Модулярна форма — голоморфна функція визначена на верхній комплексній півплощині (тобто множині ), що є інваріантною щодо перетворень модулярної групи чи деякої її підгрупи і задовольняє умові голоморфності в параболічних точках. Модулярні форми і модулярні функції широко використовуються в теорії чисел, а також в алгебраїчній топології і теорії струн.
Визначення
Допоміжні визначення
Нехай — квадратна матриця порядку 2 з цілочисельними елементами і визначником рівним одиниці. Для деякого визначимо функцію . Також позначимо:
Дані групи називаються головними конгруентними підгрупами рівня N. Також використовується позначення . Довільна група називається конгруентною. Нехай — деякий елемент конгруентної групи. Якщо (де — слід матриці) то цей елемент називається параболічним, а відповідне перетворення параболічним. Точка називається параболічною, якщо існує параболічний елемент , такий що .
Модулярна форма
Нехай — деяка конгруентна група. Функція f визначена на називається модулярною формою степеня (ваги) k для групи , якщо виконуються умови:
- ;
- — голоморфна в ;
- голоморфна в параболічних точках групи .
Модулярна функція
Нехай — деяка конгруентна група. Функція f визначена на називається модулярною функцією для групи , якщо виконуються умови:
- є інваріантною щодо дії групи , тобто ;
- — мероморфна в ;
- — мероморфна в параболічних точках групи .
Випадок групи
Модулярна група породжується двома матрицями і . Тож для перевірки виконання перших умов визначень модулярних функцій і форм достатньо перевірити виконання умов і . Параболічними точками даної групи є точки і всі вони є еквівалентними, тобто існує такий , що . Тож достатньо перевірити голоморфність чи мероморфність лише в одній з цих точок. Найзручніше для цього взяти . Завдяки властивості функція f(z) може бути записана через ряд Фур'є через .
Оскільки на всій комплексній площині не рівний нулю то також але, коли (по від'ємній дійсній осі), отже коли , тобто коли (по додатній уявній осі).
Функція є мероморфною в безмежності якщо:
на всьому відкритому одиничному крузі. Коефіцієнти — коефіцієнти Фур'є функції , Якщо при на всьому відкритому одиничному крузі то функція є голоморфною в безмежності.
Пояснення
Для модулярну форму можна також означити, як однорідну голоморфну функцію F на множині ґраток в . Тут ґратка - це підгрупа в , породжена двома числами , , які утворюють базу над . Однорідність F означає, що існує ціле , таке, що для всіх і всіх ґраток . Досить обмежитись парною вагою k, інакше . За допомогою гомотетії можна зробити, щоб , а було параметром ґратки. Функція , має автоморфну властивість, еквівалентну однорідності F. Голоморфність F означає голоморфність f і поліноміальну обмеженість росту f поблизу межі . З обмеженості випливає, що при і при .
Загальний випадок
Якщо — деяка підгрупа зі скінченним індексом групи , то множина параболічних точок теж рівна , але в цьому випадку вони можуть не бути еквівалентними, тож умови голоморфності і мероморфності слід перевіряти окремо для кожного класу еквівалентності. Для точки стабілізатор породжується деякою матрицею . Оскільки f(z) інваріантна відносно , то . Тому якщо визначити то можна дати ознаки мероморфності і голоморфності подібні до попередніх.
функція є мероморфною в безмежності якщо:
на всьому відкритому одиничному крузі. Коефіцієнти — коефіцієнти Фур'є функції , Якщо при на всьому відкритому одиничному крузі то функція є голоморфною в безмежності.
Якщо точка не є еквівалентна безмежності в групі , тоді можна знайти такий , що . Тоді функція є інваріантною щодо групи . Тоді буде голоморфною (мероморфною) в точці , якщо буде голоморфною (мероморфною) в безмежності.
Для говоримо про модулярні форми рівня N. Модулярні форми ваги k і рівня утворюють скінченновимірний простір (нульовий при ) і градуйована алгебра скінченнопороджена над . Наприклад, для непарних k, а для парних k при і інакше. Більш загально, якщо - дискретна підгрупа , і має скінченний гіперболічний об'єм V (стосовно 2-форми ), то для всіх . Зокрема, для підгрупи, що містить -1, , скінченного індексу r, .
Приклади
- Одними з найпростіших прикладів модулярних форм є ряди Ейзенштейна ваги , що визначаються для парного :
де .
- Нехай
- — модулярні інваріанти, — модулярний дискримінант.
Визначимо також:
- — основний модулярний інваріант (j-інваріант).
Виконуються рівності:
Також дані функції задовольняють відповідні властивості голоморфності. Тобто — модулярна форма ваги 4, — модулярна форма ваги 12. Відповідно — модулярна форма ваги 12, а — модулярна функція. Дані функції мають важливе застосування в теорії еліптичних функцій і еліптичних кривих.
Пояснення
При дії групи з вагою на голоморфних функціях , , ,
стабілізатор точки 1 (постійної функції) при парному k - це матриці з , . При дії цей стабілізатор є . Множина класів суміжності перебуває в бієкції з нсд. Ряд Айзенштайна
абсолютно збігається при і є нерухомою точкою дії , тобто модулярною формою ваги k рівня 1. Комутативне кільце .
Безпосередньо однорідну функцію від ґратки можна написати як , . Звуження її на ґратки , , дає модулярну форму ваги k рівня 1
втім, . Використовуючи ще одну нормалізацію , знаходимо розвинення її в ряд Фур'є від : , де — число Бернуллі і .
Квадратичні форми
Нехай — тета-функція Якобі, . Тоді — модулярна форма ваги 1 рівня 4. З одновимірності певного простору модулярних форм випливає, що число представлень цілого як суми квадратів двох цілих чисел є . З того, що - модулярна форма ваги 2 рівня 4 виводиться: число представлень цілого як суми квадратів чотирьох цілих чисел є . Узагальнюючи, розглянемо додатно визначену квадратичну форму , , де - симетрична додатно визначена матриця з парними діагональними елементами. З нею асоціюється тета-ряд
де і . Нехай N — найменше додатне ціле, таке, що має парні діагональні елементи. Тоді для , , функція є модулярною формою ваги k рівня N. Зокрема, для , є модулярною формою ваги k рівня 1. Наприклад, це вірно для ґратки () або ґратки Лича ().
Оператори Геке
На просторі модулярних форм ваги k рівня 1 діє оператор Геке , . Він переводить однорідну функцію F степеня -k від ґратки в суму , де пробігає підґратки індексу m. Константа нормалізації вибрана так, щоби ряди з цілими коефіцієнтами Фур'є переходили в такі ж. Скінченна множина ґраток індексу m ототожнюється з множиною , де - множина матриць з визначником m. Тому
За представників класів суміжності можна обрати цілочисельні матриці з , . Тому
Всі оператори комутують і є нормальними відносно скалярного добутку Петерсона, тож має базу спільних власних векторів (Геке). Ці вектори f можна нормалізувати умовою для і нормалізований власний базис є єдиним. Прикладами нормалізованих власних функцій слугують і , . З кожною модулярною формою ваги k пов'язується ряд Діріхле . Якщо f - нормалізована власна функція Геке, то
де p пробігає прості числа. Для довільної модулярної форми f з ряд Діріхле продовжується до цілої функції від s і задовольняє функціональному рівнянню , де - теж ціла функція.
Застосування
З гіпотези Шимури — Таніями — Вейля, доведеної Вайлсом, Тейлором, Брейлем, Конрадом, Даймондом наприкінці двадцятого століття (кожна еліптична крива над може бути параметризована модулярними функціями) випливає (Рібет) велика теорема Ферма: для не існує додатних цілих a, b, c з .
Посилання
- J. S. Milne, Modular functions and modular forms, курс лекцій.
- D. Zagier, Elliptic modular forms and their applications, The 1-2-3 of modular forms, Universitext, Springer, Berlin, 2008, pp. 1-103.
Література
- Сарнак П. Модулярные формы и их приложения, М: ФАЗИС, 1998.
- Tom M. Apostol, Modular functions and Dirichlet Series in Number Theory (1990), Springer-Verlag, New York.
- Robert A. Rankin, Modular forms and functions, (1977) Cambridge University Press, Cambridge.
- D. Mumford, Tata lectures on theta. I, Progress in Mathematics, vol. 28, Birkhäuser Boston, MA, 1983.
- Ю.И. Манин, А.А. Панчишкин, Введение в современную теорию чисел, Москва, МЦНМО, 2009.
- Енциклопедія Сучасної України
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Modulyarna forma golomorfna funkciya viznachena na verhnij kompleksnij pivploshini tobto mnozhini H x iy y gt 0 x y R displaystyle mathbb H x iy y gt 0 x y in mathbb R sho ye invariantnoyu shodo peretvoren modulyarnoyi grupi chi deyakoyi yiyi pidgrupi i zadovolnyaye umovi golomorfnosti v parabolichnih tochkah Modulyarni formi i modulyarni funkciyi shiroko vikoristovuyutsya v teoriyi chisel a takozh v algebrayichnij topologiyi i teoriyi strun ViznachennyaDopomizhni viznachennya Nehaj g abcd SL2 Z displaystyle gamma begin pmatrix a amp b c amp d end pmatrix in SL 2 mathbf Z kvadratna matricya poryadku 2 z cilochiselnimi elementami i viznachnikom rivnim odinici Dlya deyakogo z H displaystyle z in mathbb H viznachimo funkciyu gz az bcz d displaystyle gamma z left frac az b cz d right Takozh poznachimo G N abcd SL2 Z a 1 b 0 c 0 d 1 modN displaystyle Gamma N left begin pmatrix a amp b c amp d end pmatrix in SL 2 mathbf Z a equiv 1 b equiv 0 c equiv 0 d equiv 1 pmod N right Dani grupi nazivayutsya golovnimi kongruentnimi pidgrupami rivnya N Takozh vikoristovuyetsya poznachennya G 1 SL2 Z displaystyle Gamma 1 SL 2 mathbf Z Dovilna grupa G G N G G 1 displaystyle Gamma Gamma N subseteq Gamma subseteq Gamma 1 nazivayetsya kongruentnoyu Nehaj g G displaystyle gamma in Gamma deyakij element kongruentnoyi grupi Yaksho Tr g 2 displaystyle operatorname Tr gamma pm 2 de Tr displaystyle operatorname Tr cdot slid matrici to cej element nazivayetsya parabolichnim a vidpovidne peretvorennya parabolichnim Tochka s R displaystyle s in mathbb R cup infty nazivayetsya parabolichnoyu yaksho isnuye parabolichnij element g G g I I displaystyle gamma in Gamma gamma neq I I takij sho gs s displaystyle gamma s s Modulyarna forma Nehaj G displaystyle Gamma deyaka kongruentna grupa Funkciya f viznachena na H displaystyle mathbb H nazivayetsya modulyarnoyu formoyu stepenya vagi k dlya grupi G displaystyle Gamma yaksho vikonuyutsya umovi f gz cz d kf z g abcd G displaystyle f gamma z cz d k f z forall gamma begin pmatrix a amp b c amp d end pmatrix in Gamma f z displaystyle f z golomorfna v H displaystyle mathbb H f z displaystyle f z golomorfna v parabolichnih tochkah grupi G displaystyle Gamma Modulyarna funkciya Nehaj G displaystyle Gamma deyaka kongruentna grupa Funkciya f viznachena na H displaystyle mathbb H nazivayetsya modulyarnoyu funkciyeyu dlya grupi G displaystyle Gamma yaksho vikonuyutsya umovi f z displaystyle f z ye invariantnoyu shodo diyi grupi G displaystyle Gamma tobto f gz f z g abcd G displaystyle f gamma z f z forall gamma begin pmatrix a amp b c amp d end pmatrix in Gamma f z displaystyle f z meromorfna v H displaystyle mathbb H f z displaystyle f z meromorfna v parabolichnih tochkah grupi G displaystyle Gamma Vipadok grupi G 1 displaystyle Gamma 1 Modulyarna grupa G 1 I I displaystyle Gamma 1 I I porodzhuyetsya dvoma matricyami T 1101 displaystyle T left begin array cc 1 amp 1 0 amp 1 end array right i S 01 10 displaystyle S left begin array cc 0 amp 1 1 amp 0 end array right Tozh dlya perevirki vikonannya pershih umov viznachen modulyarnih funkcij i form dostatno pereviriti vikonannya umov f z f z 1 displaystyle f z f z 1 i f 1 z zkf z displaystyle f 1 z z k f z Parabolichnimi tochkami danoyi grupi ye tochki Q displaystyle mathbb Q cup infty i vsi voni ye ekvivalentnimi tobto a b Q displaystyle forall a b in mathbb Q cup infty isnuye takij g G 1 displaystyle gamma in Gamma 1 sho ga b displaystyle gamma a b Tozh dostatno pereviriti golomorfnist chi meromorfnist lishe v odnij z cih tochok Najzruchnishe dlya cogo vzyati displaystyle infty Zavdyaki vlastivosti f z f z 1 displaystyle f z f z 1 funkciya f z mozhe buti zapisana cherez ryad Fur ye cherez q exp 2piz displaystyle q exp 2 pi iz Oskilki exp displaystyle exp na vsij kompleksnij ploshini ne rivnij nulyu to takozh q 0 displaystyle q neq 0 ale exp w 0 displaystyle exp w to 0 koli w displaystyle w to infty po vid yemnij dijsnij osi otzhe q 0 displaystyle q to 0 koli 2piz displaystyle 2 pi iz to infty tobto koli z i displaystyle z to i infty po dodatnij uyavnij osi Funkciya ye meromorfnoyu v bezmezhnosti yaksho f z n m cnexp 2pinz n m cnqn displaystyle f z sum n m infty c n exp 2 pi inz sum n m infty c n q n na vsomu vidkritomu odinichnomu kruzi Koeficiyenti cn displaystyle c n koeficiyenti Fur ye funkciyi f displaystyle f Yaksho cn 0 displaystyle c n 0 pri n lt 0 displaystyle n lt 0 na vsomu vidkritomu odinichnomu kruzi to funkciya ye golomorfnoyu v bezmezhnosti Poyasnennya Dlya G G 1 displaystyle Gamma Gamma 1 modulyarnu formu mozhna takozh oznachiti yak odnoridnu golomorfnu funkciyu F na mnozhini gratok v C displaystyle mathbb C Tut gratka ce pidgrupa L Z2 displaystyle Lambda cong mathbb Z 2 v C displaystyle mathbb C porodzhena dvoma chislami w1 displaystyle omega 1 w2 displaystyle omega 2 yaki utvoryuyut bazu C displaystyle mathbb C nad R displaystyle mathbb R Odnoridnist F oznachaye sho isnuye cile k 0 displaystyle k geq 0 take sho F lL l kF L displaystyle F lambda Lambda lambda k F Lambda dlya vsih l C displaystyle lambda in mathbb C times i vsih gratok L displaystyle Lambda Dosit obmezhitis parnoyu vagoyu k inakshe F 0 displaystyle F equiv 0 Za dopomogoyu gomotetiyi l displaystyle lambda cdot mozhna zrobiti shob w2 1 displaystyle omega 2 1 a w1 H t C Imt gt 0 displaystyle omega 1 in mathbb H tau in mathbb C mid mathrm Im tau gt 0 bulo parametrom gratki Funkciya f H C displaystyle f mathbb H to mathbb C f t F Z t Z 1 displaystyle f tau F mathbb Z tau mathbb Z 1 maye avtomorfnu vlastivist ekvivalentnu odnoridnosti F Golomorfnist F oznachaye golomorfnist f i polinomialnu obmezhenist rostu f poblizu mezhi H displaystyle mathbb H Z obmezhenosti viplivaye sho f x iy O 1 displaystyle f x iy O 1 pri y displaystyle y to infty i f x iy O y k displaystyle f x iy O y k pri y 0 displaystyle y to 0 Zagalnij vipadokYaksho G displaystyle Gamma deyaka pidgrupa zi skinchennim indeksom grupi G 1 displaystyle Gamma 1 to mnozhina parabolichnih tochok tezh rivna Q displaystyle mathbb Q cup infty ale v comu vipadku voni mozhut ne buti ekvivalentnimi tozh umovi golomorfnosti i meromorfnosti slid pereviryati okremo dlya kozhnogo klasu ekvivalentnosti Dlya tochki displaystyle infty stabilizator porodzhuyetsya deyakoyu matriceyu TM 1M01 displaystyle T M left begin array cc 1 amp M 0 amp 1 end array right Oskilki f z invariantna vidnosno TM displaystyle T M to f z f z M displaystyle f z f z M Tomu yaksho viznachiti q exp 2pizM displaystyle q exp left frac 2 pi iz M right to mozhna dati oznaki meromorfnosti i golomorfnosti podibni do poperednih funkciya ye meromorfnoyu v bezmezhnosti yaksho f z n m cnqn displaystyle f z sum n m infty c n q n na vsomu vidkritomu odinichnomu kruzi Koeficiyenti cn displaystyle c n koeficiyenti Fur ye funkciyi f displaystyle f Yaksho cn 0 displaystyle c n 0 pri n lt 0 displaystyle n lt 0 na vsomu vidkritomu odinichnomu kruzi to funkciya ye golomorfnoyu v bezmezhnosti Yaksho tochka t Q displaystyle tau in mathbb Q ne ye ekvivalentna bezmezhnosti v grupi G displaystyle Gamma todi mozhna znajti takij g G 1 displaystyle gamma in Gamma 1 sho t g displaystyle tau gamma infty Todi funkciya F z f gz displaystyle F z f gamma z ye invariantnoyu shodo grupi gGg 1 G 1 displaystyle gamma Gamma gamma 1 subset Gamma 1 Todi f z displaystyle f z bude golomorfnoyu meromorfnoyu v tochci t Q displaystyle tau in mathbb Q yaksho F z displaystyle F z bude golomorfnoyu meromorfnoyu v bezmezhnosti Dlya G G N displaystyle Gamma Gamma N govorimo pro modulyarni formi rivnya N Modulyarni formi vagi k i rivnya G displaystyle Gamma utvoryuyut skinchennovimirnij prostir Mk G displaystyle M k Gamma nulovij pri k lt 0 displaystyle k lt 0 i gradujovana algebra M G k 0Mk G displaystyle M Gamma oplus k geq 0 M k Gamma skinchennoporodzhena nad C displaystyle mathbb C Napriklad Mk G 1 0 displaystyle M k Gamma 1 0 dlya neparnih k a dlya parnih k dimMk G 1 k 12 displaystyle dim M k Gamma 1 k 12 pri k 2 mod12 displaystyle k equiv 2 pmod 12 i dimMk G 1 k 12 1 displaystyle dim M k Gamma 1 k 12 1 inakshe Bilsh zagalno yaksho G displaystyle Gamma diskretna pidgrupa SL 2 R displaystyle mathrm SL 2 mathbb R i G H displaystyle Gamma backslash mathbb H maye skinchennij giperbolichnij ob yem V stosovno 2 formi y 2dxdy displaystyle y 2 dx dy to dimMk G kV 4p 1 displaystyle dim M k Gamma leq kV 4 pi 1 dlya vsih k 0 displaystyle k geq 0 Zokrema dlya pidgrupi sho mistit 1 G G 1 displaystyle Gamma subset Gamma 1 skinchennogo indeksu r dimMk G kr 12 1 displaystyle dim M k Gamma leq kr 12 1 PrikladiOdnimi z najprostishih prikladiv modulyarnih form ye ryadi Ejzenshtejna vagi k displaystyle k sho viznachayutsya dlya parnogo k gt 2 displaystyle k gt 2 Gk t 12 m n Z2 0 0 1 m nt k displaystyle G k tau frac 1 2 sum m n in mathbb Z 2 backslash 0 0 frac 1 m n tau k de t H displaystyle tau in mathbb H Nehajg2 60 m n 0 0 m nt 4 g3 140 m n 0 0 m nt 6 displaystyle g 2 60 sum m n neq 0 0 m n tau 4 qquad g 3 140 sum m n neq 0 0 m n tau 6 modulyarni invarianti D g23 27g32 displaystyle Delta g 2 3 27g 3 2 modulyarnij diskriminant Viznachimo takozh j t 1728g23D displaystyle j tau 1728 g 2 3 over Delta osnovnij modulyarnij invariant j invariant Vikonuyutsya rivnosti g2 t 1 g2 t g2 t 1 t4g2 t displaystyle g 2 tau 1 g 2 tau g 2 tau 1 tau 4 g 2 tau D t 1 D t D t 1 t12D t displaystyle Delta tau 1 Delta tau Delta tau 1 tau 12 Delta tau Takozh dani funkciyi zadovolnyayut vidpovidni vlastivosti golomorfnosti Tobto g2 displaystyle g 2 modulyarna forma vagi 4 D displaystyle Delta modulyarna forma vagi 12 Vidpovidno g23 displaystyle g 2 3 modulyarna forma vagi 12 a j z displaystyle j z modulyarna funkciya Dani funkciyi mayut vazhlive zastosuvannya v teoriyi eliptichnih funkcij i eliptichnih krivih Poyasnennya Pri diyi grupi SL 2 R displaystyle mathrm SL 2 mathbb R z vagoyu k gt 0 displaystyle k gt 0 na golomorfnih funkciyah H C displaystyle mathbb H to mathbb C f f kg displaystyle f mapsto f k gamma g abcd SL 2 R displaystyle gamma begin pmatrix a amp b c amp d end pmatrix in mathrm SL 2 mathbb R f kg t ct d kf at bct d displaystyle f k gamma tau c tau d k f left frac a tau b c tau d right stabilizator tochki 1 postijnoyi funkciyi pri parnomu k ce matrici z c 0 displaystyle c 0 a d 1 displaystyle a d pm 1 Pri diyi G 1 SL 2 Z displaystyle Gamma 1 mathrm SL 2 mathbb Z cej stabilizator ye G 1n01 n Z displaystyle Gamma infty pm begin pmatrix 1 amp n 0 amp 1 end pmatrix mid n in mathbb Z Mnozhina klasiv sumizhnosti G G 1 displaystyle Gamma infty backslash Gamma 1 perebuvaye v biyekciyi z c d Z2 displaystyle c d in mathbb Z 2 mid nsd c d 1 1 displaystyle c d 1 pm 1 Ryad Ajzenshtajna Ek t g G G 1 1 kg 12 c d Z c d 11 ct d k displaystyle E k tau sum gamma in Gamma infty backslash Gamma 1 1 k gamma frac 1 2 sum c d in mathbb Z c d 1 frac 1 c tau d k absolyutno zbigayetsya pri k gt 2 displaystyle k gt 2 i ye neruhomoyu tochkoyu diyi SL 2 Z displaystyle mathrm SL 2 mathbb Z tobto modulyarnoyu formoyu vagi k rivnya 1 Komutativne kilce M G 1 C E4 E6 displaystyle M Gamma 1 mathbb C E 4 E 6 Bezposeredno odnoridnu funkciyu vid gratki mozhna napisati yak Gk L 1 2 l L 0l k displaystyle G k Lambda 1 2 sum lambda in Lambda backslash 0 lambda k k gt 2 displaystyle k gt 2 Zvuzhennya yiyi na gratki L Z t Z 1 displaystyle Lambda mathbb Z tau mathbb Z 1 t H displaystyle tau in mathbb H daye modulyarnu formu vagi k rivnya 1 Gk t 12 m n Z m n 0 0 1 mt n k displaystyle G k tau frac 1 2 sum m n in mathbb Z m n neq 0 0 frac 1 m tau n k vtim Gk t z k Ek t displaystyle G k tau zeta k E k tau Vikoristovuyuchi she odnu normalizaciyu Gk t k 1 2pi kGk t displaystyle mathbb G k tau k 1 2 pi i k G k tau znahodimo rozvinennya yiyi v ryad Fur ye vid q e2pit displaystyle q e 2 pi i tau Gk t Bk 2k n 1 sk 1 n qn displaystyle mathbb G k tau B k 2k sum n 1 infty sigma k 1 n q n de Bk displaystyle B k chislo Bernulli i sk 1 n d ndk 1 displaystyle sigma k 1 n sum d n d k 1 Kvadratichni formiNehaj 8 t n Zexp pin2t displaystyle theta tau sum n in mathbb Z exp pi in 2 tau teta funkciya Yakobi t H displaystyle tau in mathbb H Todi 82 displaystyle theta 2 modulyarna forma vagi 1 rivnya 4 Z odnovimirnosti pevnogo prostoru modulyarnih form viplivaye sho chislo predstavlen cilogo n gt 0 displaystyle n gt 0 yak sumi kvadrativ dvoh cilih chisel ye 4 d n d gt 0 d 2 1 1 d 1 2 displaystyle 4 sum d n d gt 0 d 2 1 1 d 1 2 Z togo sho 84 displaystyle theta 4 modulyarna forma vagi 2 rivnya 4 vivoditsya chislo predstavlen cilogo n gt 0 displaystyle n gt 0 yak sumi kvadrativ chotiroh cilih chisel ye 8 d n d gt 0d 0 mod4 d displaystyle 8 sum d n d gt 0 d not equiv 0 pmod 4 d Uzagalnyuyuchi rozglyanemo dodatno viznachenu kvadratichnu formu Q Zm Z displaystyle Q mathbb Z m to mathbb Z Q x xtAx 2 displaystyle Q x x t Ax 2 de A Mat m Z displaystyle A in mathrm Mat m mathbb Z simetrichna dodatno viznachena matricya z parnimi diagonalnimi elementami Z neyu asociyuyetsya teta ryad 8Q t x1 xm ZqQ x1 xm n 0 RQ n qn displaystyle Theta Q tau sum x 1 dots x m in mathbb Z q Q x 1 dots x m sum n 0 infty R Q n q n de q e2pit displaystyle q e 2 pi i tau i RQ n x Zm Q x n displaystyle R Q n x in mathbb Z m mid Q x n Nehaj N najmenshe dodatne cile take sho NA 1 Mat m Z displaystyle NA 1 in mathrm Mat m mathbb Z maye parni diagonalni elementi Todi dlya m 2k displaystyle m 2k k Z gt 0 displaystyle k in mathbb Z gt 0 funkciya 8Q displaystyle Theta Q ye modulyarnoyu formoyu vagi k rivnya N Zokrema dlya detA 1 displaystyle det A 1 8Q displaystyle Theta Q ye modulyarnoyu formoyu vagi k rivnya 1 Napriklad ce virno dlya gratki E8 displaystyle E 8 m 8 displaystyle m 8 abo gratki Licha m 24 displaystyle m 24 Operatori GekeNa prostori modulyarnih form vagi k rivnya 1 diye operator Geke Tm displaystyle T m m 1 displaystyle m geq 1 Vin perevodit odnoridnu funkciyu F stepenya k vid gratki L C displaystyle Lambda subset mathbb C v sumu TmF L mk 1 F L displaystyle T m F Lambda m k 1 sum F Lambda de L L displaystyle Lambda subset Lambda probigaye pidgratki indeksu m Konstanta normalizaciyi vibrana tak shobi ryadi z cilimi koeficiyentami Fur ye perehodili v taki zh Skinchenna mnozhina gratok L L displaystyle Lambda subset Lambda indeksu m ototozhnyuyetsya z mnozhinoyu G 1 Mm displaystyle Gamma 1 backslash mathcal M m de Mm Mat 2 Z displaystyle mathcal M m subset mathrm Mat 2 mathbb Z mnozhina matric g abcd displaystyle gamma begin pmatrix a amp b c amp d end pmatrix z viznachnikom m Tomu Tmf t mk 1 g G 1 Mm ct d kf at bct d displaystyle T m f tau m k 1 sum gamma in Gamma 1 backslash mathcal M m c tau d k f left frac a tau b c tau d right Za predstavnikiv klasiv sumizhnosti mozhna obrati cilochiselni matrici ab0d displaystyle begin pmatrix a amp b 0 amp d end pmatrix z ad m displaystyle ad m 0 b lt d displaystyle 0 leq b lt d Tomu Tmf t mk 1 ad md gt 0d k b modd f at b d displaystyle T m f tau m k 1 sum ad m d gt 0 d k sum b pmod d f a tau b d Vsi operatori Tm displaystyle T m komutuyut i ye normalnimi vidnosno skalyarnogo dobutku Petersona tozh Mk G 1 displaystyle M k Gamma 1 maye bazu spilnih vlasnih vektoriv Geke Ci vektori f mozhna normalizuvati umovoyu a1 1 displaystyle a 1 1 dlya f n 0anqn displaystyle f sum n geq 0 a n q n i normalizovanij vlasnij bazis ye yedinim Prikladami normalizovanih vlasnih funkcij sluguyut D displaystyle Delta i Gk displaystyle mathbb G k k 4 displaystyle k geq 4 Z kozhnoyu modulyarnoyu formoyu f n 0anqn displaystyle f sum n geq 0 a n q n vagi k pov yazuyetsya ryad Dirihle L f s n 1 ann s displaystyle L f s sum n 1 infty a n n s Yaksho f normalizovana vlasna funkciya Geke to L f s 1 1 app s pk 1 2s displaystyle L f s prod 1 1 a p p s p k 1 2s de p probigaye prosti chisla Dlya dovilnoyi modulyarnoyi formi f z a0 0 displaystyle a 0 0 ryad Dirihle prodovzhuyetsya do ciloyi funkciyi vid s i zadovolnyaye funkcionalnomu rivnyannyu L f k s 1 k 2L f s displaystyle L f k s 1 k 2 L f s de L f s 2p sG s L f s displaystyle L f s 2 pi s Gamma s L f s tezh cila funkciya ZastosuvannyaZ gipotezi Shimuri Taniyami Vejlya dovedenoyi Vajlsom Tejlorom Brejlem Konradom Dajmondom naprikinci dvadcyatogo stolittya kozhna eliptichna kriva nad Q displaystyle mathbb Q mozhe buti parametrizovana modulyarnimi funkciyami viplivaye Ribet velika teorema Ferma dlya n gt 2 displaystyle n gt 2 ne isnuye dodatnih cilih a b c z an bn cn displaystyle a n b n c n PosilannyaJ S Milne Modular functions and modular forms kurs lekcij D Zagier Elliptic modular forms and their applications The 1 2 3 of modular forms Universitext Springer Berlin 2008 pp 1 103 LiteraturaSarnak P Modulyarnye formy i ih prilozheniya M FAZIS 1998 ISBN 5 70364029 4 Tom M Apostol Modular functions and Dirichlet Series in Number Theory 1990 Springer Verlag New York ISBN 0 387 97127 0 Robert A Rankin Modular forms and functions 1977 Cambridge University Press Cambridge ISBN 0 521 21212 X D Mumford Tata lectures on theta I Progress in Mathematics vol 28 Birkhauser Boston MA 1983 Yu I Manin A A Panchishkin Vvedenie v sovremennuyu teoriyu chisel Moskva MCNMO 2009 Enciklopediya Suchasnoyi Ukrayini