Підтримка
www.wikidata.uk-ua.nina.az
V teoriyi grafiv derevna shirina neoriyentovanogo grafu ce chislo asocijovane z grafom Derevnu shirinu mozhna viznachiti dekilkoma ekvivalentnimi sposobami yak rozmir najbilshoyi mnozhini vershin u derevnomu rozkladi yak rozmir najbilshoyi kliki v hordalnomu dopovnenni grafu yak najbilshij poryadok ukrittya pid chas opisu strategiyi gri peresliduvannya na grafi abo yak najbilshij poryadok ozhini naboru zv yaznih pidgrafiv yaki dotikayutsya odin z odnim Derevna shirina chasto vikoristovuyetsya yak parametr v analizi en algoritmiv na grafah Grafi z shirinoyu dereva sho ne perevishuye k nazivayutsya chastkovimi k derevami Bagato inshih dobre vivchenih simejstv grafiv takozh mayut obmezhenu shirinu dereva Ponyattya shirini dereva vviv Halin Halin 1976 gruntuyuchis na inshomu parametri z yakim derevna shirina maye nizku spilnih vlastivostej Piznishe derevnu shirinu perevidkrili Robertson i Sejmur i vidtodi yiyi vivchali bagato avtoriv ViznachennyaGraf z vismoma vershinami i jogo derevna dekompoziciya yaka maye shist vershin Kozhne rebro grafu z yednuye dvi vershini i ci vershini vhodyat u spisok deyakoyi vershini dereva razom a kozhna vershina vhodit do spisku kozhnoyi vershini piddereva Kozhna vershina dereva mistit spisok maksimum troh vershini tak sho shirina ciyeyi dekompoziciyi dorivnyuye dvom Derevna dekompoziciya grafu G V E derevo T vershinami X1 Xn yakogo ye pidmnozhini V yaki zadovolnyayut takim vlastivostyam Ob yednannya vsih mnozhin Xi dorivnyuye V Takim chinom bud yaka vershina grafu mistitsya hocha b v odnij mnozhini Yaksho Xi i Xj obidva mistyat vershinu v to vsi inshi vershini dereva Xk na yedinomu shlyahu z Xi v Xj takozh mistyat v Ce ekvivalentno tverdzhennyu sho vershini dereva yaki mistyat v utvoryuyut zv yazne pidderevo T Dlya bud yakogo rebra v w grafu G isnuye pidmnozhina Xi sho mistit i v i w Tobto vershini sumizhni v grafi yaksho tilki vidpovidni piddereva mayut spilnu vershinu v derevi T Shirina derevnoyi dekompoziciyi ce rozmir yiyi najbilshoyi mnozhini Xi minus odinicya Derevna shirina tw G grafu G ce najmensha shirina vsih mozhlivih dekompozicij grafu G U comu viznachenni vid rozmiru mnozhini vidnimayetsya odinicya shob derevna shirina dereva dorivnyuvala odinici Tak samo derevna shirina G na odinicyu mensha vid rozmiru najbilshoyi kliki v hordalnomu grafi z minimalnim klikovim chislom yakij mistit G Hordalnij graf z cim klikovim chislom mozhna otrimati yaksho dodati v G rebra mizh bud yakimi dvoma vershinami yaksho obidva nalezhat odnij i tij samij hocha b odnij mnozhini Xi Derevnu shirinu mozhna takozh opisati v terminah ukrittiv funkcij sho opisuyut strategiyi uhilennya dlya deyakih igor peresliduvannya na grafi Graf G maye derevnu shirinu k v tomu i tilki v tomu vipadku koli v nomu ye ukrittya poryadku k 1 ale nemaye ukrittya z bilshim poryadkom Tut ukrittya poryadku k 1 ce funkciya b yaka vidobrazhaye kozhnu mnozhina X iz maksimum k vershinami v G v odnu zi zv yaznih komponent grafu G X i dlya yakoyi vikonuyetsya vlastivist monotonnosti b Y b X displaystyle beta Y subseteq beta X pri X Y displaystyle X subseteq Y Ozhina poryadku chotiri na 3 3 grafi gratci isnuvannya yakoyi pokazuye sho graf maye derevnu shirinu prinajmni 3 Shozhij opis mozhna takozh zrobiti z vikoristannyam ozhin simejstva zv yaznih grafiv yaki dotikayutsya mizh soboyu sho oznachaye sho voni abo mayut spilnu vershinu abo z yednani rebrom Budemo govoriti sho pidmnozhina G pokrivaye ozhinu abo ye yiyi pokrittyam yaksho vona peretinayetsya z kozhnim elementom ozhini Poryadok ozhini ce najmenshe pokrittya i derevna shirina grafu na odinicyu mensha vid najbilshogo poryadku ozhin PrikladiBud yakij povnij graf Kn maye derevnu shirinu n 1 Ce legko pobachiti yaksho vikoristati viznachennya derevnoyi shirini v terminah hordalnih grafiv povnij graf vzhe hordalnij i dodavannya reber ne mozhe zmenshiti rozmiru najbilshoyi kliki Zv yazni grafi yaki mayut shonajmenshe dvi vershini mayut derevnu shirinu 1 todi j lishe todi koli ce derevo Derevo maye derevnu shirinu odinicya z tiyeyi zh prichini sho j povni grafi a same voni hordalni j mayut najbilshu kliku rozmirom dva Navpaki yaksho graf maye cikl to bud yake hordalne dopovnennya grafu mistit shonajmenshe odin trikutnik zvidki viplivaye sho derevna shirina grafu ne menshe dvoh Obmezhena derevna shirinaSimejstva grafiv derev obmezhenoyi shirini Dlya bud yakoyi fiksovanoyi konstanti k grafi z derevnoyu shirinoyu sho ne perevishuye k nazivayutsya chastkovimi k derevami Inshi simejstva grafiv z obmezhenoyu derevnoyu shirinoyu vklyuchayut kaktusi psevdolisi paralelno poslidovni grafi zovniplanarni grafi grafi Halina i merezhi Apolloniya Grafi potoku keruvannya sho z yavlyayutsya pid chas translyaciyi strukturnih program takozh mayut obmezhenu derevnu shirinu sho dozvolyaye efektivno vikonuvati deyaki zavdannya taki yak rozpodil registriv Planarni grafi ne mayut obmezhenoyi derevnoyi shirini oskilki n n gratka ce planarnij graf yakij maye derevnu shirinu rivno n Takim chinom yaksho F ce simejstvo minorno zamknutih grafiv z obmezhenoyu derevnoyu shirinoyu vono ne mozhe vklyuchati vsih planarnih grafiv Navpaki yaksho deyakij planarnij graf ne mozhe buti minorom grafiv u simejstvi F to isnuye konstanta k taka sho vsi grafi v F mayut derevnu shirinu ne bilshu vid k Takim chinom nastupni tri umovi ekvivalentni mizh soboyu F simejstvo minorno zamknutih grafiv obmezhenoyi derevnoyi shirini Odin zi skinchennogo chisla zaboronenih minoriv dlya F planarnij F ye simejstvom minorno zamknutih grafiv sho vklyuchaye ne planarni grafi Zaboroneni minori Dokladnishe Harakterizaciya zaboronenimi grafami Chotiri zaboronenih minori dlya derevnoyi shirini 3 Dlya bud yakogo skinchennogo znachennya k grafi z derevnoyu shirinoyu sho ne perevishuye k mozhna opisati skinchennim chislom zaboronenih minoriv kozhen z yakih vklyuchaye shonajmenshe odin planarnij graf Dlya k 1 yedinim zaboronenim minorom ye cikl iz 3 vershinami Dlya k 2 yedinim zaboronenim minorom ye povnij graf K4 z 4 vershinami Dlya k 3 isnuye chotiri zaboronenih minori K5 graf oktaedra graf p yatikutnoyi prizmi i graf Vagnera Dva z perelichenih poliedralnih grafiv ye planarnimi Dlya velikih znachen k chislo zaboronenih minoriv zrostaye prinajmni yak eksponenta vid k Odnak vidomi verhni granici rozmiru j chisla zaboronenih minoriv znachno vishi vid ciyeyi nizhnoyi mezhi AlgoritmiObchislennya shirini dereva Viznachennya chi maye zadanij graf G derevnu shirinu yaka ne perevishuye k ye NP povnoyu zadacheyu Odnak yaksho k fiksovane grafi z derevnoyu shirinoyu k mozhna znajti i vidpovidnij pobuduvati za linijnij chas Chas vikonannya algoritmu zalezhit vid k eksponencialno Na praktici algoritm Shojheta i Gajgera Shoikhet Geiger 1997 mozhe znajti derevnu shirinu grafiv sho mayut rozmir do 100 vershin i derevnu shirinu azh do 11 znahodzhennyam hordalnogo dopovnennya cih grafiv z optimalnoyu derevnoyu shirinoyu Rozv yazannya inshih zadach na grafah z maloyu shirinoyu dereva Na pochatku simdesyatih rokiv dvadcyatogo stolittya pomicheno sho velikij klas kombinatornih zadach optimizaciyi na grafah mozhna efektivno rozv yazuvati za dopomogoyu neserialnogo proyasniti dinamichnogo programuvannya yaksho graf maye obmezhenu rozmirnist parametr pov yazanij z derevnoyu shirinoyu Piznishe v kinci 1980 h ryad matematikiv nezalezhno viyavili sho bagato algoritmichnih zadach NP povnih dlya dovilnih grafiv mozhna efektivno rozv yazati dinamichnim programuvannyam dlya grafiv obmezhenoyi derevnoyi shirini yaksho vikoristovuvati derevne rozkladannya cih grafiv Napriklad zadachu rozfarbovuvannya grafu derevnoyi shirini k mozhna rozv yazati za dopomogoyu dinamichnogo programuvannya na derevnomu rozkladi grafu Dlya kozhnoyi mnozhini Xi derevnogo rozkladu i kozhnogo rozbittya vershin Xi na kolori algoritm viznachaye chi pripustima otrimana rozmalovka i chi mozhna yiyi rozshiriti na vsi pohidni vershini rozkladu shlyahom kombinuvannya informaciyi odnakovogo tipu i zapam yatovuvannya v cih vershinah Rezultuyuchij algoritm znahodit optimalnu rozmalovku grafu z n vershinami za chas O kk O 1 n sho robit cyu zadachu en Pov yazani parametriShlyahova shirina Dokladnishe Shlyahova shirina grafu Shlyahova shirina grafu maye duzhe shozhe na derevnu shirinu viznachennya cherez derevne rozkladennya ale obmezhuyetsya tilki timi rozkladennyami v yakih kinceve derevo ye shlyahom Inshim sposobom mozhna viznachiti shlyahovu shirinu vihodyachi z intervalnogo grafu podibno do viznachennya derevnoyi shirini za dopomogoyu hordalnih grafiv Yak naslidok shlyahova shirina grafu yak minimum ne mensha vid jogo derevnoyi shirini ale mozhe buti bilshoyu tilki na logarifmichnij mnozhnik She odin parametr en maye shozhe viznachennya sho spirayetsya na pravilni intervalni grafi i znachennya parametra ne menshe vid shlyahovoyi shirini Krim cogo ye derevna glibina chislo obmezhene dlya minorno zamknutih grafiv todi j lishe todi koli simejstvo ne vklyuchaye vsih grafiv shlyahiv i virodzhennya mira rozridzhenosti grafu yaka ne perevishuye derevnoyi shirini Rozmir minora gratki Oskilki derevna shirina gratki n n dorivnyuye n derevna shirina grafu G zavzhdi bilsha abo dorivnyuye rozmiru najbilshoyi kvadratnoyi gratki minora grafu G Z inshogo boku isnuye funkciya f taka sho derevna shirina ne perevishuye f r de r rozmir najbilshoyi kvadratnoyi gratki minora Odnak vidomi mezhi f ne mali f povinna buti ne menshe W r2 log r i ne bilshe 202r5 Strogishi kordoni vidomi dlya obmezhenih simejstv grafiv sho daye efektivni algoritmi dlya bagatoh zadach optimizaciyi na cih simejstvah grafiv za teoriyeyu en en daye analog zv yazku mizh derevnoyu shirinoyu ta rozmirom minora gratki dlya neobmezhenih grafiv Diametr i lokalna derevna shirina Kazhut sho simejstvo F grafiv maye obmezhenu lokalnu derevnu shirinu yaksho derevna shirina grafiv simejstva obmezhena zverhu funkciyeyu vid diametra Yaksho bud yakij minor chlena simejstva F takozh vhodit do F to F maye obmezhenu lokalnu derevnu shirinu todi j lishe todi koli odin iz zaboronenih minoriv F verhivkovij graf Pochatkove dovedennya cogo rezultatu pokazuvalo sho derevna shirina kolekciyi grafiv bez minoriv yaki ye verhivkovimi grafami zrostaye ne shvidshe podvoyenoyi eksponenti vid diametra Piznishe ce bulo zvedeno prosto do eksponenti i nareshti do linijnoyi mezhi Obmezhena lokalna derevna shirina tisno pov yazana z algoritmichnoyu teoriyeyu en i bud yaku vlastivist grafu yaku mozhna viznachiti v ramkah logiki pershogo poryadku mozhna obchisliti dlya grafiv simejstva yaki ne mistyat minoriv vershinnih grafiv za trohi bilshe nizh linijnij chas Deyaki klasi grafiv ne zamknuti vidnosno minoriv vse zh mayut obmezhenu lokalnu derevnu shirinu Zokrema ce 1 planarni grafi tobto grafi yaki mozhna namalyuvati na ploshini z maksimum odnim peretinom odnogo rebra i zagalnishi grafi yaki mozhna namalyuvati na poverhni obmezhenogo rodu z obmezhenim chislom peretiniv reber Yak i u vipadku simejstv minorno zamknutih grafiv z obmezhenoyu lokalnoyu derevnoyu shirinoyu cya vlastivist prokladaye shlyah do efektivnih aproksimacijnih algoritmiv dlya takih grafiv Chislo Hadvigera i S funkciyi Halin Halin 1976 viznachaye klas parametriv grafiv yakij vin nazivaye S funkciyami i cej klas vklyuchaye derevnu shirinu Ci funkciyi mayut za oblast viznachennya grafi za oblast znachen cili chisla i voni povinni nabuvati znachennya nul na grafah bez reber i povinni buti monotonnimi vidnosno minoriv tobto zbilshuvatisya na odinicyu pri dodavanni novoyi vershini yaka sumizhna vsim poperednim vershinam Potribno takozh shob znachennya funkciyi vid grafu bulo rivne bilshomu zi znachen na dvoh pidmnozhinah peretin yakih ye vershinnim separatorom i klikoyu odnochasno Mnozhina vsih takih funkcij utvoryuye vidnosno operacij poelementnoyi minimizaciyi j maksimizaciyi Verhnij element u cij gratci derevna shirina a nizhnij rozmir maksimalnogo povnogo minora v zadanomu grafi Div takozhKlikova shirina Shlyahova shirina grafu Derevna glibina teoriya grafiv Teorema KurselyaPrimitkiRobertson Seymour 1984 Diestel 2005 str 354 355 Diestel 2005 sekciya 12 3 Seymour Thomas 1993 Bodlaender 1998 Thorup 1998 Robertson Seymour 1986 Bodlaender 1988 Arnborg Proskurowski Corneil 1990 Satyanarayana Tung 1990 Ramachandramurthi 1997 Lagergren 1993 Arnborg Corneil Proskurowski 1987 Bodlaender 1996 Bertele Brioschi 1972 Arnborg Proskurowski 1989 Bern Lawler Wong 1987 Bodlaender 1988 Robertson Seymour Thomas 1994 Ob W v nizhnej ocenke smotrite O bolshoe i o maloe Demaine Hajiaghayi 2008 Diestel 2004 Eppstein 2000 Eppstein 2000 Demaine Hajiaghayi 2004a Demaine Hajiaghayi 2004b Demaine Fomin Hajiaghayi Thilikos 2004 Demaine Hajiaghayi 2008 Frick Grohe 2001 Grigoriev Bodlaender 2007 PosilannyaS Arnborg D Corneil A Proskurowski Complexity of finding embeddings in a k tree SIAM Journal on Matrix Analysis and Applications 1987 T 8 vip 2 16 chervnya S 277 284 DOI 10 1137 0608024 Stefan Arnborg Andrzej Proskurowski Derek G Corneil Forbidden minors characterization of partial 3 trees Discrete Mathematics 1990 T 80 vip 1 16 chervnya S 1 19 DOI 10 1016 0012 365X 90 90292 P S Arnborg A Proskurowski Linear time algorithms for NP hard problems restricted to partial k trees Discrete Applied Mathematics 1989 T 23 vip 1 16 chervnya S 11 24 DOI 10 1016 0166 218X 89 90031 0 M W Bern E L Lawler A L Wong Linear time computation of optimal subgraphs of decomposable graphs Journal of Algorithms 1987 T 8 vip 2 16 chervnya S 216 235 DOI 10 1016 0196 6774 87 90039 3 Umberto Bertele Francesco Brioschi Nonserial Dynamic Programming Academic Press 1972 16 chervnya ISBN 0 12 093450 7 Hans L Bodlaender Proc 15th International Colloquium on Automata Languages and Programming Springer Verlag 1988 T 317 16 chervnya S 105 118 DOI 10 1007 3 540 19488 6 110 Hans L Bodlaender A linear time algorithm for finding tree decompositions of small treewidth SIAM Journal on Computing 1996 T 25 vip 6 16 chervnya S 1305 1317 DOI 10 1137 S0097539793251219 Hans L Bodlaender A partial k arboretum of graphs with bounded treewidth Theoretical Computer Science 1998 T 209 vip 1 2 16 chervnya S 1 45 DOI 10 1016 S0304 3975 97 00228 4 Erik D Demaine Fedor V Fomin MohammadTaghi Hajiaghayi Dimitrios M Thilikos Bidimensional parameters and local treewidth SIAM Journal on Discrete Mathematics 2004 T 18 vip 3 16 chervnya S 501 511 DOI 10 1137 S0895480103433410 Erik D Demaine MohammadTaghi Hajiaghayi Diameter and treewidth in minor closed graph families revisited Algorithmica 2024 T 40 vip 3 16 chervnya S 211 215 DOI 10 1007 s00453 004 1106 1 Erik D Demaine MohammadTaghi Hajiaghayi Proceedings of the Fifteenth Annual ACM SIAM Symposium on Discrete Algorithms New York ACM 2024 16 chervnya S 840 849 Erik D Demaine Mohammad Taghi Hajiaghayi Linearity of grid minors in treewidth with applications through bidimensionality 2008 T 28 vip 1 16 chervnya S 19 36 DOI 10 1007 s00493 008 2140 4 z dzherela 11 zhovtnya 2020 Procitovano 1 grudnya 2020 Reinhard Diestel A short proof of Halin s grid theorem Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 2004 T 74 16 chervnya S 237 242 DOI 10 1007 BF02941538 Reinhard Diestel Graph Theory 3rd Springer 2005 16 chervnya ISBN 3 540 26182 6 z dzherela 28 lipnya 2011 Procitovano 1 grudnya 2020 D Eppstein Diameter and treewidth in minor closed graph families Algorithmica 2000 T 27 vip 3 4 16 chervnya S 275 291 DOI 10 1007 s004530010020 Markus Frick Martin Grohe Deciding first order properties of locally tree decomposable structures Journal of the ACM 2001 T 48 vip 6 16 chervnya S 1184 1206 DOI 10 1145 504794 504798 Alexander Grigoriev Hans L Bodlaender Algorithms for graphs embeddable with few crossings per edge Algorithmica 2007 T 49 vip 1 16 chervnya S 1 11 DOI 10 1007 s00453 007 0010 x Rudolf Halin S functions for graphs Journal of Geometry 1976 T 8 16 chervnya S 171 186 DOI 10 1007 BF01917434 Jens Lagergren Graph structure theory Seattle WA 1991 Providence RI American Mathematical Society 1993 T 147 16 chervnya S 601 621 DOI 10 1090 conm 147 01202 Siddharthan Ramachandramurthi The structure and number of obstructions to treewidth SIAM Journal on Discrete Mathematics 1997 T 10 vip 1 16 chervnya S 146 157 DOI 10 1137 S0895480195280010 Neil Robertson Paul D Seymour Graph minors III Planar tree width Journal of Combinatorial Theory Series B 1984 T 36 vip 1 16 chervnya S 49 64 DOI 10 1016 0095 8956 84 90013 3 Neil Robertson Paul D Seymour Graph minors V Excluding a planar graph Journal of Combinatorial Theory Series B 1986 T 41 vip 1 16 chervnya S 92 114 DOI 10 1016 0095 8956 86 90030 4 Neil Robertson Paul Seymour Robin Thomas Quickly excluding a planar graph 1994 T 62 vip 2 16 chervnya S 323 348 Series B DOI 10 1006 jctb 1994 1073 A Satyanarayana L Tung A characterization of partial 3 trees Networks 1990 T 20 vip 3 16 chervnya S 299 322 DOI 10 1002 net 3230200304 Paul D Seymour Robin Thomas Graph Searching and a Min Max Theorem for Tree Width Journal of Combinatorial Theory Series B 1993 T 58 vip 1 16 chervnya S 22 33 DOI 10 1006 jctb 1993 1027 Kirill Shoikhet Dan Geiger Proc AAAI 97 1997 16 chervnya S 185 190 z dzherela 2 lyutogo 2021 Procitovano 1 grudnya 2020 Mikkel Thorup All structured programs have small tree width and good register allocation Information and Computation 1998 T 142 vip 2 16 chervnya S 159 181 DOI 10 1006 inco 1997 2697
Топ