Парадокс Смейла — твердження у диференціальній топології, що сферу в тривимірному просторі можна вивернути навиворіт в класі занурень, тобто з можливими самоперетинами, але без перегинів. Іншими словами, образ сфери у кожний момент деформації мусить залишатися гладким, тобто диференційовним.
Парадокс Смейла — це зовсім не логічний парадокс, це теорема, проте вельми контрінтуїтивна. Точніше:
Нехай є стандартне вкладення сфери у тривимірний простір. Тоді існує неперервне однопараметричне сімейство гладких занурень , таке, що і . |
Досить тяжко уявити конкретний приклад такого сімейства занурень, хоча існує багато ілюстрацій та фільмів. З іншого боку, значно простіше довести, що таке сімейство існує. Це і зробив Смейл.
Література
- Smale, Stephen A classification of immersions of the two-sphere. Trans. Amer. Math. Soc. 90 1958 281–290.
- Франсис, Дж. Книжка с картинками по топологии, как рисовать математические картинки[недоступне посилання з квітня 2019]. Москва: Мир, 1991. Глава 6. Выворачивания сферы наизнанку.
Примітки
- Відео вивертання сферы на YouTube: [1]
- Відео вивертання сфери російською мовою: [2] [ 2012-05-15 у Wayback Machine.]
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Paradoks Smejla tverdzhennya u diferencialnij topologiyi sho sferu v trivimirnomu prostori mozhna vivernuti navivorit v klasi zanuren tobto z mozhlivimi samoperetinami ale bez pereginiv Inshimi slovami obraz sferi u kozhnij moment deformaciyi musit zalishatisya gladkim tobto diferencijovnim Paradoks Smejla Odna z promizhnih konfiguracij Poverhnya Morina Paradoks Smejla ce zovsim ne logichnij paradoks ce teorema prote velmi kontrintuyitivna Tochnishe Nehaj f S 2 R 3 displaystyle f colon S 2 to mathbb R 3 ye standartne vkladennya sferi u trivimirnij prostir Todi isnuye neperervne odnoparametrichne simejstvo gladkih zanuren f t S 2 R 3 t 0 1 displaystyle f t colon S 2 to mathbb R 3 t in 0 1 take sho f 0 f displaystyle f 0 f i f 1 f displaystyle f 1 f Dosit tyazhko uyaviti konkretnij priklad takogo simejstva zanuren hocha isnuye bagato ilyustracij ta filmiv Z inshogo boku znachno prostishe dovesti sho take simejstvo isnuye Ce i zrobiv Smejl LiteraturaSmale Stephen A classification of immersions of the two sphere Trans Amer Math Soc 90 1958 281 290 Fransis Dzh Knizhka s kartinkami po topologii kak risovat matematicheskie kartinki nedostupne posilannya z kvitnya 2019 Moskva Mir 1991 Glava 6 Vyvorachivaniya sfery naiznanku PrimitkiVideo vivertannya sfery na YouTube 1 Video vivertannya sferi rosijskoyu movoyu 2 2012 05 15 u Wayback Machine