювання показує кількість атомів гідрогену на промені зору (за винятком напрямків, де розташовані найщільніші хмари, які непрозорі для випромінювання). Профіль лінії дозволяє визначити швидкість окремих хмар (за доплерівським зсувом у лінії) та кінетичну температуру в них (за шириною кожного піку), яка становить близько 100 K.
Нейтральний гідроген зосереджений у доволі рівному й порівняно тонкому шарі (≈ 220 пк) поблизу галактичної площини. На периферії (на відстані понад 10—12 кпк від галактичного центру) товщина шару збільшується (до 1000 пк) і він може відхилятися від площини. У розподілі гідрогену доволі чітко вирізняються спіральні рукави. У рукавах гідроген розподілений нерівномірно — гідрогенові хмари утворюють комплекси розміром 200×50 пк, витягнуті в галактичній площині. Криву обертання нашої Галактики було розраховано із застосуванням радіолінії 21 см.
Якщо хмара гідрогену підсвічується радіоджерелом значно більшої інтенсивності, ніж її радіолінія випромінювання, то в спектрі радіоджерела спостерігається лінія поглинання. За зеемановим розщепленням ліній поглинання у спектрах від потужних радіоджерел можна оцінити магнітне поле всередині хмар.
Позагалактична астрономія
Випромінювання на лінії 21 см зареєстровано більше ніж від сотні галактик. Його червоний зсув відповідає червоному зсуву оптичних ліній. Зокрема, лінія від квазара [en] виявилася зсунутою з частоти 1420,4 МГц до 839,4 Мгц.
Спостереження дозволили встановити відношення маси нейтрального атомарного гідрогену до загальної маси галактики залежно від її типу. Мінімальна кількість нейтрального гідрогену — в еліптичних галактиках. Для переважної більшості з них його частка не перевищує 0,1 %. У спіральних галактиках вона становить кілька відсотків (мінімальна кількість — у галактиках типу Sa). У неправильних галактиках (Ir) може досягати кількадесят відсотків.
Для кількох найближчих галактик (галактики Андромеди, галактики Трикутника) визначено внутрішній розподіл атомарного гідрогену.
Космологія
Радіолінія становить великий інтерес для космології Великого вибуху, тому що це єдиний відомий спосіб вивчення «темних віків»: часів від рекомбінації до реіонізації. Враховуючи червоний зсув, у наші часи випромінювання буде спостерігатися на частотах від 200 МГц до 9 МГц. Потенційно це має два застосування. По-перше, шляхом дослідження червоного зсуву радіолінії можна, в принципі, дізнатися дуже точний розподіл у спектрі випромінювання речовини в період після рекомбінації. По-друге, реіонізація Всесвіту (випромінюванням зір чи квазарів) виглядатиме прогалинами на тлі основної радіолінії.
Пропозиції про застосування для контакту з позаземними цивілізаціями
На пластинках Піонера зображено перехід атома гідрогену між двома підрівнями надтонкої структури. Довжина хвилі такого переходу (21 см) призначена для того, щоб можна було обчислити масштаб зображення. Наприклад, висота жіночої фігури на малюнку ввосьмеро більша довжини хвилі (тобто, вона становить 21 × 8 ≈ 168 см). Аналогічно, частота такого переходу є одиницею вимірювання часу на цьому малюнку (а також на малюнках пластинок Вояджер-1 та Вояджер-2). На цих малюнках зображено розташування Сонця відносно 14 пульсарів, періоди обертання яких (станом на 1977 рік) подано в одиницях частоти цієї лінії. За задумом розробників пластинок, розвинені цивілізації спроможні за даними спостереження цих квазарів обчислити розташування Сонячної системи на час запуску апаратів.
1959 року італійський фізик Джузеппе Коццоні й американський фізик Філіп Моррісон опублікували статтю «Пошук міжзоряних комунікацій». У цій статті було запропоновано шукати контакт із позаземними цивілізаціями саме на лінії 21 см. Стаття Коццоні й Моррісона надала теоретичну основу для появи програми SETI. У програмі SETI частота радіолінії 21 см вважається сприятливою для пошуку сигналів від позаземних цивілізацій.
[ru] запропонував застосувати для пошуку частоту радіолінії, помножену на число π (або на 2π):
- π × 1420,40575177 МГц = 4,46233627 ГГц
- 2π × 1420,40575177 МГц = 8,92467255 ГГц
Оскільки π є ірраціональним та трансцедентним числом, то такі частоти не можуть утворитися природним шляхом, як гармоніки, що, вочевидь, означатиме штучне походження сигналу. До того ж, такий сигнал не перекриватиметься з самою радіолінією гідрогену чи якоюсь її гармонікою.
Квантовий гідрогеновий генератор
Випромінювання гідрогену на лінії 21 см застосовується для побудови [en] (квантового генератора частоти), що має досить високу точність (~10−13). Зокрема, їх застосовують у радіоінтерферометрії з наддовгими базами як гетеродини та на штучних супутниках як атомні годинники.
Див. також
Джерела
- Dupays, Arnaud; Beswick, Alberto; Lepetit, Bruno; Rizzo, Carlo (August 2003). Proton Zemach radius from measurements of the hyperfine splitting of hydrogen and muonic hydrogen (PDF). Physical Review A. 68 (5). arXiv:quant-ph/0308136. Bibcode:2003PhRvA..68e2503D. doi:10.1103/PhysRevA.68.052503.
- The Hydrogen 21-cm Line. Hyperphysics. Georgia State University. 30 жовтня 2004. Процитовано 20 вересня 2008.
- Постнов, К.А. (2001). 4.2 Радиолиния нейтрального водорода 21 см. Лекции по общей астрофизике для физиков. Астронет: Физический факультет МГУ. Процитовано 20 вересня 2017.
{{}}
:|archive-date=
вимагає|archive-url=
() - Prediction of 21cm Line Radiation. National Radio Astronomy Observatory. 11-Mar-2003 16:06:09 EST. Процитовано 20 вересня 2017.(англ.)
- The Discovery of Hydrogen Radio emission by Ewen and Purcell. 20-Jul-2011 10:01:33 EDT. Процитовано 20 вересня 2017.
- Шкловский, И.С. (1949). Астрономический журнал. 26 (10).
{{}}
: Пропущений або порожній|title=
() - Сороченко,, Р. Л. (1988). Радиолиния водорода. У Главный редактор А. М. Прохоров (ред.). Физическая энциклопедия. М: Советская энциклопедия. Процитовано 20 вересня 2017.
- Ewan, H. I.; Purcell, E. M. (September 1951). Observation of a Line in the Galactic Radio Spectrum: Radiation from Galactic Hydrogen at 1,420 Mc./sec. Nature. 168 (4270): 356. Bibcode:1951Natur.168..356E. doi:10.1038/168356a0. Процитовано 21 вересня 2008.
- Muller, C. A.; Oort, J. H. (September 1951). The Interstellar Hydrogen Line at 1,420 Mc./sec., and an Estimate of Galactic Rotation (PDF). Nature. 168 (4270): 357—358. Bibcode:1951Natur.168..357M. doi:10.1038/168357a0. Процитовано 21 вересня 2008.
- Christiansen W.N., Hindman J.V. (1952). A Preliminary Survey of 1420 Mc/s. Line Emission from Galactic Hydrogen. Australian J. Sci. Res. 5: 437—455. doi:10.1071/CH9520437. Процитовано 20 вересня 2017.
- Радіолінія водню 21 см // Астрономічний енциклопедичний словник / за заг. ред. І. А. Климишина та А. О. Корсунь. — Львів : Голов. астроном. обсерваторія НАН України : Львів. нац. ун-т ім. Івана Франка, 2003. — С. 392. — .
- Р. Л. Сороченко (1986). Радиолиния водорода 21 см. У Главный редактор: Р.А. Сюняев. Редакционная коллегия: Ю.Н. Дрожжин-Лабинский, Я.Б. Зельдович, В.Г. Курт, Р.3. Сагдеев (ред.). Физика космоса. Маленькая энциклопедия (російською) (вид. Издание второе, переработанное и дополненное). Москва: Советская энциклопедия. Загальний огляд – Предисловие к электронной версии 2-го издания энциклопедии «Физика космоса» (6 июля 2004 года).
- Галактики спіральні // Астрономічний енциклопедичний словник / за заг. ред. І. А. Климишина та А. О. Корсунь. — Львів : Голов. астроном. обсерваторія НАН України : Львів. нац. ун-т ім. Івана Франка, 2003. — С. 93. — .
- Basalla, George (2006). Civilized Life in the Universe. Oxford University Press. с. 133–135. ISBN .
- Маковецкий, П.В. (1976). О структуре позывных внеземных цивилизаций. Астрономический журнал. 53 (1): 221.
{{}}
: Cite має пустий невідомий параметр:|1=
() - Маковецкий, Пётр (1979). Задача 109. Пароль разума. Смотри в корень (Сборник любопытных задач и вопросов) (вид. 4). М.: «Наука».(рос.)
- Гайгеров Б. А. и др. (1972). Квантовая мера частоты на водородном генераторе. Измерительная техника (11). Процитовано 22 вересня 2017.
Джерела для розділу «космологія»
- Forecast for Epoch-of-Reionization as viewable by the PrimevAl Structure Telescope (PAST) arXiv:astro-ph/0404083.
- Madau, P.; Meiksin, A.; Rees, M. J. (1997). 21-cm Tomography of the Intergalactic Medium at High Redshift. Astrophys. J. 475: 429—444. arXiv:astro-ph/9608010. Bibcode:1997ApJ...475..429M. doi:10.1086/303549.
- Ciardi, B.; Madau, P. (2003). Probing Beyond the Epoch of Hydrogen Reionization with 21 Centimeter Radiation. Astrophys. J. 596: 1—8. arXiv:astro-ph/0303249. Bibcode:2003ApJ...596....1C. doi:10.1086/377634.
- Zaldarriaga, M.; Furlanetto, S.; Hernquist, L. (2004). 21 Centimeter Fluctuations from Cosmic Gas at High Redshifts. Astrophys. J. 608: 622—635. arXiv:astro-ph/0311514. Bibcode:2004ApJ...608..622Z. doi:10.1086/386327.
- Furlanetto, S.; Sokasian, A.; Hernquist, L. (2004). Observing the Reionization Epoch Through 21 Centimeter Radiation. Mon. Not. Roy. Astron. Soc. 347: 187—195. arXiv:astro-ph/0305065. Bibcode:2004MNRAS.347..187F. doi:10.1111/j.1365-2966.2004.07187.x.
- Loeb, A.; Zaldarriaga, M. (2004). Measuring the Small-Scale Power Spectrum of Cosmic Density Fluctuations Through 21 cm Tomography Prior to the Epoch of Structure Formation. Phys. Rev. Lett. 92: 211301. arXiv:astro-ph/0312134. Bibcode:2004PhRvL..92u1301L. doi:10.1103/PhysRevLett.92.211301. PMID 15245272.
- Santos, M. G.; Cooray, A.; Knox, L. (2005). Multifrequency analysis of 21 cm fluctuations from the Era of Reionization. Astrophys. J. 625: 575—587. arXiv:astro-ph/0408515. Bibcode:2005ApJ...625..575S. doi:10.1086/429857.
- Barkana, R.; Loeb, A. (2005). Detecting the Earliest Galaxies Through Two New Sources of 21cm Fluctuations. Astrophys. J. 626: 1—11. arXiv:astro-ph/0410129. Bibcode:2005ApJ...626....1B. doi:10.1086/429954.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Radioliniya vodnyu 21 sm radioliniya gidrogenu 21 sm radioviprominyuvannya atomarnogo vodnyu na hvili 21 sm 1420 MGc Cya liniya lezhit u mikrohvilovomu diapazoni ta ye najvazhlivishoyu dlya vivchennya mizhzoryanogo seredovisha v radioastronomiyi Doslidzhennya liniyi daye vazhlivu informaciyu pro rozpodil gidrogenu v galaktikah oskilki nejtralnij voden v osnovnomu stani stanovit bilshu chastinu mizhzoryanoyi rechovini a viyaviti jogo mozhna lishe za viprominyuvannyam u cij liniyi Perehid atoma gidrogenu zi stanu z paralelnimi spinami elektrona ta protona u stan z antiparalelnimi spinami vidbuvayetsya z viprominyuvannyam elektromagnitnogo kvanta z dovzhinoyu hvili 21 sm MehanizmViprominyuvannya v liniyi zumovlene nadtonkim rozsheplennyam osnovnogo energetichnogo stanu nejtralnogo atoma vodnyu na dva blizki pidrivni verhnij zbudzhenij riven vidpovidaye paralelnim spinam yadra ta elektrona a nizhnij osnovnij antiparalelnim Perehid atoma z verhnogo rivnya na nizhnij prizvodit do viprominyuvannya kvanta z chastotoyu 1 420 405 751 7667 0 0009 Hz sho ekvivalentno dovzhini hvili 21 106 114 542 sm u vakuumi Riznicya v energiyi mizh rivnyami dorivnyuye energiyi fotona sho viprominyuyetsya Zi spivvidnoshennya Ejnshtejna Planka E h n displaystyle E h nu de n chastota viprominyuvannya 1420405751 7667 Gc a h stala Planka mozhna viznachiti sho vona stanovit 5 874 33 µeV Cej perehid ye zaboronenim v elektrodipolnomu nablizhenni odnak vin dozvolenij u magnitodipolnomu nablizhenni shopravda iz nadzvichajno malim koeficiyentom 2 9 10 15 s 1 tobto serednij chas isnuvannya zbudzhenogo stanu stanovit blizko 11 miljoniv rokiv Spontannij perehid u laboratornih umovah maye duzhe nizku potuzhnist viprominyuvannya ale v astronomichnih masshtabah zavdyaki poshirenosti atomarnogo gidrogenu v nashij Galaktici ta v inshih galaktikah radioliniya dosit intensivna Zavdyaki dovgomu isnuvannyu atoma v zbudzhenomu stani liniya maye nadzvichajno malu prirodnu shirinu Yiyi rozshirennya vidbuvayetsya vnaslidok doplerivskogo zsuvu zumovlenogo ruhom okremih gidrogenovih hmar nenulovu temperaturu v nih ta zeemanove rozsheplennya liniyi v galaktichnomu magnitnomu poli Zbudzhennya atomiv tobto perehid do kvantovogo stanu z bilshoyu energiyeyu vidbuvayetsya vnaslidok zitknennya mizh nimi yaksho kinetichna energiya bilsha za riznicyu mizh energetichnimi rivnyami Zi spivvidnoshennya T D E k displaystyle T Delta E k de k stala Bolcmana 8 617 10 5eV K 1 mozhna rozrahuvati temperaturu za yakoyi vidbuvatimetsya zbudzhennya Vona stanovit 0 068 K IstoriyaMozhlivist viprominyuvannya atomom gidrogenu radiohvil na chastoti 1420 4058 MGc vnaslidok perehodu mizh dvoma blizkimi energetichnimi pidrivnyami osnovnogo stanu teoretichno peredbachiv 1945 roku Hendrik Van de Hyulst odnak vin sumnivavsya sho take viprominyuvannya mozhe buti viyavleno 1949 roku J S Shklovskij rozrahuvav intensivnist viprominyuvannya mizhzoryanogo gidrogenu j pokazav sho yiyi dostatno dlya viyavlennya liniyi zasobami radioastronomiyi Viprominyuvannya na hvili 21 sm viyavili 1951 roku Majzhe odnochasno ce zrobili H Yuven ta E Persell iz Garvardskogo universitetu i gollandski astronomi K Myuller ta Ya Oort a zgodom Kristiansen ta Hindman z Avstraliyi ZastosuvannyaRadioliniya 21 sm lezhit u mikrohvilovomu diapazoni v yakomu zemna atmosfera majzhe prozora tomu yiyi mozhna sposterigati bezposeredno z poverhni Zemli Sposterezhennya v cij liniyi ye efektivnim zasobom vivchennya Vsesvitu Galaktichna astronomiya Atomarnij gidrogen v osnovnomu energetichnomu stani stanovit blizko polovini mizhzoryanoyi rechovini v nashij Galaktici Niyakim inshim viprominyuvannyam vin sebe ne viyavlyaye tomu radioliniya 21 sm daye duzhe cinnu zdebilshogo unikalnu informaciyu pro rechovinu v mizhzoryanomu prostori Faktichno intensivnist viprominyuvannya pokazuye kilkist atomiv gidrogenu na promeni zoru za vinyatkom napryamkiv de roztashovani najshilnishi hmari yaki neprozori dlya viprominyuvannya Profil liniyi dozvolyaye viznachiti shvidkist okremih hmar za doplerivskim zsuvom u liniyi ta kinetichnu temperaturu v nih za shirinoyu kozhnogo piku yaka stanovit blizko 100 K Nejtralnij gidrogen zoseredzhenij u dovoli rivnomu j porivnyano tonkomu shari 220 pk poblizu galaktichnoyi ploshini Na periferiyi na vidstani ponad 10 12 kpk vid galaktichnogo centru tovshina sharu zbilshuyetsya do 1000 pk i vin mozhe vidhilyatisya vid ploshini U rozpodili gidrogenu dovoli chitko viriznyayutsya spiralni rukavi U rukavah gidrogen rozpodilenij nerivnomirno gidrogenovi hmari utvoryuyut kompleksi rozmirom 200 50 pk vityagnuti v galaktichnij ploshini Krivu obertannya nashoyi Galaktiki bulo rozrahovano iz zastosuvannyam radioliniyi 21 sm Yaksho hmara gidrogenu pidsvichuyetsya radiodzherelom znachno bilshoyi intensivnosti nizh yiyi radioliniya viprominyuvannya to v spektri radiodzherela sposterigayetsya liniya poglinannya Za zeemanovim rozsheplennyam linij poglinannya u spektrah vid potuzhnih radiodzherel mozhna ociniti magnitne pole vseredini hmar Pozagalaktichna astronomiya Dokladnishe Pozagalaktichna astronomiya Viprominyuvannya na liniyi 21 sm zareyestrovano bilshe nizh vid sotni galaktik Jogo chervonij zsuv vidpovidaye chervonomu zsuvu optichnih linij Zokrema liniya vid kvazara en viyavilasya zsunutoyu z chastoti 1420 4 MGc do 839 4 Mgc Sposterezhennya dozvolili vstanoviti vidnoshennya masi nejtralnogo atomarnogo gidrogenu do zagalnoyi masi galaktiki zalezhno vid yiyi tipu Minimalna kilkist nejtralnogo gidrogenu v eliptichnih galaktikah Dlya perevazhnoyi bilshosti z nih jogo chastka ne perevishuye 0 1 U spiralnih galaktikah vona stanovit kilka vidsotkiv minimalna kilkist u galaktikah tipu Sa U nepravilnih galaktikah Ir mozhe dosyagati kilkadesyat vidsotkiv Dlya kilkoh najblizhchih galaktik galaktiki Andromedi galaktiki Trikutnika viznacheno vnutrishnij rozpodil atomarnogo gidrogenu Kosmologiya Radioliniya stanovit velikij interes dlya kosmologiyi Velikogo vibuhu tomu sho ce yedinij vidomij sposib vivchennya temnih vikiv chasiv vid rekombinaciyi do reionizaciyi Vrahovuyuchi chervonij zsuv u nashi chasi viprominyuvannya bude sposterigatisya na chastotah vid 200 MGc do 9 MGc Potencijno ce maye dva zastosuvannya Po pershe shlyahom doslidzhennya chervonogo zsuvu radioliniyi mozhna v principi diznatisya duzhe tochnij rozpodil u spektri viprominyuvannya rechovini v period pislya rekombinaciyi Po druge reionizaciya Vsesvitu viprominyuvannyam zir chi kvazariv viglyadatime progalinami na tli osnovnoyi radioliniyi Propoziciyi pro zastosuvannya dlya kontaktu z pozazemnimi civilizaciyami Na plastinkah Pionera zobrazheno perehid atoma gidrogenu mizh dvoma pidrivnyami nadtonkoyi strukturi Dovzhina hvili takogo perehodu 21 sm priznachena dlya togo shob mozhna bulo obchisliti masshtab zobrazhennya Napriklad visota zhinochoyi figuri na malyunku vvosmero bilsha dovzhini hvili tobto vona stanovit 21 8 168 sm Analogichno chastota takogo perehodu ye odiniceyu vimiryuvannya chasu na comu malyunku a takozh na malyunkah plastinok Voyadzher 1 ta Voyadzher 2 Na cih malyunkah zobrazheno roztashuvannya Soncya vidnosno 14 pulsariv periodi obertannya yakih stanom na 1977 rik podano v odinicyah chastoti ciyeyi liniyi Za zadumom rozrobnikiv plastinok rozvineni civilizaciyi spromozhni za danimi sposterezhennya cih kvazariv obchisliti roztashuvannya Sonyachnoyi sistemi na chas zapusku aparativ 1959 roku italijskij fizik Dzhuzeppe Kocconi j amerikanskij fizik Filip Morrison opublikuvali stattyu Poshuk mizhzoryanih komunikacij U cij statti bulo zaproponovano shukati kontakt iz pozazemnimi civilizaciyami same na liniyi 21 sm Stattya Kocconi j Morrisona nadala teoretichnu osnovu dlya poyavi programi SETI U programi SETI chastota radioliniyi 21 sm vvazhayetsya spriyatlivoyu dlya poshuku signaliv vid pozazemnih civilizacij ru zaproponuvav zastosuvati dlya poshuku chastotu radioliniyi pomnozhenu na chislo p abo na 2p p 1420 40575177 MGc 4 46233627 GGc 2p 1420 40575177 MGc 8 92467255 GGc Oskilki p ye irracionalnim ta transcedentnim chislom to taki chastoti ne mozhut utvoritisya prirodnim shlyahom yak garmoniki sho vochevid oznachatime shtuchne pohodzhennya signalu Do togo zh takij signal ne perekrivatimetsya z samoyu radioliniyeyu gidrogenu chi yakoyus yiyi garmonikoyu Kvantovij gidrogenovij generator Pasivnij kvantovij gidrogenovij generator sho vstanovlyuyetsya na kosmichnih aparatah Galileo yak osnovnij atomnij godinnik Viprominyuvannya gidrogenu na liniyi 21 sm zastosovuyetsya dlya pobudovi en kvantovogo generatora chastoti sho maye dosit visoku tochnist 10 13 Zokrema yih zastosovuyut u radiointerferometriyi z naddovgimi bazami yak geterodini ta na shtuchnih suputnikah yak atomni godinniki Div takozhSpektr atoma vodnyu Lis Lajman alfa Efekt Vautgajzena Filda HIPASSDzherelaDupays Arnaud Beswick Alberto Lepetit Bruno Rizzo Carlo August 2003 Proton Zemach radius from measurements of the hyperfine splitting of hydrogen and muonic hydrogen PDF Physical Review A 68 5 arXiv quant ph 0308136 Bibcode 2003PhRvA 68e2503D doi 10 1103 PhysRevA 68 052503 The Hydrogen 21 cm Line Hyperphysics Georgia State University 30 zhovtnya 2004 Procitovano 20 veresnya 2008 Postnov K A 2001 4 2 Radioliniya nejtralnogo vodoroda 21 sm Lekcii po obshej astrofizike dlya fizikov Astronet Fizicheskij fakultet MGU Procitovano 20 veresnya 2017 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite book title Shablon Cite book cite book a archive date vimagaye archive url dovidka Prediction of 21cm Line Radiation National Radio Astronomy Observatory 11 Mar 2003 16 06 09 EST Procitovano 20 veresnya 2017 angl The Discovery of Hydrogen Radio emission by Ewen and Purcell 20 Jul 2011 10 01 33 EDT Procitovano 20 veresnya 2017 Shklovskij I S 1949 Astronomicheskij zhurnal 26 10 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite journal title Shablon Cite journal cite journal a Propushenij abo porozhnij title dovidka Sorochenko R L 1988 Radioliniya vodoroda U Glavnyj redaktor A M Prohorov red Fizicheskaya enciklopediya M Sovetskaya enciklopediya Procitovano 20 veresnya 2017 Ewan H I Purcell E M September 1951 Observation of a Line in the Galactic Radio Spectrum Radiation from Galactic Hydrogen at 1 420 Mc sec Nature 168 4270 356 Bibcode 1951Natur 168 356E doi 10 1038 168356a0 Procitovano 21 veresnya 2008 Muller C A Oort J H September 1951 The Interstellar Hydrogen Line at 1 420 Mc sec and an Estimate of Galactic Rotation PDF Nature 168 4270 357 358 Bibcode 1951Natur 168 357M doi 10 1038 168357a0 Procitovano 21 veresnya 2008 Christiansen W N Hindman J V 1952 A Preliminary Survey of 1420 Mc s Line Emission from Galactic Hydrogen Australian J Sci Res 5 437 455 doi 10 1071 CH9520437 Procitovano 20 veresnya 2017 Radioliniya vodnyu 21 sm Astronomichnij enciklopedichnij slovnik za zag red I A Klimishina ta A O Korsun Lviv Golov astronom observatoriya NAN Ukrayini Lviv nac un t im Ivana Franka 2003 S 392 ISBN 966 613 263 X R L Sorochenko 1986 Radioliniya vodoroda 21 sm U Glavnyj redaktor R A Syunyaev Redakcionnaya kollegiya Yu N Drozhzhin Labinskij Ya B Zeldovich V G Kurt R 3 Sagdeev red Fizika kosmosa Malenkaya enciklopediya rosijskoyu vid Izdanie vtoroe pererabotannoe i dopolnennoe Moskva Sovetskaya enciklopediya Zagalnij oglyad Predislovie k elektronnoj versii 2 go izdaniya enciklopedii Fizika kosmosa 6 iyulya 2004 goda Galaktiki spiralni Astronomichnij enciklopedichnij slovnik za zag red I A Klimishina ta A O Korsun Lviv Golov astronom observatoriya NAN Ukrayini Lviv nac un t im Ivana Franka 2003 S 93 ISBN 966 613 263 X Basalla George 2006 Civilized Life in the Universe Oxford University Press s 133 135 ISBN 0 19 517181 0 Makoveckij P V 1976 O strukture pozyvnyh vnezemnyh civilizacij Astronomicheskij zhurnal 53 1 221 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite journal title Shablon Cite journal cite journal a Cite maye pustij nevidomij parametr 1 dovidka Makoveckij Pyotr 1979 Zadacha 109 Parol razuma Smotri v koren Sbornik lyubopytnyh zadach i voprosov vid 4 M Nauka ros Gajgerov B A i dr 1972 Kvantovaya mera chastoty na vodorodnom generatore Izmeritelnaya tehnika 11 Procitovano 22 veresnya 2017 Dzherela dlya rozdilu kosmologiya Forecast for Epoch of Reionization as viewable by the PrimevAl Structure Telescope PAST arXiv astro ph 0404083 Madau P Meiksin A Rees M J 1997 21 cm Tomography of the Intergalactic Medium at High Redshift Astrophys J 475 429 444 arXiv astro ph 9608010 Bibcode 1997ApJ 475 429M doi 10 1086 303549 Ciardi B Madau P 2003 Probing Beyond the Epoch of Hydrogen Reionization with 21 Centimeter Radiation Astrophys J 596 1 8 arXiv astro ph 0303249 Bibcode 2003ApJ 596 1C doi 10 1086 377634 Zaldarriaga M Furlanetto S Hernquist L 2004 21 Centimeter Fluctuations from Cosmic Gas at High Redshifts Astrophys J 608 622 635 arXiv astro ph 0311514 Bibcode 2004ApJ 608 622Z doi 10 1086 386327 Furlanetto S Sokasian A Hernquist L 2004 Observing the Reionization Epoch Through 21 Centimeter Radiation Mon Not Roy Astron Soc 347 187 195 arXiv astro ph 0305065 Bibcode 2004MNRAS 347 187F doi 10 1111 j 1365 2966 2004 07187 x Loeb A Zaldarriaga M 2004 Measuring the Small Scale Power Spectrum of Cosmic Density Fluctuations Through 21 cm Tomography Prior to the Epoch of Structure Formation Phys Rev Lett 92 211301 arXiv astro ph 0312134 Bibcode 2004PhRvL 92u1301L doi 10 1103 PhysRevLett 92 211301 PMID 15245272 Santos M G Cooray A Knox L 2005 Multifrequency analysis of 21 cm fluctuations from the Era of Reionization Astrophys J 625 575 587 arXiv astro ph 0408515 Bibcode 2005ApJ 625 575S doi 10 1086 429857 Barkana R Loeb A 2005 Detecting the Earliest Galaxies Through Two New Sources of 21cm Fluctuations Astrophys J 626 1 11 arXiv astro ph 0410129 Bibcode 2005ApJ 626 1B doi 10 1086 429954