Ребро́ — в геометрії одновимірний відрізок, що з'єднує дві сусідні нульвимірні вершини многокутника, багатогранника або політопа довільної вимірності. В многокутнику ребро ще називають стороною. В багатограннику або, більш загально, у політопі ребро є відрізком в якому дві грані з'єднуються. Відрізок, який з'єднує дві вершини та проходить всередині або зовні не є ребром, натомість його називають діагоналлю.
Три ребра: AB, BC і CA — кожне між двома вершинами трикутника. | Багатокутник, обмежений чотирма сторонами; Цей квадрат має 4 ребра. |
У багатограннику кожне ребро розділяє 2 грані, як у цьому кубі. | Кожне ребро розділяє 3 або більше граней у чотиривимірному багатограннику, як показано на цій проєкції тесеракту. |
Замкнута послідовність ребер на площині утворює многокутник або грань багатогранника.
Ребра в графах
В теорії графів, ребра — це абстрактний об'єкт, що з'єднує дві вершини графу, на відміну від багатокутника і багатогранника, ребра якого мають конкретне геометричне подання у вигляді лінійного сегмента. Однак, будь-який поліедр може бути представлений у вигляді його кістяку, а саме графом, вершини якого є вершинами многогранника, і у геометричному вигляді. З іншого боку, графи, які є скелетами тривимірних багатогранників, можна охарактеризувати по теоремі Штайніца як з'єднані трьома вершинами планарні графи.
Число ребер багатогранника
Будь-який опуклий багатокутник має Ейлерову характеристику:
де V — число вершин, Е — число ребер і F — число граней. Це рівняння відоме як формула Ейлера для багатогранника. Таким чином, число ребер на 2 менше, ніж сума числа вершин і граней. Наприклад, куб має 8 вершин і 6 граней, 12 ребер.
Належність граням
У полігоні два ребра зустрічаються у кожній вершині; в цілому за [en] існує принаймні n граней в кожній вершині n-вимірного опуклого багатогранника. Аналогічно у багатограннику рівно дві грані відповідає кожному ребру, у той час як у вищих вимірностях ребру може відповідати три грані або й більше.
Альтернативна термінологія
У теорії багатомірних опуклих багатогранників грані або сторони n-вимірного багатогранника є одними з його (n − 1)-вимірною особливостей, що хребет — це (n − 2)-вимірних просторових об'єктів, і пік це (n − 3)-вимірний просторовий об'єкт. Таким чином, ребрами полігону є його грані, ребрами 3-вимірного опуклого багатогранника є його хребти, а піки 4-вимірного багатогранника є його вершини.
Примітки
- (1995), , , т. 152, Springer, Definition 2.1, p. 51, архів оригіналу за 15 лютого 2017, процитовано 25 червня 2016.
- Weisstein, Eric W. «Polygon Edge.» From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PolygonEdge.html [ 26 липня 2020 у Wayback Machine.]
- Weisstein, Eric W. «Polytope Edge.» From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PolytopeEdge.html [ 24 травня 2016 у Wayback Machine.]
- (2013), , Springer, с. 81, ISBN , архів оригіналу за 7 січня 2014, процитовано 29 червня 2016.
- ; Randić, Milan (2000), Bridges between geometry and graph theory, у Gorini, Catherine A. (ред.), Geometry at work, MAA Notes, т. 53, Washington, DC: Math. Assoc. America, с. 174—194, MR 1782654. See in particular Theorem 3, p. 176 [ 20 лютого 2017 у Wayback Machine.].
- (1961), , Pacific Journal of Mathematics, 11 (2): 431—434, doi:10.2140/pjm.1961.11.431, MR 0126765, архів оригіналу за 11 травня 2019, процитовано 29 червня 2016.
- Wenninger, Magnus J. (1974), , Cambridge University Press, с. 1, ISBN , архів оригіналу за 21 березня 2015, процитовано 29 червня 2016.
- (1986), Constructing higher-dimensional convex hulls at logarithmic cost per face, Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing (STOC '86), с. 404—413, doi:10.1145/12130.12172.
Див. також
- [en]
- [en]
Посилання
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Rebro v geometriyi odnovimirnij vidrizok sho z yednuye dvi susidni nulvimirni vershini mnogokutnika bagatogrannika abo politopa dovilnoyi vimirnosti V mnogokutniku rebro she nazivayut storonoyu V bagatogranniku abo bilsh zagalno u politopi rebro ye vidrizkom v yakomu dvi grani z yednuyutsya Vidrizok yakij z yednuye dvi vershini ta prohodit vseredini abo zovni ne ye rebrom natomist jogo nazivayut diagonallyu Tri rebra AB BC i CA kozhne mizh dvoma vershinami trikutnika Bagatokutnik obmezhenij chotirma storonami Cej kvadrat maye 4 rebra U bagatogranniku kozhne rebro rozdilyaye 2 grani yak u comu kubi Kozhne rebro rozdilyaye 3 abo bilshe granej u chotirivimirnomu bagatogranniku yak pokazano na cij proyekciyi teseraktu Mnogokutnik ABCDEF z poznachenimi chervonim kolorom rebrami BC i DE Zamknuta poslidovnist reber na ploshini utvoryuye mnogokutnik abo gran bagatogrannika Rebra v grafahV teoriyi grafiv rebra ce abstraktnij ob yekt sho z yednuye dvi vershini grafu na vidminu vid bagatokutnika i bagatogrannika rebra yakogo mayut konkretne geometrichne podannya u viglyadi linijnogo segmenta Odnak bud yakij poliedr mozhe buti predstavlenij u viglyadi jogo kistyaku a same grafom vershini yakogo ye vershinami mnogogrannika i u geometrichnomu viglyadi Z inshogo boku grafi yaki ye skeletami trivimirnih bagatogrannikiv mozhna oharakterizuvati po teoremi Shtajnica yak z yednani troma vershinami planarni grafi Chislo reber bagatogrannikaBud yakij opuklij bagatokutnik maye Ejlerovu harakteristiku V E F 2 displaystyle V E F 2 de V chislo vershin E chislo reber i F chislo granej Ce rivnyannya vidome yak formula Ejlera dlya bagatogrannika Takim chinom chislo reber na 2 menshe nizh suma chisla vershin i granej Napriklad kub maye 8 vershin i 6 granej 12 reber Nalezhnist granyamU poligoni dva rebra zustrichayutsya u kozhnij vershini v cilomu za en isnuye prinajmni n granej v kozhnij vershini n vimirnogo opuklogo bagatogrannika Analogichno u bagatogranniku rivno dvi grani vidpovidaye kozhnomu rebru u toj chas yak u vishih vimirnostyah rebru mozhe vidpovidati tri grani abo j bilshe Alternativna terminologiyaU teoriyi bagatomirnih opuklih bagatogrannikiv grani abo storoni n vimirnogo bagatogrannika ye odnimi z jogo n 1 vimirnoyu osoblivostej sho hrebet ce n 2 vimirnih prostorovih ob yektiv i pik ce n 3 vimirnij prostorovij ob yekt Takim chinom rebrami poligonu ye jogo grani rebrami 3 vimirnogo opuklogo bagatogrannika ye jogo hrebti a piki 4 vimirnogo bagatogrannika ye jogo vershini Primitki 1995 t 152 Springer Definition 2 1 p 51 arhiv originalu za 15 lyutogo 2017 procitovano 25 chervnya 2016 Weisstein Eric W Polygon Edge From MathWorld A Wolfram Web Resource http mathworld wolfram com PolygonEdge html 26 lipnya 2020 u Wayback Machine Weisstein Eric W Polytope Edge From MathWorld A Wolfram Web Resource http mathworld wolfram com PolytopeEdge html 24 travnya 2016 u Wayback Machine 2013 Springer s 81 ISBN 9780387927145 arhiv originalu za 7 sichnya 2014 procitovano 29 chervnya 2016 Randic Milan 2000 Bridges between geometry and graph theory u Gorini Catherine A red Geometry at work MAA Notes t 53 Washington DC Math Assoc America s 174 194 MR 1782654 See in particular Theorem 3 p 176 20 lyutogo 2017 u Wayback Machine 1961 Pacific Journal of Mathematics 11 2 431 434 doi 10 2140 pjm 1961 11 431 MR 0126765 arhiv originalu za 11 travnya 2019 procitovano 29 chervnya 2016 Wenninger Magnus J 1974 Cambridge University Press s 1 ISBN 9780521098595 arhiv originalu za 21 bereznya 2015 procitovano 29 chervnya 2016 1986 Constructing higher dimensional convex hulls at logarithmic cost per face Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing STOC 86 s 404 413 doi 10 1145 12130 12172 Div takozh en en PosilannyaKoordinacijnij poliedr Weisstein Eric W Polygonal edge angl na sajti Wolfram MathWorld Weisstein Eric W Polyhedral edge angl na sajti Wolfram MathWorld