Підтримка
www.wikidata.uk-ua.nina.az
Formula vklyuchen viklyuchen abo princip vklyuchen viklyuchen kombinatorna formula sho dozvolyaye viznachiti potuzhnist ob yednannya skinchennogo chisla skinchennih mnozhin yaki v zagalnomu vipadku mozhut peretinatisya odin z odnim Vipadok dvoh mnozhin Napriklad u vipadku dvoh mnozhin A displaystyle A ta B displaystyle B formula vklyuchen viklyuchen maye viglyad A B A B A B displaystyle A cup B A B A cap B U sumi A B displaystyle A B elementi peretinu A B displaystyle A cap B vrahovani dvichi tomu vidnimayemo A B displaystyle A cap B z pravoyi chastini formuli Spravedlivist cogo mirkuvannya vidno z diagrami Ejlera Venna dlya dvoh mnozhin yaka navedena na malyunku pravoruch Formula vklyuchen viklyuchen dlya troh mnozhin U vipadku troh mnozhin A B ta C formula maye viglyad A B C A B C A B A C B C A B C displaystyle A cup B cup C A B C A cap B A cap C B cap C A cap B cap C Cya formula mozhe buti perevirena pidrahunkom togo skilki raziv kozhna oblast diagrami Ejlera Venna vikoristovuyetsya v pravij chastini formuli V comu vipadku mozhna zauvazhiti sho elementi peretinu troh mnozhin budut tri razi vrahovani i tri razi vidnyati tomu yih potribno dodati zadlya pravilnogo pidrahunku Takim zhe chinom i v razi n gt 3 displaystyle n gt 3 mnozhin proces znahodzhennya kilkosti elementiv ob yednannya A 1 A 2 A n displaystyle A 1 cup A 2 cup ldots cup A n polyagaye u vklyuchenni vsogo potim viklyuchennya zajvogo potim vklyuchenni pomilkovo viklyuchenogo i tak dali tobto v cherguvanni vklyuchennya i viklyuchennya Zvidsi i pohodit nazva formuli IstoriyaVpershe formulu vklyuchen viklyuchen opublikuvav portugalskij matematik en v 1854 roci Ale she v 1713 Mikola Bernulli vikoristovuvav cej metod dlya virishennya zavdannya Monmora vidomoyi yak zadacha pro zustrichi fr Le probleme des rencontres okremim vipadkom yakoyi ye zadacha pro bezlad Takozh formulu vklyuchen viklyuchen pov yazuyut z imenami francuzkogo matematika Abrahama de Muavra i anglijskogo matematika Dzhozefa Silvestra U teoriyi jmovirnostej analog principu vklyuchen viklyuchen vidomij yak formula Anri Puankare FormulyuvannyaFormulu vklyuchen viklyuchen mozhna sformulyuvati v riznih formah U terminah mnozhin Nehaj A 1 A 2 A n displaystyle A 1 A 2 ldots A n skinchenni mnozhini Formula vklyuchen viklyuchen stverdzhuye i 1 n A i i 1 n A i 1 i lt j n A i A j 1 i lt j lt k n A i A j A k 1 n 1 A 1 A n displaystyle biggl bigcup i 1 n A i biggr sum i 1 n left A i right sum 1 leqslant i lt j leqslant n left A i cap A j right sum 1 leqslant i lt j lt k leqslant n left A i cap A j cap A k right ldots left 1 right n 1 left A 1 cap cdots cap A n right Bilsh kompaktno mozhna zapisati tak i 1 n A i k 1 n 1 k 1 1 i 1 lt lt i k n A i 1 A i k displaystyle Biggl bigcup i 1 n A i Biggr sum k 1 n 1 k 1 left sum 1 leqslant i 1 lt cdots lt i k leqslant n left A i 1 cap cdots cap A i k right right dd dd abo i 1 n A i J 1 2 n 1 J 1 j J A j displaystyle Biggl bigcup i 1 n A i Biggr sum emptyset neq J subseteq 1 2 ldots n 1 J 1 Biggl bigcap j in J A j Biggr dd dd Pri n 2 3 displaystyle n 2 3 otrimuyemo formuli dlya dvoh abo troh mnozhin navedeni vishe U terminah vlastivostej Princip vklyuchen viklyuchen chasto navodyat v takomu alternativnomu formulyuvanni Nehaj dano kincevu mnozhinu U displaystyle U yaka skladayetsya z N displaystyle N elementiv i nehaj ye nabir vlastivostej a 1 a n displaystyle a 1 ldots a n Kozhen element mnozhini U displaystyle U mozhe voloditi abo ne voloditi bud yakoyu z cih vlastivostej Poznachimo cherez N a i 1 a i s displaystyle N a i 1 ldots a i s kilkist elementiv sho volodiyut vidpovidno vlastivostyami a i 1 a i s displaystyle a i 1 ldots a i s i mozhlivo deyakimi inshimi Takozh cherez N a i 1 a i s displaystyle N overline a i 1 ldots overline a i s poznachimo kilkist elementiv sho ne volodiyut zhodnoyu z vlastivostej a i 1 a i s displaystyle a i 1 ldots a i s Todi maye misce formula N a 1 a n N i N a i i lt j N a i a j i lt j lt k N a i a j a k 1 n N a 1 a n displaystyle N overline a 1 ldots overline a n N sum i N a i sum i lt j N a i a j sum i lt j lt k N a i a j a k ldots 1 n N a 1 ldots a n Formulyuvannya principu vklyuchen viklyuchen u terminah mnozhin ekvivalentne formulyuvannyu v terminah vlastivostej Dijsno yaksho mnozhina A i displaystyle A i ye pidmnozhinami deyakoyi mnozhini U displaystyle U to v silu zakoniv de Morgana i A i U i A i displaystyle bigcup nolimits i A i U bigcap nolimits i overline A i riska nad mnozhinoyu poznachaye dopovnennya v mnozhini U displaystyle U i formulu vklyuchen viklyuchen mozhna perepisati tak i 1 n A i U i A i i lt j A i A j i lt j lt k A i A j A k 1 n A 1 A 2 A n displaystyle biggl bigcap i 1 n overline A i biggl U sum i A i sum i lt j A i cap A j sum i lt j lt k A i cap A j cap A k ldots 1 n A 1 cap A 2 cap ldots cap A n Yaksho teper zamist element x displaystyle x nalezhit mnozhini A i displaystyle A i govoriti element x displaystyle x maye vlastivist a i displaystyle a i to mi otrimayemo formulyuvannya principu vklyuchen viklyuchen v terminah vlastivostej i navpaki Poznachimo cherez N r displaystyle N r kilkist elementiv sho volodiyut v tochnosti r vlastivostyami z naboru a 1 a n displaystyle a 1 ldots a n Todi formulu vklyuchen viklyuchen mozhna perepisati v takij zamknenij formi N 0 k 0 n 1 k i 1 lt lt i k N i 1 i k displaystyle N 0 sum k 0 n 1 k sum i 1 lt ldots lt i k N i 1 ldots i k DovedennyaIsnuye kilka doveden formuli vklyuchen viklyuchen Za matematichnoyu indukciyeyu Dovedennya za matematichnoyu indukciyeyu Formulu vklyuchen viklyuchen mozhna dovesti za matematichnoyu indukciyeyu Pri n 1 displaystyle n 1 formula vklyuchen viklyuchen trivialna N a N N a displaystyle N overline a N N a Nehaj formula virna dlya n m displaystyle n m dovedemo yiyi dlya n m 1 displaystyle n m 1 Nehaj kozhen element mnozhini U displaystyle U mozhe voloditi abo mati bud yaku z vlastivostej a 1 a m a m 1 displaystyle a 1 ldots a m a m 1 Zastosuyemo formulu vklyuchen viklyuchen dlya vlastivostej a 1 a m displaystyle a 1 ldots a m N a 1 a m N i m N a i i lt j m N a i a j 1 m N a 1 a m displaystyle N overline a 1 ldots overline a m N sum i leqslant m N a i sum i lt j leqslant m N a i a j ldots 1 m N a 1 ldots a m Teper zastosuyemo formulu dlya vlastivostej a 1 a m displaystyle a 1 ldots a m do mnozhini N a m 1 displaystyle N a m 1 ob yektiv dlya yakih vikonano vlastivist a m 1 displaystyle a m 1 N a 1 a m a m 1 N a m 1 i m N a i a m 1 i lt j m N a i a j a m 1 1 m N a 1 a m a m 1 displaystyle N overline a 1 ldots overline a m a m 1 N a m 1 sum i leqslant m N a i a m 1 sum i lt j leqslant m N a i a j a m 1 ldots 1 m N a 1 ldots a m a m 1 Nareshti zastosuyemo formulu dlya odniyeyi vlastivosti a m 1 displaystyle a m 1 do sukupnosti N a 1 a m displaystyle N overline a 1 ldots overline a m ob yektiv yaki ne volodiyut vlastivostyami a 1 a m displaystyle a 1 ldots a m N a 1 a m a m 1 N a 1 a m N a 1 a m a m 1 displaystyle N overline a 1 ldots overline a m overline a m 1 N overline a 1 ldots overline a m N overline a 1 ldots overline a m a m 1 Kombinuyuchi vipisani tri formuli otrimayemo formulu vklyuchen viklyuchen dlya m 1 displaystyle m 1 vlastivostej a 1 a m 1 displaystyle a 1 ldots a m 1 Sho i potribno bulo dovesti Kombinatorne dovedennya Dovedennya Rozglyanemo dovilnij element e U displaystyle e in U i pidrahuyemo skilki raziv vin vrahovuyetsya v pravij chastini formuli vklyuchen viklyuchen Yaksho element e displaystyle e ne volodiye zhodnoyu z vlastivostej a i displaystyle a i to v pravij chastini formuli vin vrahovuyetsya rivno 1 raz v chleni N displaystyle N Nehaj element e displaystyle e volodiye rivno r displaystyle r vlastivostyami a j 1 a j r displaystyle a j 1 ldots a j r Todi e displaystyle e daye po 1 v tih dodankiv sumi i 1 lt lt i s N a i 1 a i s displaystyle sum nolimits i 1 lt ldots lt i s N a i 1 ldots a i s dlya yakih i 1 i s displaystyle i 1 ldots i s ye pidmnozhina j 1 j r displaystyle j 1 ldots j r i 0 dlya inshih Chislo takih pidmnozhin za viznachennyam ye chislo spoluk r s displaystyle tbinom r s Otzhe vnesok elementa e displaystyle e v pravu chastinu dorivnyuye 1 r 1 r 2 1 n r n displaystyle 1 r choose 1 r choose 2 ldots 1 n r choose n Pri s gt r displaystyle s gt r chislo spoluchen dorivnyuye nulyu Suma sho zalishilasya v silu binomialnoyi teoremi dorivnyuye s 0 r 1 s r s 1 1 r 0 displaystyle sum s 0 r 1 s r choose s bigg 1 1 bigg r 0 Takim chinom prava chastina formuli vklyuchen viklyuchen vrahovuye kozhen element yakij ne maye zaznachenih vlastivostej tochno po odnomu razu a kozhen element sho volodiye hocha b odniyeyu z vlastivostej nul raziv Otzhe vona dorivnyuye kilkosti elementiv sho ne volodiyut zhodnoyu z vlastivostej a i displaystyle a i tobto N a 1 a n displaystyle N overline a 1 ldots overline a n Sho i potribno bulo dovesti Vikoristovuyuchi indikatorni funkciyi Dovedennya Nehaj A i displaystyle A i dovilni ne obov yazkovo skinchenni mnozhini yaki ye pidmnozhinami deyakoyi mnozhini U displaystyle U i nehaj 1 A i displaystyle mathbf 1 A i indikatorni funkciyi A i displaystyle A i abo ekvivalentno vlastivostej a i displaystyle a i Indikatorna funkciya yih dopovnen A i displaystyle overline A i dorivnyuye 1 A i 1 1 A i displaystyle mathbf 1 overline A i 1 mathbf 1 A i a indikatorna funkciya peretinu dopovnen 1 i A i i 1 1 A i displaystyle mathbf 1 cap i overline A i prod i 1 mathbf 1 A i Rozkrivayuchi duzhki v pravij chastini i she raz vikoristovuyuchi toj fakt sho indikatorna funkciya peretinu mnozhin dorivnyuye dobutku yih indikatornih funkcij otrimuyemo 1 i A i 1 i 1 A i i lt j 1 A i A j i lt j lt k 1 A i A j A k 1 n 1 A 1 A n displaystyle mathbf 1 bigcap i overline A i 1 sum i mathbf 1 A i sum i lt j mathbf 1 A i cap A j sum i lt j lt k mathbf 1 A i cap A j cap A k ldots 1 n mathbf 1 A 1 cap ldots cap A n Ce spivvidnoshennya odna z form principu vklyuchen viklyuchen Vono virazhaye soboyu logichnu totozhnist i virne dlya dovilnih mnozhin A i displaystyle A i U razi skinchennih mnozhin A i displaystyle A i i vidpovidno v pripushenni skinchennosti mnozhini U displaystyle U yaksho pidsumuvati ce spivvidnoshennya po vsih x U displaystyle x in U i skoristatisya tim sho dlya dovilnogo pidmnozhini A U displaystyle A subset U jogo potuzhnist dorivnyuye A x U 1 A x displaystyle A sum x in U mathbf 1 A x otrimayemo formulyuvannya principu vklyuchen viklyuchen v terminah potuzhnostej mnozhin abo v terminah vlastivostej ZastosuvannyaZadacha pro bezlad Dokladnishe Bezlad perestanovka Klasichnij priklad vikoristannya formuli vklyuchen viklyuchen zadacha pro bezlad Potribno znajti chislo perestanovok p 1 p 2 p n displaystyle p 1 p 2 ldots p n mnozhini 1 2 n displaystyle 1 2 ldots n takih sho p i i displaystyle p i neq i dlya vsih i displaystyle i Taki perestanovki nazivayutsya bezladom Nehaj U displaystyle U mnozhina vsih perestanovok p displaystyle p i nehaj vlastivist a i displaystyle a i perestanovki virazhayetsya rivnistyu p i i displaystyle p i i Todi chislo bezladiv ye N a 1 a 2 a n displaystyle N overline a 1 overline a 2 ldots overline a n Legko bachiti sho N a i 1 a i s n s displaystyle N a i 1 ldots a i s n s chislo perestanovok sho zalishayut na misci elementi i 1 i s displaystyle i 1 ldots i s i takim chinom suma N a i 1 a i 2 a i s displaystyle sum N a i 1 a i 2 ldots a i s mistit n s displaystyle tbinom n s odnakovih dodankiv Formula vklyuchen viklyuchen daye viraz dlya chisla D n displaystyle D n bezladiv D n n N 1 n 1 N 2 n 2 1 n n n 0 displaystyle D n n N choose 1 n 1 N choose 2 n 2 ldots 1 n n choose n 0 Ce spivvidnoshennya mozhna peretvoriti do viglyadu D n n 1 1 1 1 2 1 n n displaystyle D n n left 1 frac 1 1 frac 1 2 ldots frac 1 n n right Nevazhko bachiti sho viraz v duzhkah ye chastkovoyu sumoyu ryadu k 0 1 k k e 1 displaystyle sum k 0 infty frac 1 k k e 1 Takim chinom z horoshoyu tochnistyu chislo bezladiv stanovit 1 e displaystyle 1 e chastku vid zagalnogo chisla P n n displaystyle P n n perestanovok D n P n 1 e displaystyle D n P n approx 1 e Obchislennya funkciyi Ejlera Dokladnishe Funkciya Ejlera Inshij priklad zastosuvannya formuli vklyuchen viklyuchen znahodzhennya yavnogo virazhennya dlya funkciyi Ejlera f n displaystyle varphi n sho virazhaye kilkist chisel z 1 2 n displaystyle 1 2 ldots n vzayemno prostih z n displaystyle n Nehaj kanonichne rozkladannya chisla n displaystyle n na prosti mnozhniki maye viglyad n p 1 s 1 p 2 s 2 p k s k displaystyle n p 1 s 1 p 2 s 2 ldots p k s k Chislo m 1 n displaystyle m in 1 ldots n vzayemno proste z n displaystyle n todi i tilki todi koli zhoden z prostih dilnikiv p i displaystyle p i dilit m displaystyle m Yaksho teper vlastivist a i displaystyle a i oznachaye sho p i displaystyle p i dilit m displaystyle m to kilkist chisel vzayemno prostih z n displaystyle n ye N a 1 a k displaystyle N overline a 1 ldots overline a k Kilkist N a i 1 a i s displaystyle N a i 1 ldots a i s chisel sho volodiyut vlastivostyami a i 1 a i s displaystyle a i 1 ldots a i s dorivnyuye n p i 1 p i s displaystyle n p i 1 ldots p i s oskilki p i 1 m p i s m p i 1 p i s m displaystyle p i 1 m ldots p i s m leftrightarrow p i 1 ldots p i s m Za formuloyu vklyuchen viklyuchen znahodimo f n n i n p i i j n p i p j 1 k n p 1 p k displaystyle varphi n n sum i n p i sum i j n p i p j ldots 1 k n p 1 ldots p k Cya formula peretvoritsya do vidu f n n i 1 k 1 1 p i displaystyle varphi n n prod i 1 k left 1 frac 1 p i right Variaciyi i uzagalnennyaPrincip vklyuchennya viklyuchennya dlya jmovirnostej Nehaj W F P displaystyle Omega mathfrak F mathcal P imovirnisnij prostir Todi dlya vipadkovih podij A 1 A 2 A n displaystyle A 1 A 2 ldots A n vikonuyetsya formula P i 1 n A i i P A i i lt j P A i A j i lt j lt k P A i A j A k 1 n 1 P i 1 n A i displaystyle mathcal P biggl bigcup i 1 n A i biggr sum i mathcal P A i sum i lt j mathcal P A i cap A j sum i lt j lt k mathcal P A i cap A j cap A k ldots 1 n 1 mathcal P left bigcap i 1 n A i right Cya formula virazhaye princip vklyuchen viklyuchen dlya jmovirnostej Yiyi mozhna otrimati z principu vklyuchen viklyuchen u formi indikatornih funkcij 1 i A i i 1 A i i lt j 1 A i A j i lt j lt k 1 A i A j A k 1 n 1 1 A 1 A n displaystyle mathbf 1 bigcup i A i sum i mathbf 1 A i sum i lt j mathbf 1 A i cap A j sum i lt j lt k mathbf 1 A i cap A j cap A k ldots 1 n 1 mathbf 1 A 1 cap ldots cap A n Nehaj A i displaystyle A i podiyi imovirnisnogo prostoru W F P displaystyle Omega mathfrak F mathcal P tobto A i F displaystyle A i in mathfrak F Vizmemo matematichne spodivannya M displaystyle mathcal M vid oboh chastin cogo spivvidnoshennya i skoristavshis linijnistyu matematichnogo spodivannya i rivnistyu P A M 1 A displaystyle mathcal P A mathcal M mathbf 1 A dlya dovilnogo podiyi A F displaystyle A in mathfrak F otrimayemo formulu vklyuchennya viklyuchennya dlya jmovirnostej Princip vklyuchen viklyuchen u prostorah z miroyu Nehaj X S m displaystyle X mathfrak S mu prostir z miroyu Todi dlya dovilnih vimirnih mnozhin A i displaystyle A i kincevoyi miri m A i lt displaystyle mu A i lt infty maye misce formula vklyuchen viklyuchen m i 1 n A i i m A i i lt j m A i A j i lt j lt k m A i A j A k 1 n 1 m i 1 n A i displaystyle mu biggl bigcup i 1 n A i biggr sum i mu A i sum i lt j mu A i cap A j sum i lt j lt k mu A i cap A j cap A k ldots 1 n 1 mu left bigcap i 1 n A i right Ochevidno princip vklyuchen viklyuchen dlya jmovirnostej i dlya potuzhnostej skinchennih mnozhin ye okremimi vipadkami ciyeyi formuli U pershomu vipadku miroyu ye prirodno jmovirnisna mira u vidpovidnomu jmovirnisnomu prostoru m A P A displaystyle mu A mathcal P A U drugomu vipadku yak mira beretsya potuzhnist mnozhini m A A displaystyle mu A A Vivesti princip vklyuchen viklyuchen dlya prostoriv z miroyu mozhna takozh yak dlya zaznachenih okremih vipadkiv z totozhnosti dlya indikatornih funkcij 1 i A i i 1 A i i lt j 1 A i A j i lt j lt k 1 A i A j A k 1 n 1 1 A 1 A n displaystyle mathbf 1 bigcup i A i sum i mathbf 1 A i sum i lt j mathbf 1 A i cap A j sum i lt j lt k mathbf 1 A i cap A j cap A k ldots 1 n 1 mathbf 1 A 1 cap ldots cap A n Nehaj A i displaystyle A i vimirni mnozhini prostoru X S m displaystyle X mathfrak S mu tobto A i S displaystyle A i in mathfrak S Prointegruyemo obidvi chastini ciyeyi rivnosti po miri m displaystyle mu skoristayemos linijnistyu integrala i spivvidnoshennyam m A X 1 A x d m displaystyle mu A int X mathbf 1 A x d mu i otrimayemo formulu vklyuchen viklyuchen dlya miri Totozhnist maksimumiv i minimumiv Dokladnishe Totozhnist maksimumiv i minimumiv Formula vklyuchen viklyuchen mozhe rozglyadatisya yak okremij vipadok totozhnosti maksimumiv i minimumiv max a 1 a n i a i i lt j min a i a j 1 n 1 min a 1 a n displaystyle max a 1 ldots a n sum i a i sum i lt j min a i a j ldots 1 n 1 min a 1 ldots a n Ce spivvidnoshennya spravedlivo dlya dovilnih chisel a i displaystyle a i V okremomu vipadku koli a i 0 1 displaystyle a i in 0 1 mi otrimuyemo odnu z form principu vklyuchen viklyuchen Spravdi yaksho poklasti a i 1 A i x displaystyle a i mathbf 1 A i x de x displaystyle x dovilnij element iz U displaystyle U to otrimayemo spivvidnoshennya dlya indikatornih funkcij mnozhin 1 i A i x i 1 A i x i lt j 1 A i A j x i lt j lt k 1 A i A j A k x 1 n 1 1 A 1 A n x displaystyle mathbf 1 bigcup i A i x sum i mathbf 1 A i x sum i lt j mathbf 1 A i cap A j x sum i lt j lt k mathbf 1 A i cap A j cap A k x ldots 1 n 1 mathbf 1 A 1 cap ldots cap A n x Obertannya Mebiusa Dokladnishe Funkciya Mebiusa Nehaj S displaystyle S kinceva mnozhina i nehaj f 2 S R displaystyle f colon 2 S to mathbb R dovilna funkciya viznachena na sukupnosti pidmnozhin S displaystyle S yaka prijmaye dijsni znachennya Viznachimo funkciyu g 2 S R displaystyle g colon 2 S to mathbb R nastupnim spivvidnoshennyam g Y X Y f X displaystyle g Y sum X supset Y f X Todi maye misce nastupna formula zvernennya f Y X Y 1 X Y g X displaystyle f Y sum X supset Y 1 X Y g X Ce tverdzhennya ye okremim vipadkom zagalnoyi formuli obertannya Mebiusa dlya en sukupnosti 2 S displaystyle 2 S vsih pidmnozhin mnozhini S displaystyle S chastkovo vporyadkovanih po vidnoshennyu vklyuchennya displaystyle subset Pokazhemo yak z ciyeyi formuli otrimati princip vklyuchennya viklyuchennya dlya skinchennih mnozhin Nehaj dano simejstvo pidmnozhin A 1 A n displaystyle A 1 ldots A n skinchennoyi mnozhini U displaystyle U poznachimo S 1 n displaystyle S 1 ldots n mnozhina indeksiv Dlya kozhnogo naboru indeksiv X S displaystyle X subset S viznachimo f X displaystyle f X yak chislo elementiv sho vhodyat tilki v ti mnozhini A i displaystyle A i dlya yakih i X displaystyle i in X Matematichno ce mozhna zapisati tak f X i X A i j X A j displaystyle f X left left bigcap i in X A i right cap left bigcap j notin X overline A j right right Todi funkciya g 2 S R displaystyle g colon 2 S to mathbb R yaka viznachayetsya formuloyu g Y X Y f X displaystyle g Y sum X supset Y f X opisuye kilkist elementiv kozhnij z yakih vhodit u vsi mnozhini A i displaystyle A i i X displaystyle i in X i buti mozhe she v inshi Tobto g X i X A i displaystyle g X left bigcap i in X A i right Zauvazhimo dali sho f displaystyle f varnothing kilkist elementiv sho ne volodiyut zhodnoyu z vlastivostej f i A i displaystyle f varnothing left bigcap i overline A i right Z urahuvannyam zroblenih zauvazhen zapishemo formulu obernennya Mebiusa i A i X 1 X i i n X A i displaystyle left bigcap i overline A i right sum X 1 X left bigcap i inX A i right Ce ye v tochnosti formula vklyuchen viklyuchen dlya skinchennih mnozhin tilki v nij ne zgrupovani dodanki pov yazani z odnakovim znachennyam X displaystyle X Div takozh en PrimitkiRiordan Dzh Vvedennya v kombinatornij analiz An Introduction to Combinatorial Analysis 289 s Weisstein Eric W Derangement angl na sajti Wolfram MathWorld Ribnikov K A Vvedennya v kombinatornij analiz 2 e vid 309 s Riordan Dzh Vvedennya v kombinatornij analiz An Introduction to Combinatorial Analysis M Vid vo inozemnoyi literaturi 1963 289 s Holl M Kombinatorika Combinatorial Theory 424 s Ribnikov K A Vvedennya v kombinatornij analiz 2 e vid 309 s Ribnikov K A Vvedennya v kombinatornij analiz 2 e vid 309 s Borovkov A A Teoriya jmovirnostej 2 e vid 431 s Holl M Kombinatorika Combinatorial Theory 424 s Stenli R Perechislitelnaya kombinatorika Enumerative Combinatorics 440 s PosilannyaI Yaglom Zaplaty na kaftane Kvant 1974 2 S 13 21 Weisstein Eric W Inclusion Exclusion Principle angl na sajti Wolfram MathWorld
Топ