Матроїд — класифікація підмножин деякої множини, що являє собою узагальнення ідеї незалежності елементів, аналогічно незалежності елементів лінійного простору, на довільну множину.
Аксіоматичне визначення
Матроїд — пара , де — скінченна множина, звана носієм матроїда, а — деяка множина підмножин , звана сімейством незалежних множин, тобто . При цьому повинні виконуватися наступні умови:
- Якщо та , то
- Якщо і потужність A більша потужності B, то існує такий, що
Базами матроїда називаються максимальні по включенню незалежні множини. Підмножини , які не належать , називаються залежними множинами. Мінімальні по включенню залежні множини називаються циклами матроїда, це поняття використовується в альтернативному визначенні матроїда.
Визначення у термінах циклів
Матроїд — пара , де — носій матроїда, а — сімейство непустих підмножин , зване множиною Циклів матроїда, для яких виконуються наступні умови:
- Жоден цикл не є підмножиною іншого.
- Якщо , то містить цикл.
Визначення у термінах правильного замикання
Нехай — частково впорядкована множина. — замикання в , якщо
- Для будь-якого x з P:
- Для будь-яких x,y з P:
- Для будь-якого x з P:
Розглянемо випадок, коли частково впорядкована множина — булева алгебра. Нехай — замикання.
- Замикання правильне (аксіома правильного замикання), якщо
- Для будь-якого існує таке , що
Пара , де — правильне замикання на , називається матроїдом.
Приклади
- Універсальний матроїд Unk. Множина X має потужність n, незалежними множинами є підмножини потужністю не більше k. Бази — підмножини потужністю k.
- Матроїд циклів графу. Множина X — множина ребер графу, незалежні множини — ациклічні підмножини цих ребер, цикли — прості цикли графу. Базами є кістякові дерева графу. Матроїд називається 'графічним', якщо він є матроїдом циклів деякого графу.
- Матроїд підмножин множини ребер графу, таких що видалення підмножини залишає граф зв'язним.
- Матроїд (коциклів) графу. Множина X — множина ребер, коцикли — мінімальні множини, видалення яких призводить до втрати зв'язності графу. Матроїд називається 'кографічним', якщо він є матроїдом коциклів деякого графу.
- Матричний матроїд. Сімейство всіх лінійно незалежних підмножин будь-якої скінченної множини векторів довільного непорожнього векторного простору є матроїдом.
Визначимо множину E, як таку, що складається з {1, 2, 3, .., n} — номерів стовпців деякої матриці, а множину I, як таку, яка складається з підмножин E, таких що вектори, які визначаються ними, є лінійно незалежними над полем дійсних чисел R. Виникає питання — якими властивостями володіє побудована множина I?
- Множина I — непорожня. Навіть якщо вихідна множина E була б порожньою — E = ∅, то I буде складатися з одного елемента — множини, що містить порожню множину I = ∅.
- Будь-яка підмножина будь-якого елемента множини I також буде елементом цієї множини. Ця властивість зрозуміла — якщо деякий набір векторів лінійно незалежний над полем, то лінійно незалежним буде також будь-який його піднабір.
- Якщо A, B ∈ I, причому|A|=|B|+ 1, тоді існує елемент x ∈ A — B, такий що B ∪ {x} ∈ I.
Доведемо, що в розглянутому прикладі множина лінійно незалежних стовпців дійсно є матроїдом. Для цього достатньо довести третю властивість з визначення матроїда. Проведемо доведення методом від протилежного.
Доведення. Нехай A, B ∈ I і |A|=|B|+ 1. Нехай W буде простором векторів, які охоплюють A ∪ B. Зрозуміло, що його розмірність буде не меншою від |A|. Припустимо, що B ∪ {x} буде лінійно залежною для всіх x ∈ A — B (тобто третя властивість не буде виконуватися). Тоді B утворює базис у просторі W. З цього випливає, що|A|≤ dim W ≤|B|. Але, так як за умовою A і B складаються з лінійно незалежних векторів і |A|>|B|, одержуємо суперечність. Така множина векторів буде матроїдом.
Додаткові поняття
- Двоїстим до даного матроїду називається матроїд, носій якого збігається з носієм даного матроїда, а бази — з доповненням баз даного матроїда до носія. Тобто X* = X, а безліч баз двоїстого матроїда — це множина таких B*, що B* = X\B, де B — база даного матроїда.
- Циклом в матроїді називається така множина A ⊂ X, що A ∉ I, і для будь-якого B ⊂ A, якщо B ≠ A, то B ∈ I
- Рангом матроїда називається потужність його баз. Ранг тривіального матроїда дорівнює нулю.
Матроїд Фано
Матроїди з невеликим числом елементів часто зображують у вигляді діаграм. Точки — це елементи основної множини, а криві «протягнуті» через кожен трьохелементний ланцюг (3-element circuit). Діаграма показує 3-ранговий матроїд, званий матроїдом Фано, приклад якого з'явився в 1935 в статті Уїтні (Whitney).
Назва виникла з того факту, що матроїд Фано являє собою проективну площину другого порядку, відому як площина Фано, чиє координатне поле — це двохелементне поле. Це означає, що матроїд Фано — це векторний матроїд, пов'язаний з сімома ненульовими векторами в тривимірному векторному просторі над полем двох елементів.
З проективної геометрії відомо, що матроїд Фано не може бути представлений довільною множиною векторів в дійсному або комплексному векторному просторі (або в будь-якому векторному просторі над полем, характеристики якого відрізняються від 2).
Теореми
- Всі бази матроїда мають однакову потужність.
- Матроїд однозначно задається носієм і базами.
- Цикл не може бути підмножиною іншого циклу
- Якщо і — цикли, то для будь-якого містить цикл
- Якщо — база і , то містить рівно один цикл.
Застосування
- Матроїди добре описують клас задач, які допускають «жадібне» рішення. Див. жадібний алгоритм Радо-Едмондса.
- Матроїди в комбінаторній оптимізації.
Див. також
Примітки
- Ф. Харарі Теорія графів стр. 57
- Ф. Харарі Теорія графів стр. 186
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Matroyid klasifikaciya pidmnozhin deyakoyi mnozhini sho yavlyaye soboyu uzagalnennya ideyi nezalezhnosti elementiv analogichno nezalezhnosti elementiv linijnogo prostoru na dovilnu mnozhinu Aksiomatichne viznachennyaMatroyid para X I displaystyle X I de X displaystyle X skinchenna mnozhina zvana nosiyem matroyida a I displaystyle I deyaka mnozhina pidmnozhin X displaystyle X zvana simejstvom nezalezhnih mnozhin tobto I displaystyle I subset 2 X displaystyle 2 X Pri comu povinni vikonuvatisya nastupni umovi I displaystyle varnothing in I Yaksho A I displaystyle A in I ta B A displaystyle B subset A to B I displaystyle B in I Yaksho A B I displaystyle A B in I i potuzhnist A bilsha potuzhnosti B to isnuye x A B displaystyle x in A setminus B takij sho B x I displaystyle B cup x in I Bazami matroyida nazivayutsya maksimalni po vklyuchennyu nezalezhni mnozhini Pidmnozhini X displaystyle X yaki ne nalezhat I displaystyle I nazivayutsya zalezhnimi mnozhinami Minimalni po vklyuchennyu zalezhni mnozhini nazivayutsya ciklami matroyida ce ponyattya vikoristovuyetsya v alternativnomu viznachenni matroyida Viznachennya u terminah ciklivMatroyid para X C displaystyle X C de X displaystyle X nosij matroyida a C displaystyle C simejstvo nepustih pidmnozhin X displaystyle X zvane mnozhinoyu Cikliv matroyida dlya yakih vikonuyutsya nastupni umovi Zhoden cikl ne ye pidmnozhinoyu inshogo Yaksho x C 1 C 2 displaystyle x in C 1 cap C 2 to C 1 C 2 x displaystyle C 1 cup C 2 setminus x mistit cikl Viznachennya u terminah pravilnogo zamikannyaNehaj P displaystyle P leq chastkovo vporyadkovana mnozhina H P P displaystyle H P to P zamikannya v P displaystyle P leq yaksho Dlya bud yakogo x z P H x x displaystyle H x geq x Dlya bud yakih x y z P x y H x H y displaystyle x leq y Rightarrow H x leq H y Dlya bud yakogo x z P H H x H x displaystyle H left H left x right right H x Rozglyanemo P 2 S displaystyle P leq 2 S leq vipadok koli chastkovo vporyadkovana mnozhina buleva algebra Nehaj A H A displaystyle A to H A zamikannyaA S displaystyle A subset S Zamikannya pravilne aksioma pravilnogo zamikannya yaksho p A p H A q q H A p displaystyle p not in A p in H A cup left q right Rightarrow q in H A cup left p right Dlya bud yakogo A S displaystyle A subset S isnuye take B A displaystyle B subset A sho B lt displaystyle B lt infty H B H A displaystyle H left B right H left A right Para S A H A displaystyle S A to H A de A H A displaystyle A to H A pravilne zamikannya na 2 S displaystyle 2 S leq nazivayetsya matroyidom PrikladiUniversalnij matroyid Unk Mnozhina X maye potuzhnist n nezalezhnimi mnozhinami ye pidmnozhini potuzhnistyu ne bilshe k Bazi pidmnozhini potuzhnistyu k Matroyid cikliv grafu Mnozhina X mnozhina reber grafu nezalezhni mnozhini aciklichni pidmnozhini cih reber cikli prosti cikli grafu Bazami ye kistyakovi dereva grafu Matroyid nazivayetsya grafichnim yaksho vin ye matroyidom cikliv deyakogo grafu Matroyid pidmnozhin mnozhini reber grafu takih sho vidalennya pidmnozhini zalishaye graf zv yaznim Matroyid kocikliv grafu Mnozhina X mnozhina reber kocikli minimalni mnozhini vidalennya yakih prizvodit do vtrati zv yaznosti grafu Matroyid nazivayetsya kografichnim yaksho vin ye matroyidom kocikliv deyakogo grafu Matrichnij matroyid Simejstvo vsih linijno nezalezhnih pidmnozhin bud yakoyi skinchennoyi mnozhini vektoriv dovilnogo neporozhnogo vektornogo prostoru ye matroyidom Viznachimo mnozhinu E yak taku sho skladayetsya z 1 2 3 n nomeriv stovpciv deyakoyi matrici a mnozhinu I yak taku yaka skladayetsya z pidmnozhin E takih sho vektori yaki viznachayutsya nimi ye linijno nezalezhnimi nad polem dijsnih chisel R Vinikaye pitannya yakimi vlastivostyami volodiye pobudovana mnozhina I Mnozhina I neporozhnya Navit yaksho vihidna mnozhina E bula b porozhnoyu E to I bude skladatisya z odnogo elementa mnozhini sho mistit porozhnyu mnozhinu I Bud yaka pidmnozhina bud yakogo elementa mnozhini I takozh bude elementom ciyeyi mnozhini Cya vlastivist zrozumila yaksho deyakij nabir vektoriv linijno nezalezhnij nad polem to linijno nezalezhnim bude takozh bud yakij jogo pidnabir Yaksho A B I prichomu A B 1 todi isnuye element x A B takij sho B x I Dovedemo sho v rozglyanutomu prikladi mnozhina linijno nezalezhnih stovpciv dijsno ye matroyidom Dlya cogo dostatno dovesti tretyu vlastivist z viznachennya matroyida Provedemo dovedennya metodom vid protilezhnogo Dovedennya Nehaj A B I i A B 1 Nehaj W bude prostorom vektoriv yaki ohoplyuyut A B Zrozumilo sho jogo rozmirnist bude ne menshoyu vid A Pripustimo sho B x bude linijno zalezhnoyu dlya vsih x A B tobto tretya vlastivist ne bude vikonuvatisya Todi B utvoryuye bazis u prostori W Z cogo viplivaye sho A dim W B Ale tak yak za umovoyu A i B skladayutsya z linijno nezalezhnih vektoriv i A gt B oderzhuyemo superechnist Taka mnozhina vektoriv bude matroyidom Dodatkovi ponyattyaDvoyistim do danogo matroyidu nazivayetsya matroyid nosij yakogo zbigayetsya z nosiyem danogo matroyida a bazi z dopovnennyam baz danogo matroyida do nosiya Tobto X X a bezlich baz dvoyistogo matroyida ce mnozhina takih B sho B X B de B baza danogo matroyida Ciklom v matroyidi nazivayetsya taka mnozhina A X sho A I i dlya bud yakogo B A yaksho B A to B I Rangom matroyida nazivayetsya potuzhnist jogo baz Rang trivialnogo matroyida dorivnyuye nulyu Matroyid FanoMatroyid Fano Dokladnishe Ploshina Fano Matroyidi z nevelikim chislom elementiv chasto zobrazhuyut u viglyadi diagram Tochki ce elementi osnovnoyi mnozhini a krivi protyagnuti cherez kozhen trohelementnij lancyug 3 element circuit Diagrama pokazuye 3 rangovij matroyid zvanij matroyidom Fano priklad yakogo z yavivsya v 1935 v statti Uyitni Whitney Nazva vinikla z togo faktu sho matroyid Fano yavlyaye soboyu proektivnu ploshinu drugogo poryadku vidomu yak ploshina Fano chiye koordinatne pole ce dvohelementne pole Ce oznachaye sho matroyid Fano ce vektornij matroyid pov yazanij z simoma nenulovimi vektorami v trivimirnomu vektornomu prostori nad polem dvoh elementiv Z proektivnoyi geometriyi vidomo sho matroyid Fano ne mozhe buti predstavlenij dovilnoyu mnozhinoyu vektoriv v dijsnomu abo kompleksnomu vektornomu prostori abo v bud yakomu vektornomu prostori nad polem harakteristiki yakogo vidriznyayutsya vid 2 TeoremiVsi bazi matroyida mayut odnakovu potuzhnist Matroyid odnoznachno zadayetsya nosiyem i bazami Cikl ne mozhe buti pidmnozhinoyu inshogo ciklu Yaksho C 1 displaystyle C 1 i C 2 displaystyle C 2 cikli to dlya bud yakogo x C 1 C 2 C 1 C 2 x displaystyle x in C 1 cap C 2 C 1 cup C 2 setminus x mistit cikl Yaksho B displaystyle B baza i x B displaystyle x notin B to B x displaystyle B cup x mistit rivno odin cikl ZastosuvannyaMatroyidi dobre opisuyut klas zadach yaki dopuskayut zhadibne rishennya Div zhadibnij algoritm Rado Edmondsa Matroyidi v kombinatornij optimizaciyi Div takozhOriyentovanij matroyid Kriterij planarnosti VitniPrimitkiF HarariTeoriya grafiv str 57 F Harari Teoriya grafiv str 186