Теорема геометризації стверджує, що замкнутий орієнтований тривимірний многовид, у якому будь-яка вкладена сфера обмежує кулю, розрізається нестисними торами на шматки, на яких можна задати одну зі стандартних геометрій.
Теорема геометризації для тривимірних многовидів є аналогом теореми уніформізації для поверхонь. Запропонована 1982 року у вигляді гіпотези Вільямом Терстоном, вона узагальнює інші гіпотези, наприклад, гіпотезу Пуанкаре і [en].
2002 року Перельман, використавши потік Річчі, довів гіпотезу Терстона, провівши тим самим повну класифікацію компактних тривимірних многовидів, і, зокрема, довівши гіпотезу Пуанкаре.
Література
- Скотт П. (Scott) Геометрии на трехмерных многообразиях. Мат. НЗН 39, Мир, 1986.
- Тёрстон Трехмерная геометрия и топология. М., МЦНМО, 2001.
- L. Bessieres, G. Besson, M. Boileau, S. Maillot, J. Porti, 'Geometrisation of 3-manifolds', EMS Tracts in Mathematics, volume 13. European Mathematical Society, Zurich, 2010.
- M. Boileau Geometrization of 3-manifolds with symmetries [Архівовано 22 жовтня 2013 у Wayback Machine.]
- F. Bonahon Geometric structures on 3-manifolds Handbook of Geometric Topology (2002) Elsevier.
- Allen Hatcher: Notes on Basic 3-Manifold Topology [Архівовано 30 серпня 2017 у Wayback Machine.] 2000
- J. Isenberg, M. Jackson, Ricci flow of locally homogeneous geometries on a Riemannian manifold, J. Diff. Geom. 35 (1992) no. 3 723—741.
- G. Perelman, The entropy formula for the Ricci flow and its geometric applications [Архівовано 19 жовтня 2017 у wayback.archive-it.org], 2002
- G. Perelman, Ricci flow with surgery on three-manifolds, 2003
- G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, 2003
- Bruce Kleiner and John Lott, Notes on Perelman's Papers [Архівовано 25 травня 2012 у Archive.is] (May 2006) (fills in the details of Perelman's proof of the geometrization conjecture).
- Cao, Huai-Dong; Zhu, Xi-Ping. A Complete Proof of the Poincaré and Geometrization Conjectures: Application of the Hamilton-Perelman theory of the Ricci flow // [en] : journal. — 2006. — Vol. 10, no. 2 (6). — P. 165—498. Архівовано з джерела 13 серпня 2006. Процитовано 2006-07-31. Архивная копия от 13 августа 2006 на Wayback Machine Revised version (December 2006): Hamilton-Perelman's Proof of the Poincaré Conjecture and the Geometrization Conjecture [Архівовано 29 червня 2012 у Archive.is]
- John W. Morgan. Recent progress on the Poincaré conjecture and the classification of 3-manifolds. [Архівовано 20 липня 2008 у Wayback Machine.] Bulletin Amer. Math. Soc. 42 (2005) no. 1, 57-78 (expository article explains the eight geometries and geometrization conjecture briefly, and gives an outline of Perelman's proof of the Poincaré conjecture)
- Morgan, John W.; Fong, Frederick Tsz-Ho. [2] — 2010. — (University Lecture Series) — . Архівовано з джерела 21 серпня 2015
- Scott, Peter The geometries of 3-manifolds. [Архівовано 14 квітня 2021 у Wayback Machine.] (errata [Архівовано 8 жовтня 2019 у Wayback Machine.]) Bull. London Math. Soc. 15 (1983), no. 5, 401—487.
- Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry // American Mathematical Society. Bulletin. New Series : journal. — 1982. — Vol. 6, no. 3 (14 October). — P. 357—381. — ISSN 0002-9904. — DOI: . This gives the original statement of the conjecture.
- William Thurston. Three-dimensional geometry and topology. Vol. 1. Edited by Silvio Levy. Princeton Mathematical Series, 35. Princeton University Press, Princeton, NJ, 1997. x+311 pp. (in depth explanation of the eight geometries and the proof that there are only eight)
- William Thurston. The Geometry and Topology of Three-Manifolds [Архівовано 12 вересня 2010 у Wayback Machine.], 1980 Princeton lecture notes on geometric structures on 3-manifolds.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Teorema geometrizaciyi stverdzhuye sho zamknutij oriyentovanij trivimirnij mnogovid u yakomu bud yaka vkladena sfera obmezhuye kulyu rozrizayetsya nestisnimi torami na shmatki na yakih mozhna zadati odnu zi standartnih geometrij Vilyam Terston zasnovnik teoremi Teorema geometrizaciyi dlya trivimirnih mnogovidiv ye analogom teoremi uniformizaciyi dlya poverhon Zaproponovana 1982 roku u viglyadi gipotezi Vilyamom Terstonom vona uzagalnyuye inshi gipotezi napriklad gipotezu Puankare i gipotezu eliptizaciyi Terstona en 2002 roku Perelman vikoristavshi potik Richchi doviv gipotezu Terstona provivshi tim samim povnu klasifikaciyu kompaktnih trivimirnih mnogovidiv i zokrema dovivshi gipotezu Puankare Literaturared Skott P Scott Geometrii na trehmernyh mnogoobraziyah Mat NZN 39 Mir 1986 Tyorston Trehmernaya geometriya i topologiya M MCNMO 2001 L Bessieres G Besson M Boileau S Maillot J Porti Geometrisation of 3 manifolds EMS Tracts in Mathematics volume 13 European Mathematical Society Zurich 2010 1 M Boileau Geometrization of 3 manifolds with symmetries Arhivovano 22 zhovtnya 2013 u Wayback Machine F Bonahon Geometric structures on 3 manifolds Handbook of Geometric Topology 2002 Elsevier Allen Hatcher Notes on Basic 3 Manifold Topology Arhivovano 30 serpnya 2017 u Wayback Machine 2000 J Isenberg M Jackson Ricci flow of locally homogeneous geometries on a Riemannian manifold J Diff Geom 35 1992 no 3 723 741 G Perelman The entropy formula for the Ricci flow and its geometric applications Arhivovano 19 zhovtnya 2017 u wayback archive it org 2002 G Perelman Ricci flow with surgery on three manifolds 2003 G Perelman Finite extinction time for the solutions to the Ricci flow on certain three manifolds 2003 Bruce Kleiner and John Lott Notes on Perelman s Papers Arhivovano 25 travnya 2012 u Archive is May 2006 fills in the details of Perelman s proof of the geometrization conjecture Cao Huai Dong Zhu Xi Ping A Complete Proof of the Poincare and Geometrization Conjectures Application of the Hamilton Perelman theory of the Ricci flow Asian Journal of Mathematics en journal 2006 Vol 10 no 2 6 P 165 498 Arhivovano z dzherela 13 serpnya 2006 Procitovano 2006 07 31 Arhivnaya kopiya ot 13 avgusta 2006 na Wayback Machine Revised version December 2006 Hamilton Perelman s Proof of the Poincare Conjecture and the Geometrization Conjecture Arhivovano 29 chervnya 2012 u Archive is John W Morgan Recent progress on the Poincare conjecture and the classification of 3 manifolds Arhivovano 20 lipnya 2008 u Wayback Machine Bulletin Amer Math Soc 42 2005 no 1 57 78 expository article explains the eight geometries and geometrization conjecture briefly and gives an outline of Perelman s proof of the Poincare conjecture Morgan John W Fong Frederick Tsz Ho 2 2010 University Lecture Series ISBN 978 0 8218 4963 7 Arhivovano z dzherela 21 serpnya 2015 Scott Peter The geometries of 3 manifolds Arhivovano 14 kvitnya 2021 u Wayback Machine errata Arhivovano 8 zhovtnya 2019 u Wayback Machine Bull London Math Soc 15 1983 no 5 401 487 Thurston William P Three dimensional manifolds Kleinian groups and hyperbolic geometry American Mathematical Society Bulletin New Series journal 1982 Vol 6 no 3 14 October P 357 381 ISSN 0002 9904 DOI 10 1090 S0273 0979 1982 15003 0 This gives the original statement of the conjecture William Thurston Three dimensional geometry and topology Vol 1 Edited by Silvio Levy Princeton Mathematical Series 35 Princeton University Press Princeton NJ 1997 x 311 pp ISBN 0 691 08304 5 in depth explanation of the eight geometries and the proof that there are only eight William Thurston The Geometry and Topology of Three Manifolds Arhivovano 12 veresnya 2010 u Wayback Machine 1980 Princeton lecture notes on geometric structures on 3 manifolds Otrimano z https uk wikipedia org w index php title Teorema geometrizaciyi amp oldid 42333908