Ця стаття містить правописні, лексичні, граматичні, стилістичні або інші мовні помилки, які треба виправити. |
Пом'якшення наслідків зміни клімату або декарбонізація — комплекс заходів із обмеження масштабів або темпів глобального потепління і пов'язаних із цим наслідків. Як правило, це пов'язано зі скороченням антропогенних викидів парникових газів (ПГ).
На частку викопного палива припадає близько 70 % викидів парникових газів. Головне завдання полягає в тому, щоб відмовитися від використання вугілля, нафти і газу, і замінити ці викопні види палива безпечними, для здоров'я людини та природи, джерелами енергії. Через різке падіння цін вітроенергетика і сонячна фотовольтаїка (PV) все більше конкурують з нафтою, газом і вугіллям, хоча вони вимагають накопичення енергії і протяжних електричних мереж. Пом'якшення або повернення назад зміни клімату також може бути досягнуто шляхом заміни бензину і дизельного палива — електромобілями, лісовідновленням і збереженням залишків лісів («поглиначів вуглецю»), змін в сільськогосподарській практиці (наприклад — пермакультура або органічне господарство) і техніці, відмови від фінансування викопного палива, демократичних реформ корпоративного управління, змін в законодавстві про споживачів і здійснення відновлення добробуту Землі після пандемії COVID-19. Досі відсутня технологія вилучення вуглекислого газу з атмосфери Землі, або геоінженерії в безпечному чи достатньому масштабі.
Майже всі країни є учасниками Рамкової конвенції Організації Об'єднаних Націй про зміну клімату (РКЗК ООН). Кінцевою метою РКЗК ООН є стабілізація атмосферних концентрацій ПГ на рівні, який запобіг би небезпечне втручання людини в кліматичну систему. У 2010 році сторони РКЗК ООН погодилися з тим, що майбутнє глобальне потепління має бути обмежене рівнем нижче 2 °C (3,6 °F) в порівнянні з доіндустріальним рівнем. З Паризької угоди 2015 року це було підтверджено.
У спеціальній доповіді про глобальне потепління на 1,5 °C Міжурядова група експертів зі зміни клімату підкреслила переваги збереження глобального потепління нижче цього рівня, запропонувавши глобальні колективні зусилля, які можуть бути спрямовані на досягнення Цілей сталого розвитку Організації Об'єднаних Націй на 2015 рік. Шляхи викидів без будь-якого або обмеженого перевищення зажадали б швидких і далекосяжних перетворень в енергетиці, землі, містах і інфраструктурі, включаючи транспорт і будівлі, а також промислові системи.
Нинішня траєкторія глобальних викидів парникових газів, мабуть, не узгоджується з обмеженням глобального потепління до рівня нижче 1,5 або 2 °C. Однак, в глобальному масштабі вигоди від збереження потепління нижче 2 °C перевищують витрати на подолання наслідків.
Концентрація і стабілізація парникових газів
РКЗК ООН спрямована на стабілізацію концентрацій парникових газів (ПГ) в атмосфері на такому рівні, при якому екосистеми можуть природним чином адаптуватися до зміни клімату, виробництво продовольства не перебуває під загрозою, а економічний розвиток може протікати стійким чином. В даний час людська діяльність додає CO2 в атмосферу швидше, ніж природні процеси можуть видалити його. Згідно з американським дослідженням 2011 року, стабілізація концентрації атмосферного CO2 вимагатиме скорочення антропогенних викидів CO2 на 80 % в порівнянні з піковим рівнем викидів.
МГЕЗК працює з концепцією фіксованого емісійного бюджету. Якщо викиди залишаться на поточному рівні 42 гігатонн CO2, вуглецевий бюджет для 1,5 °C може бути вичерпаний 2028 року. Підвищення температури до цього рівня відбудеться з деякою затримкою між 2030 і 2052 роками. Навіть якщо в майбутньому вдасться домогтися негативних викидів, 1,5 °C не повинно бути перевищено в жодному разі, щоб уникнути масової втрати екосистем на Землі.
Після того як 9 мільярдів людей залишать місце для викидів при виробництві продуктів харчування і для підтримки глобальної температури нижче 2 °C, викиди від виробництва енергії і транспорту повинні будуть майже відразу ж досягти піку в розвинених країнах і знижуватися приблизно на 10 % щороку, поки нульові викиди не будуть досягнуті приблизно в 2030 році.
Джерела викидів парникових газів
Завдяки Кіотському протоколу вдалося вирішити проблему скорочення майже всіх антропогенних парникових газів, але цього недостатньо. Цими газами є CO2, метан (CH4), оксид азоту (N2O) і фторовані гази (F-Гази): гідрофторвуглеці (ДФУ), флуорокарбони (ПФУ) і гексафторид сірки (SF6). Їх потенціал глобального потепління (ПГП) залежить від тривалості їх життя в атмосфері. Метан має відносно короткий атмосферний час життя близько 12 років, але має великий безпосередній вплив, особливо через м'ясоїдність більшої частини людства. Для метану зниження приблизно на 30 % нижче нинішніх рівнів викидів призвело б до стабілізації його атмосферної концентрації, в той час як для N2O треба було б скорочення викидів більш ніж на 50 %. Оцінки в значній мірі залежать від здатності океанів і наземних поглиначів поглинати ПГ. Ризик впливу зворотного зв'язку при глобальному потеплінні призводить до високої невизначеності у визначенні значень ПГП.
Вуглекислий газ (CO2)
- Викопне паливо: нафта, газ і вугілля є основними факторами антропогенного глобального потепління з щорічними викидами 34,6 гігатонн CO2 в 2018 році.
- Виробництво цементу оцінюється в 1,5 гігатонн CO2.
- Зміна землекористування— це дисбаланс між вирубкою лісів і лісовідновленням. Оцінки дуже невизначені і знаходяться на рівні 3,8 гігатонн CO2. Лісові пожежі викликають викиди близько 7 гігатонн CO2.
- : при видобутку сирої нафти величезна кількість попутного нафтового газу зазвичай спалюється на факелах як відпрацьований або непридатний для використання газ.
Метан (СН4)
- Викопне паливо (33 %) також становить більшу частину викидів метану, включаючи газорозподіл, витоки і газовідвід.
- На частку великої рогатої худоби (21 %) припадає дві третини метану, що виділяється худобою, за яким слідують буйволи, вівці і кози.
- Людські відходи і стічні води (21 %): коли відходи біомаси на звалищах і органічні речовини в побутових і промислових стічних водах розкладаються бактеріями в анаеробних умовах, утворюється значна кількість метану.
- Вирощування рису (10 %) на затоплених рисових полях є ще одним сільськогосподарським джерелом, де анаеробне розкладання органічного матеріалу призводить до утворення метану.
Оксиди азоту (N2О)
- Більшість викидів проводиться сільським господарством, особливо м'ясним виробництвом: велика рогата худоба (послід на пасовищі), добрива, гній тварин.
Фторовмісні гази
Розподільні пристрої в енергетиці, виробництво напівпровідників і виробництво алюмінію.
Складання прогнозів
Прогнози майбутніх викидів парникових газів дуже невизначені. За відсутності політики пом'якшення наслідків зміни клімату викиди парникових газів можуть значно зрости протягом 21 століття. Сучасні наукові прогнози попереджають про підвищення температури на 4,5 градуса протягом наступних десятиліть.
Методи і засоби
Оскільки витрати на скорочення викидів парникових газів в електроенергетичному секторі, мабуть, нижче, ніж в інших секторах, таких як транспортний сектор, електроенергетичний сектор може забезпечити найбільш пропорційне скорочення викидів вуглецю в рамках економічно ефективної кліматичної політики.
Економічні інструменти можуть бути корисні при розробці політики пом'якшення наслідків зміни клімату. Скасування субсидій на викопне паливо дуже важливе, але мусить бути зроблено обережно, щоб не зробити бідних людей ще біднішими.
Інші часто обговорювані кошти включають ефективність, громадський транспорт, (що включає використання електричних гібридів), зарядку гібридів і електромобілів низьковуглецевої електрикою, внесення індивідуальних змін і зміна ділової практики. Заміна бензинових і дизельних автомобілів електричними означає, що їх викиди будуть знижені і, як наслідок, знизитися число захворювань, викликаних забрудненням навколишнього середовища.
Ще одне міркування стосується того, як буде розвиватися майбутнє розвиток.
Заміщення викопного палива
Оскільки велика частина викидів парникових газів припадає на викопне паливо, вкрай важливо швидко відмовитися від нафти, газу і вугілля. Стимул до використання 100 % поновлюваних джерел енергії був створений глобальним потеплінням та іншими екологічними, а також економічними проблемами. На думку МГЕЗК, існує кілька фундаментальних технологічних обмежень для інтеграції портфеля технологій використання поновлюваних джерел енергії для задоволення більшої частини загального глобального попиту на енергію.
Світовий попит на первинну енергію в 2018 році склав 161320 ТВт·год. Це відноситься до електрики, транспорту і опалення, включаючи всі втрати. Попит на первинну енергію в низьковуглецевій економіці важко визначити. У транспорті та виробництві електроенергії використання викопного палива має низьку ефективність менше 50 %. Двигуни транспортних засобів виконують багато тепла, яке витрачається даремно. Електрифікація всіх секторів і перехід на поновлювані джерела енергії можуть значно знизити попит на первинну енергію. З іншого боку, вимоги до зберігання, проблеми щільності енергії батарей і повторне перетворення в електрику знижують ефективність поновлюваних джерел енергії.
У 2018 році біомаса і відходи були перераховані з часткою 10 % первинної енергії, гідроенергетика— з 3 %. Вітер, сонячна енергія та інші поновлювані джерела енергії були на рівні 2 %.
Низьковуглецеві джерела енергії
Вітер і Сонце можуть бути джерелами великої кількості низьковуглецевої енергії при конкурентоспроможних виробничих витратах. Ціни на сонячні фотоелектричні модулі впали приблизно на 80 % в 2010-х роках, а ціни на вітряні турбіни— на 30-40 %. Але навіть в поєднанні генерація змінної відновлюваної енергії сильно коливається. Це можна вирішити шляхом розширення мереж на великих площах з достатньою потужністю або за допомогою накопичувачів енергії. За даними (IRENA), впровадження поновлюваних джерел енергії має бути прискорено в шість разів, хоча і має залишатися нижче цільового показника в 2 °C. Управління навантаженням промислового енергоспоживання може допомогти збалансувати виробництво відновлюваної енергії та її попит. Виробництво електроенергії за допомогою біогазу і гідроенергетики може слідувати за попитом на енергію.
Сонячна енергія
- Сонячна фотовольтаїка стала найдешевшим способом виробництва електроенергії в багатьох регіонах світу, при цьому виробничі витрати знизилися до 0,015 — 0,02 дол./КВт * год в пустельних регіонах. Зростання фотовольтаїки є експоненціальним і подвоюється кожні три роки з 1990-х років.
- Інша технологія — це концентрована сонячна енергія (CSP) з використанням дзеркал або лінз для концентрації великої площі сонячного світла на приймачі. За допомогою CSP енергія може бути накопичена протягом декількох годин.
- Сонячне водяне опалення вносить важливий і щораз більший внесок в багато країн, особливо в Китай, який в даний час має 70 % від загальносвітового обсягу (180 ГВт). У всьому світі загальні встановлені сонячні системи водяного опалення задовольняють частина потреб у водяному опаленні більш ніж 70 мільйонів домашніх господарств.
Енергія вітру
Регіони в більш високих північних і південних широтах мають найбільший потенціал для отримання енергії вітру. Встановлена потужність досягла 650 ГВт в 2019 році. На частку морської вітроенергетики в даний час припадає близько 10 % нових установок. Офшорні вітроелектростанції коштують дорожче, але ці установки дають більше енергії на встановлену потужність з меншими коливаннями.
Гідроенергетика
Гідроенергетика грає провідну роль в таких країнах, як Бразилія, Норвегія і Китай: але існують географічні обмеження і екологічні проблеми. Приливна енергія може бути використана в прибережних районах.
Біоенергетика
Біогазові установки можуть забезпечити диспетчеризоване виробництво електроенергії і тепла, коли це необхідно. Загальною концепцією є спільне бродіння енергетичних культур, змішаних з гноєм в сільському господарстві. Спалювання біомаси рослинного походження виділяє CO2, але воно все ще було класифіковано як поновлюване джерело енергії в правових рамках ЄС і ООН, тому що фотосинтез цікліруючих CO2 повернутися до нових культур. Те, як виробляється, транспортується і переробляється паливо, значно впливає на викиди протягом життєвого циклу. Транспортування палива на великі відстані і надмірне використання азотних добрив можуть знизити економію викидів від одного і того ж палива в порівнянні з природним газом на 15-50 %. Поновлювані джерела біопалива починають використовуватися в авіації.
Атомна енергія
Головною перевагою ядерної енергетики є можливість доставляти великі обсяги базового навантаження, коли поновлювані джерела енергії недоступні. Її неодноразово класифікували як технологію пом'якшення наслідків зміни клімату.
З іншого боку, ядерна енергетика пов'язана з екологічними ризиками, які можуть переважити вигоди. Крім ядерних аварій, поховання радіоактивних відходів може привести до збитку і втрат протягом більш ніж одного мільйона років. Виділений плутоній може бути використаний для створення ядерної зброї. Громадська думка про ядерну енергетику в різних країнах сильно різниться.
Станом на 2019 рік вартість продовження терміну служби атомних електростанцій конкурентоспроможна з іншими технологіями виробництва електроенергії, включно з новими сонячними і вітровими проєктами. Повідомляється, що нові проєкти сильно залежать від державних субсидій.
Ведуться дослідження ядерного синтезу в формі Міжнародного експериментального термоядерного реактора, але навряд чи термоядерний синтез отримає комерційне поширення до 2050 року.
Вуглецеві нейтральні і негативні види палива
Викопне паливо може бути ліквідовано з нульовим балансом викидів вуглецю і вуглець-негативних виробництво і транспортування палива, створені з силою газу і .
Природний газ
Природний газ, який в основному є метан, розглядається як мостове паливо, оскільки він виробляє приблизно вдвічі менше CO2 ніж вугіль розпалений. Газові електростанції можуть забезпечити необхідну гнучкість у виробництві електроенергії в поєднанні з вітровою та сонячною енергіями. Але метан сам по собі є потужним парниковим газом, і в даний час він протікає з видобувних свердловин, резервуарів для зберігання, трубопроводів і міських розподільчих труб для природного газу. У низьковуглецевого сценарію газові електростанції все ще могли б продовжувати працювати, якби метан проводився з використанням технології перетворення енергії в газ з використанням відновлюваних джерел енергії.
Збереження енергії
Енергія вітру і фотовольтаїка можуть поставляти велику кількість електричної енергії, але не в будь-який час і місце. Один з підходів— це розмова про запасаються формах енергії. Це зазвичай призводить до втрати ефективності. В ході дослідження, проведеного Імперським коледжем Лондона, були розраховані найнижчі рівні вартості різних систем для середньострокового і сезонного зберігання. У 2020 році найбільш економічно ефективними в залежності від ритму зарядки будуть гідроакумулювальні електростанції (PHES), стиснене повітря (CAES) і літій-іонні акумулятори. На 2040 рік прогнозується більш значна роль літію і водню.
- Літій-іонні акумулятори широко використовуються на акумуляторних електростанціях і з 2020 року починають використовуватися в системах зберігання vehicle-to-grid. Вони забезпечують достатню ефективність кругового ходу 75-90 %. Однак їх виробництво може викликати екологічні проблеми.
- Водень може бути корисний для сезонного накопичення енергії. Низька ефективність 30 % повинна значно покращитися, перш ніж накопичення водню зможе забезпечити таку ж загальну енергоефективність, як і батареї. Для електричної мережі німецьке дослідження оцінило високі витрати на повторну конверсію в розмірі 0,176 євро / кВт * год, уклавши, що заміна розширення електричної мережі повністю системами повторної конверсії водню не має сенсу з економічної точки зору. Концепція сонячного водню обговорюється для віддалених пустельних проєктів, де мережеві з'єднання з центрами попиту недоступні. Тому що він має більше енергії на одиницю об'єму і іноді може бути краще використовувати водень в аміаку.
Надмережа
Міжнародні лінії електропровідників допомагають мінімізувати вимоги до збереження. Велика мережа може згладити коливання енергії вітру. З глобальною мережею навіть фотовольтаїка може бути доступна протягом дня та вночі. Оцінка втрат у найпотужніших високовольтних лініях постійного струму (HVDC) всього 1,6 % на 1000 км HVDC зараз використовують лише для з'єднань точка-точка.
Китай побудував велику кількість з'єднань HVDC всередині країни та підтримує ідею глобальної міжконтинентальної мережі як системотворної системи для наявних національних мереж змінного струму. Надмережа в США в поєднанні з відновлюваною енергією може скоротити викиди парникових газів на 80 %.
Інтелектуальне управління мережами і навантаженням
Замість того щоб розширювати мережі і сховища для збільшення потужності, існує безліч способів вплинути на розмір і терміни попиту на електроенергію з боку споживачів. Ідентифікація та зміщення електричних навантажень може знизити витрати на електроенергію для використання переваг нижчих швидкостей поза піків і згладжування піків попиту. Традиційно енергетична система розглядала споживчий попит як фіксований і використовувала централізовані варіанти пропозиції для управління змінним попитом. Тепер досконаліші системи обробки даних і нові технології зберігання і генерації даних на місцях можуть поєднуватися з передовим автоматизованим програмним забезпеченням для управління попитом, щоб активно управляти попитом і реагувати на ціни на енергоринку.
Облік часу використання є поширеним способом мотивації споживачів електроенергії до зниження їх пікового споживання навантаження. Наприклад, запуск посудомийних машин і пральні в нічний час після того, як пік пройшов, знижує витрати на електроенергію.
У динамічних планах попиту пристрої пасивно відключаються, коли напруга відчувається в електричній мережі. Цей метод може дуже добре працювати з термостатами, коли потужність на сітці просідає на невелику кількість, автоматично вибирається установка температури низької потужності, що знижує навантаження на сітку. Наприклад, мільйони холодильників зменшують своє споживання, коли хмари проходять над сонячними установками. Споживачі повинні мати розумний лічильник для того, щоб комунальні служби могли розраховувати кредити.
Пристрої реагування на запити можуть отримувати всі види повідомлень з мережі. Повідомлення може бути запитом на використання режиму низької потужності, аналогічного динамічному попиту, на повне відключення при раптовому збої в електромережі або повідомленням про поточні та очікувані ціни на електроенергію. Це дозволяє електромобілям заряджатися по найменш дорогим тарифами незалежно від часу доби.
використовує автомобільну батарею або паливний елемент для тимчасового харчування мережі.Декарбонізація транспорту та промисловості
За прогнозами, до 2050 року від чверті до трьох чвертей автомобілів на дорогах будуть електричними.
Водень може бути рішенням для далеких перевезень на вантажівках і водневих судах, де батареї самі по собі дуже важкі. Легкові автомобілі, що використовують водень, вже виробляються в невеликих кількостях. Будучи більш дорогими, ніж автомобілі на батарейках, вони можуть заправлятися набагато швидше, пропонуючи більш високу дальність польоту до 700 км. Основним недоліком водню є низький ККД всього 30 %. При використанні для транспортних засобів потрібно більш ніж в два рази більше енергії в порівнянні з електромобілем на батарейках.
Хоча авіаційне біопаливо використовується в деякій мірі, за станом на 2019 рік декарбонізація авіації до 2050 року, як стверджується, буде «дійсно важкою».
У вересні 2023 року Ініціатива [en] оприлюднила перше у світі науково обґрунтоване керівництво із декарбонізації для металургів
Декарбонізація нагріву
На частку будівельного сектора припадає 23 % світових енергетичних викидів CO2 близько половини енергії використовується для обігріву приміщень та води. Поєднання електричних теплових насосів та інсоляції будинків може значно знизити потребу в первинній енергії. Як правило, електрифікація опалення призведе до скорочення викидів парникових газів лише в тому випадку, якщо електроенергія надходитиме з низьковуглецевих джерел. Електростанція на викопному паливі може постачати тільки 3 одиниці електричної енергії на кожні 10 одиниць вивільняється паливної енергії. Електрифікація теплових навантажень може також забезпечити гнучкий ресурс, який може брати участь в для інтеграції змінних поновлюваних ресурсів в мережу.
Тепловий насос
Сучасний тепловий насос зазвичай виробляє приблизно в три рази більше теплової енергії, ніж споживана електрична енергія, що дає ефективний ККД 300 %, в залежності від коефіцієнта корисної дії. Він використовує компресор з електричним приводом для роботи холодильного циклу, який витягує теплову енергію із зовнішнього повітря і переміщує її в простір для обігріву. У літні місяці цикл кондиціонування повітря може бути змінений на зворотний. У районах з середніми зимовими температурами значно нижче нуля наземні теплові насоси більш ефективні, ніж повітряні теплові насоси. Висока закупівельна ціна теплового насоса в порівнянні з нагрівачами опору може бути компенсована, коли також потрібно кондиціонування повітря.
Маючи частку ринку в 30 % і чисту електроенергію, теплові насоси можуть знизити глобальний рівень CO2 викиди на 8 % щорічно. Використання наземних теплових насосів може знизити близько 60 % потреби в первинної енергії. Використання надлишкової відновлюваної енергії в теплових насосах вважається найбільш ефективним побутовим засобом зниження глобального потепління і виснаження запасів викопного палива.
Нагрівання електричним опором
Променисті обігрівачі в домашніх господарствах дешеві і широко поширені, але менш ефективні, ніж теплові насоси. У таких районах, як Норвегія, Бразилія і Квебек, де є велика кількість гідроелектроенергії, електричне тепло і гаряча вода поширені повсюдно. Великомасштабні резервуари для гарячої води можуть використовуватися для управління попитом і зберігання змінної відновлюваної енергії протягом декількох годин або днів.
Енергозбереження
Скорочення енергоспоживання розглядається як ключове рішення проблеми скорочення викидів парникових газів. За даними Міжнародного енергетичного агентства, підвищення , промислових процесів і транспорту може скоротити світові потреби в енергії в 2050 році на третину і допомогти контролювати глобальні викиди парникових газів.
Енергетична ефективність
Ефективність охоплює широкий спектр засобів— від ізоляції будівель до громадського транспорту. Когенерація електричної енергії та централізованого теплопостачання також підвищує ефективність.
Спосіб життя та поведінка
У п'ятій оцінювальній доповіді МГЕЗК наголошують, що поведінка, спосіб життя і культурні зміни мають високий потенціал пом'якшення наслідків в деяких секторах, особливо в додаток до технологічних і структурних змін. Наприклад, це менше опалення кімнати або менше водіння автомобіля. В цілому вищий рівень споживання надає більший вплив на навколишнє середовище. Було також показано, що джерела викидів розподілені вкрай нерівномірно: 45 % викидів припадає на спосіб життя всього лише 10 % світового населення. Кілька наукових досліджень показали, що коли відносно багаті люди хочуть зменшити свій вуглецевий слід, вони можуть зробити кілька ключових дій, таких як життя без автомобілів (2,4 тонни CO2), уникнення одного трансатлантичного рейсу туди і назад (1,6 тонни) і харчування (0,8 тонни).
Вони, мабуть, значно відрізняються від популярних порад з «озелененню» свого способу життя, які, мабуть, відносяться в основному до категорії «малоефективних»: заміна звичайного автомобіля гібридом (0,52 тонни); прання одягу в холодній воді (0,25 тонни); переробка відходів (0,21 тонни); модернізація лампочок (0,10 тонни) іт.д. Дослідники виявили, що публічний дискурс про скорочення вуглецевого сліду в переважній більшості випадків фокусується на поведінці з низьким рівнем впливу, і що згадка про поведінку з високим рівнем впливу майже відсутня в основних засобах масової інформації, урядових публікаціях, шкільних підручниках тощо.
Вчені також стверджують, що часткові зміни в поведінці, такі як повторне використання пластикових пакетів, не є пропорційною реакцією на зміну клімату. Хоча ці дебати і були б корисними, вони відвернули б увагу громадськості від необхідності безпрецедентної масштабної зміни енергетичної системи для швидкого видалення вуглецю.
Дієтичні зміни людства
В цілому на продовольство припадає найбільша частка викидів парникових газів, заснованих на споживанні, і майже 20 % глобального вуглецевого сліду, за яким слідують житло, мобільність, послуги, промислові товари і будівництво. Продовольство і послуги значніші в бідних країнах, в той час як мобільність і промислові товари значніші в багатих країнах. Широке впровадження вегетаріанської дієти може скоротити пов'язані з харчовими продуктами викиди парникових газів на 63 % до 2050 року. Китай ввів нові дієтичні рекомендації в 2016 році, які спрямовані на скорочення споживання м'яса на 50 % і тим самим скорочення викидів парникових газів на 1 мільярд тонн до 2030 року. Дослідження 2016 року показало, що податки на м'ясо і молоко можуть одночасно привести до скорочення викидів парникових газів і більш здорового харчуванню. Дослідження проаналізувало надбавки в розмірі 40 % на яловичину і 20 % на молоко і показало, що оптимальний план дозволить скоротити викиди на 1 мільярд тонн на рік.
Перерозподіл перевезень за видами транспорту
Великовагові, великі особисті транспортні засоби (наприклад, автомобілі) вимагають багато енергії для переміщення і займають багато міського простору. Для їх заміни є кілька альтернативних видів транспорту. Європейський Союз зробив розумну мобільність частиною своєї європейської зеленої угоди, і в розумних містах розумна мобільність також важлива.
Поглинання і видалення вуглецю
Можливість «негативної емісії», тобто вилучення вуглекислого газу (CO2) з атмосфери є, станом на 2023 рік, можливою, та, поки що, недостатньо ефективною для повного і швидкого вирішення проблеми, але необхідною вже сьогодні для зменшення глобального потепління, покращення емісійного бюджету CO2 і сприяння сталому розвитку. Наприклад, негативної емісії можливо досягти завдяки біоенергетиці з уловлюванням та зберіганням вуглецю (BECCS), технології (DAC), залісненню/лісовідновленню, технології .
Вуглецевий стік — це природний або штучний резервуар, який накопичує і зберігає деякі вуглецевмісні хімічні сполуки протягом невизначеного періоду часу, наприклад вирощений ліс.
Видалення вуглекислого газу, з іншого боку, — це постійне видалення вуглекислого газу з атмосфери. Прикладами є пряме захоплення повітря, вдосконалені технології вивітрювання, такі як зберігання його в геологічних формаціях під землею. Ці процеси іноді розглядаються як варіації поглинання або пом'якшення наслідків, а іноді як геоінженерія. У поєднанні з іншими заходами, щодо пом'якшення наслідків, поглинання і видалення вуглецю мають вирішальне значення для досягнення цільового показника в 2 градуси.
Антарктичний Центр спільних досліджень клімату та екосистем (ACE-CRC) зазначає, що одна третина щорічних викидів CO2 людством поглинається океанами. Однак це також призводить до , що може завдати шкоди морській флорі і фауні. Підкислення знижує рівень карбонатних іонів, доступних для кальцифікації організмів з утворенням їх оболонок. Ці організми включають в себе види планктону, які вносять свій внесок в основу харчової мережі Південного океану. Однак підкислення може впливати на широкий спектр інших фізіологічних і екологічних процесів, таких як дихання риб, розвиток личинок й зміна розчинності як поживних речовин, так і токсинів.
Лісовідновлення, запобігання знищення лісу
Майже 20 % (8 гігатонн CO2 /рік) від загального обсягу викидів парникових газів були пов'язані зі зникненням лісів у 2007 році. Підраховано, що відвернене зникнення лісів скорочує викиди CO2 в розмірі 1 тонни CO2 на 1-5 дол. США у вигляді альтернативних витрат від втраченого сільського господарства. Лісовідновлення, яке представляє собою поповнення запасів виснажених лісів, може заощадити ще щонайменше 1 гігатонн CO2 в рік за передбачених витратах в розмірі 5-15 доларів. Згідно з дослідженнями, проведеними в ETH Zurich, відновлення всіх деградованих лісів у всьому світі може захопити в цілому близько 205 мільярдів тонн вуглецю (що становить близько 2/3 всіх викидів вуглецю, в результаті чого глобальне потепління опуститься нижче 2 °C). Лісорозведення відбувається там, де раніше не було лісу. Згідно з дослідженнями Тома Кроутера і ін., Там все ще достатньо місця, щоб посадити додаткові 1,2 трильйона дерев. Така кількість дерев могло б звести нанівець останні 10 років викидів CO2 і секвеструвати 160 мільярдів тонн вуглецю. Це бачення реалізується в рамках . Інші дослідження показали, що великомасштабне залісення може принести більше шкоди, ніж користі, або такі плантації, за оцінками, повинні бути надмірно масивними для скорочення викидів.
Передача прав на Землю зі суспільного надбання її корінним жителям, які протягом тисячоліть були зацікавлені в збереженні лісів, від яких вони залежать, вважається економічно ефективною стратегією збереження лісів. Це включає в себе захист таких прав, закріплених в наявних законах, таких як закон Індії «Про права на ліс». Передача таких прав в Китаї, можливо, найбільша земельна реформа в наш час, як стверджується, привела до збільшення лісового покриву. Надання права власності на землю показало, що вона має в два або три рази менше розчищення, ніж навіть державні парки, особливо в бразильській Амазонці. Методи збереження, які виключають людей і навіть виселяють мешканців з охоронних територій (звані «збереженням фортеці»), часто призводять до більшої експлуатації землі, оскільки корінні жителі потім звертаються до роботи для видобувних компаній, щоб вижити.
З ростом інтенсивного сільського господарства і урбанізації збільшується кількість покинутих сільськогосподарських угідь. За деякими оцінками, на кожен акр вирубаного первинного багатолітнього лісу припадає понад 50 акрів нових , хоча вони і не володіють тим же біологічним розмаїттям, що і первинні ліси, а первинні ліси зберігають на 60 % більше вуглецю, ніж ці нові вторинні ліси. Згідно з дослідженням в Science, стимулювання зростання на занедбаних сільськогосподарських землях може компенсувати багаторічні викиди вуглекислого газу. Дослідження Цюріхського університету ETH показують, що Росія, Сполучені Штати і Канада, Україна мають найбільш придатні для лісовідновлення землі.
Уникнути опустелювання
Відновлення лугів накопичує CO2 з повітря в рослинному матеріалі. Худоба, що пасеться, зазвичай не покинута бродити, поїдає траву і зменшує будь-яке зростання трави. Однак трава, залишена в спокої, в решті решт виросте, щоб покрити свої власні зростальні нирки, перешкоджаючи їх фотосинтезу, і рослина, що вмирала, залишиться на місці. Метод, запропонований для відновлення пасовищ, використовує огорожі з багатьма невеликими загонами і переміщення стад з одного загону в інший через день або два, щоб імітувати природні пасовища і дозволити траві рости оптимально. Крім того, коли частина листової речовини споживається тваринам в стаді, відповідна кількість кореневої матерії також відшаровується, оскільки вона не зможе підтримувати колишню кількість кореневої матерії, і в той час як більша частина втраченої кореневої матерії згниє і потрапить в атмосферу, частина вуглецю буде поглинена в ґрунт. Підраховано, що збільшення вмісту вуглецю в ґрунтах на 3,5 мільярда гектарів сільськогосподарських пасовищ в світі на 1 % компенсувало б майже 12-річні викиди CO2. Аллан Сейворі, як частина цілісного управління, стверджує, що, в той час як великі стада часто звинувачують в опустелювання, доісторичні землі підтримували великі або більші стада, і райони, де стада були видалені в Сполучених Штатах, все ще опустелюють.
Крім того, глобальне потепління, викликане таненням вічної мерзлоти, яка зберігає приблизно в два рази більше вуглецю, який виділяється в даний час в атмосферу, вивільняє потужний парниковий газ, метан, в циклі позитивного зворотного зв'язку, який, як побоюються, призведе до переломного моменту, званого . У той час як вічна мерзлота становить близько 14 градусів за Фаренгейтом, сніжна ковдра ізолює її від холоднішого повітря, вище якого може бути 40 градусів нижче нуля за Фаренгейтом. Метод, запропонований для запобігання такого сценарію, полягає в тому, щоб повернути великих травоїдних тварин, таких як помічені в , де вони зберігають землю більш прохолодною, зменшують висоту снігового покриву приблизно наполовину і усувають чагарники і, таким чином, зберігають землю відкритішою для холодного повітря.
Захист здорових ґрунтів і відновлення пошкоджених ґрунтів могли б щорічно видаляти з атмосфери 5,5 мільярда тонн вуглекислого газу, що приблизно дорівнює щорічним викидам США.
Уловлення та зберігання вуглецю
Уловлення та зберігання вуглецю (CCS) — це метод пом'якшення наслідків зміни клімату шляхом уловлення вуглекислого газу (CO2) з великих точкових джерел, таких як електростанції, і подальшого безпечного зберігання його замість викиду в атмосферу. За оцінками МГЕЗК, витрати на припинення глобального потепління подвоїлися б без CCS. Міжнародне енергетичне агентство заявляє, що CCS є «найважливішою єдиної новою технологією для економії CO2» у виробництві електроенергії та промисловості. Норвезьке газове родовище , що почалося в 1996 році, зберігає майже мільйон тонн CO2 в рік, щоб уникнути штрафів під час видобутку природного газу з надзвичайно високим рівнем CO2. Згідно з аналізом Sierra Club, проєкт US Kemper, який повинні були запустити в 2017 році, це найдорожча електростанція, коли-небудь побудована для ват електроенергії, яку вона буде генерувати.
Підвищена стійкість до атмосферних впливів
Посилене вивітрювання— це видалення вуглецю з повітря в землю, посилення , коли вуглець мінералізуеться в породу. Проєкт CarbFix поєднується зі захопленням та зберіганням вуглецю на електростанціях, щоб перетворити вуглекислий газ в камінь за відносно короткий період в два роки. Хоча в цьому проєкті використовувалися базальтові породи, олівін також показав себе перспективним.
Геоінженерія
МГЕЗК (2007) прийшла до висновку, що варіанти геоінженерії, такі як удобрення океану для видалення CO 2 з атмосфери, залишаються в значній мірі недоведеними. Було визнано, що надійні оцінки витрат на геоінженерію ще не опубліковані.
Глава 28 доповіді Національної Академії Наук США (NAS) «Про політичні наслідки парникового потепління»: «Пом'якшення наслідків, адаптація та наукова база» (1992) визначила геоінженерію як «варіанти, які включали б великомасштабне проєктування нашого навколишнього середовища з метою боротьби або протидії наслідкам змін в хімії атмосфери». Вони оцінили ряд варіантів, щоб спробувати дати попередні відповіді на два питання: Чи можуть ці варіанти працювати і чи можуть вони бути виконані з розумною вартістю. Вони також прагнули стимулювати обговорення третього питання— які можуть бути несприятливі побічні ефекти. Були оцінені збільшення поглинання океаном вуглекислого газу (зв'язування вуглецю) і екранування деякої кількості сонячного світла. NAS також стверджував, що «інженерні контрзаходи повинні бути оцінені, але не повинні бути реалізовані без широкого розуміння прямих наслідків і потенційних побічних ефектів, етичних проблем і ризиків». У липні 2011 року звіт по геоінженерії показало, що «в даний час технології climate engineering не пропонує життєздатної відповіді на глобальну зміну клімату».
Видалення вуглекислого газу
Видалення вуглекислого газу було запропоновано як метод зменшення кількості радіаційного впливу. В даний час вивчаються різні способи штучного уловлювання та зберігання вуглецю, а також посилення природних процесів зв'язування. Основним природним процесом є фотосинтез рослин і одноклітинних організмів. Штучні процеси розрізняються, і були висловлені побоювання з приводу довгострокових наслідків деяких з цих процесів.
Примітно, що наявність дешевої енергії і відповідних ділянок для геологічного зберігання вуглецю може зробити уловлювання вуглекислого газу в повітрі комерційно життєздатним. Однак, як правило, очікується, що уловлювання вуглекислого газу в повітрі може бути неекономічним в порівнянні зі схопленням з основних джерел— зокрема, електростанцій, що працюють на викопному паливі, нафтопереробних заводів тощо. Як і у випадку з американським проєктом Кемпера зі схопленням вуглецю, витрати на вироблену енергію значно виростуть. CO2 також може бути використаний в комерційних теплицях, що дає можливість запустити технологію.
8 травня 2024 року, в Ісландії запрацював найбільший у світі завод Mammoth, призначений для вилучення вуглекислого газу з атмосфери Землі. Це вже другий комерційний завод, відкритий швейцарською компанією Climeworks AG, що у десять разів більший за свого попередника Orca, який був запущений у 2021 році. Завод складається з 72 колекторних контейнерів, які вловлюють вуглекислий газ з повітря. Згідно з даними Climeworks AG, Mammoth зможе витягувати з атмосфери 36000 т вуглекислого газу на рік.
Управління сонячною радіацією
Основна мета управління сонячною радіацією— відбивати сонячне світло і тим самим зменшувати глобальне потепління. Здатність стратосферних сульфатних аерозолів створювати глобальний ефект затемнення зробила їх можливим кандидатом на використання в проєктах кліматичної інженерії.
Розподіл за секторами
Сільське господарство
У сільськогосподарської діяльності, що пом'якшує наслідок зміни клімату, зазвичай називають , визначається як господарство, яке «задовольняє продовольчі і текстильні потреби суспільства в даний час без шкоди для здатності майбутніх поколінь задовольняти свої власні потреби».
Одним з видів сільського господарства, який вважається відносно стійким, є регенеративне сільське господарство. Воно включає в себе кілька методів, основними з яких є: збереження обробки ґрунту, різноманітність сівозмін і покривних культур, мінімізація фізичних збурень, мінімізація використання хімічних речовин. Воно має і інші переваги, такі як поліпшення стану ґрунту і, отже, врожайності. Деякі великі сільськогосподарські компанії, такі як General Mills і чисельні ферми, підтримують його.
У Сполучених Штатах на ґрунти припадає близько половини сільськогосподарських викидів парникових газів, в той час як сільське господарство, лісове господарство та інші види землекористування виділяють 24 %. У всьому світі тваринництво відповідає за 18 % викидів парникових газів, згідно з доповіддю Продовольчої і сільськогосподарської організації ООН під назвою «Довга тінь тваринництва: екологічні проблеми і варіанти».
АООС США стверджує, що методи управління ґрунтом, які можуть зменшити викиди оксиду азоту (N2O) з ґрунтів, включають використання добрив, зрошення і . Обробка гною і вирощування рису також виробляють газоподібні викиди.
Важливі варіанти пом'якшення наслідків для скорочення викидів парникових газів від домашньої худоби (особливо жуйних тварин) включають генетичний відбір, введення метанотрофних бактерій в рубець, модифікацію раціону і управління випасом худоби. Інші варіанти включають в себе просто використання альтернатив без жуйних тварин, таких як замінники молока і аналоги м'яса. Нежуйна худоба (наприклад, птах) виробляє набагато менше викидів.
Методи, які посилюють зв'язування вуглецю в ґрунті, включають безвідвальне землеробство, мульчування залишків, покривну обрізку і сівозміна, які все більш широко використовуються в , ніж в звичайному землеробстві. Оскільки тільки 5 % сільськогосподарських угідь США в даний час використовують мульчування без обробки ґрунту і залишків, існує великий потенціал для зв'язування вуглецю.
Дослідження 2015 року показало, що сільське господарство може виснажити вуглець ґрунту і зробити ґрунт нездатний підтримувати життя; проте дослідження також показало, що збереження сільського господарства може захистити вуглець в ґрунті і відновити збиток з плином часу. Практика землеробства покривних культур була визнана кліматично розумним сільським господарством. Найкращі методи управління для європейських ґрунтів були описані як збільшення органічного вуглецю ґрунту: перетворення орних земель в пасовища, внесення соломи, зменшена обробка ґрунту, внесення соломи в поєднанні зі зменшеною обробітком ґрунту, система смугового землеробства і покривні культури.
Що стосується профілактики, то в Австралії розробляються вакцини для зменшення значного внеску в глобальне потепління метану, що виділяється худобою в результаті метеоризму і відрижки.
Проєкт щодо пом'якшення наслідків зміни клімату за допомогою сільського господарства був запущений в 2019 році «Глобальним Альянсом вічнозелених рослин». Мета полягає в тому, щоб ізолювати вуглець з атмосфери за допомогою . До 2050 року відновлена земля повинна секвеструвати 20 мільярдів вуглецю щорічно.
Транспорт
Транспортні викиди складають приблизно 1/4 викидів у всьому світі і ще більш важливі з точки зору впливу в розвинених країнах. Багато громадян розвинених країн, які часто їздять на особистих автомобілях, бачать, що більше половини їх впливу на зміну клімату пов'язане з викидами, виробленими їх автомобілями. Такі види масового транспорту, як автобус, легкорейковий транспорт (метро іт.д.) І міжміський залізничний транспорт, є далеко не самими енергоефективними засобами моторизованого транспорту для пасажирів, здатними використовувати в багатьох випадках більш ніж в двадцять разів менше енергії на людину-відстань, ніж особистий автомобіль. Сучасні енергоефективні технології, такі як електромобілі, вуглецево-нейтральний синтетичний бензин і реактивне паливо, також можуть допомогти знизити споживання нафти, зміни в землекористуванні та викиди вуглекислого газу. Використання залізничного транспорту, особливо електрорельсового, в порівнянні з набагато менш ефективним повітряним транспортом і автомобільним транспортом значно знижує викиди шкідливих речовин. З використанням електропоїздів і автомобілів в транспорті з'являється можливість запускати їх з низковуглецевої потужністі, виробляючи набагато менше викидів.
Містобудівництво
Ефективне міське планування для ексурбанізації направлено на скорочення пройдених транспортних миль, зниження викидів від транспорту. Особисті автомобілі вкрай неефективні при переміщенні пасажирів, в той час як громадський транспорт і велосипеди в багато разів ефективніше (як і найпростіший вид людського транспорту-ходьба). Все це заохочується міським/общинним плануванням і є ефективним способом скорочення викидів парникових газів. Неефективна практика розвитку землекористування привела до збільшення витрат на інфраструктуру, а також кількості енергії, необхідної для транспорту, комунальних послуг та будівель.
У той же час все більше число громадян і урядовців стали виступати за більш раціональний підхід до планування землекористування. Ці включають компактний розвиток громад, множинний вибір транспорту, змішане землекористування та практику збереження зелених насаджень. Ці програми забезпечують екологічні, економічні і якісні переваги життя, а також сприяють скороченню споживання енергії та викидів парникових газів.
Такі підходи, як новий урбанізм і , спрямовані на скорочення відстаней, який може здолати, особливо приватними транспортними засобами, стимулювання громадського транспорту і підвищення привабливості пішохідних та велосипедних маршрутів. Це досягається за рахунок «середньої щільності», змішаного планування й концентрації житла в крокової доступності від міських центрів і транспортних вузлів.
Більш розумна політика землекористування зростання надає як прямий, так і непрямий вплив на поведінку споживачів енергії. Наприклад, використання енергії транспорту, що є головним споживачем нафтового палива, може бути значно скорочено за рахунок більш компактних і змішаних моделей освоєння земель, що, в свою чергу, може бути забезпечено великою різноманітністю неавтомобільних видів транспорту.
Проєктування будівель
Викиди від житлового будівництва є суттєвими, і підтримувані урядом програми підвищення енергоефективності можуть мати велике значення.
Нові будівлі можуть бути побудовані з використанням пасивних сонячних конструкцій будівель, або технологій будівництва з нульовою енергією з використанням відновлюваних джерел тепла. Наявні будівлі можна зробити ефективнішими за рахунок використання теплоізоляції, високоефективних приладів (зокрема, водонагрівачів і печей), газонаповнених вікон з подвійним або потрійним склінням, зовнішніх віконних штор, а також орієнтації і розміщення будівель. Поновлювані джерела тепла, такі як неглибока геотермальна і пасивна сонячна енергія, зменшують кількість виділених парникових газів. На додаток до проєктування будівель, які більш енергоефективні для обігріву, можна проєктувати будівлі, які більш енергоефективні для охолодження, використовуючи світліші, більш відображають матеріали при розвитку міських районів (наприклад, фарбуючи дахи в білий колір) і саджаючи дерева. Це економить енергію, оскільки охолоджує будівлі і зменшує ефект міського , тим самим зменшуючи використання кондиціонерів.
Суспільний контроль
Інший розглянутий метод полягає в тому, щоб зробити вуглець новою валютою шляхом введення торгових «особистих вуглецевих кредитів». Ідея полягає в тому, що це буде стимулювати і мотивувати людей скорочувати свій «вуглецевий слід» тим, як вони живуть. Кожен громадянин отримає безкоштовну щорічну квоту вуглецю, яку він зможе використовувати для подорожей, покупки продуктів харчування і ведення своїх справ. Було висловлено припущення, що за допомогою цієї концепції можна було б фактично вирішити дві проблеми; забруднення навколишнього середовища і бідність, пенсіонери по старості насправді будуть жити краще, тому що вони літають рідше, тому вони можуть перевести в готівку свою квоту в кінці року, щоб оплатити рахунки за опалення і так далі.
Населення
Різні організації просувають планування народонаселення людини як засіб пом'якшення наслідків глобального потепління. Пропоновані заходи включають поліпшення доступу до послуг у сфері планування сім'ї та репродуктивного здоров'я та інформації, скорочення наталістічної політики, просвітництво громадськості про наслідки поточного тривалого зростання населення і поліпшення доступу жінок до освіти і економічних можливостей.
Згідно з дослідженням 2017 року, опублікованому в журналі Environmental Research Letters, народження однієї дитини менше буде мати набагато більш істотний вплив на викиди парникових газів у порівнянні, наприклад, з проживанням без автомобіля або вживанням рослинної дієти. Однак це було піддано критиці: як за категоріальний помилку при віднесенні викидів нащадків до їх предків, так і за дуже тривалу тимчасову шкалу скорочень.
Зусилля по контролю за населенням стримуються тим, що в деяких країнах існує свого роду табу на розгляд будь-яких таких зусиль. Крім того, різні релігії не заохочують або забороняють деякі або всі форми контролю над народжуваністю. Чисельність населення надає значно різний вплив на глобальне потепління в різних країнах на душу населення, оскільки виробництво антропогенних парникових газів на душу населення сильно варіюється в залежності від країни.
Див. також
Примітки
- Intergovernmental Panel on Climate Change. . — .
- Intergovernmental Panel on Climate Change. Summary for Policymakers // Climate Change 2007. — Cambridge : Cambridge University Press. — С. 1–24. — .
- Indonesian Climate Policy and Data in CAIT Indonesia Climate Data Explorer (PINDAI). Climate Change and Law Collection. Процитовано 27 вересня 2020.
- Joyce Laird. PV's falling costs // Renewable Energy Focus. — 2011-03. — Т. 12, вип. 2. — С. 52–56. — ISSN 1755-0084. — DOI:10.1016/s1755-0084(11)70048-5.
- Edward B. Barbier. PIIE–WRI analysis of a green recovery program for the United States // A Global Green New Deal. — Cambridge : Cambridge University Press. — С. 281–286. — .
- Liqi CHEN. The role of the Arctic and Antarctic and their impact on global climate change: Further findings since the release of IPCC AR4, 2007 // ADVANCES IN POLAR SCIENCE. — 2014-01-08. — Т. 24, вип. 2. — С. 79–85. — ISSN 1674-9928. — DOI:10.3724/sp.j.1085.2013.00079.
- K. Baxby. Lack of transparency regarding collaboration with industry // BMJ. — 2013-10-29. — Т. 347, вип. oct29 30. — С. f6469–f6469. — ISSN 1756-1833. — DOI:10.1136/bmj.f6469.
- Annex A: OECD Country Pledges to UNFCCC. dx.doi.org. 7 листопада 2011. Процитовано 27 вересня 2020.
- Minute on UNFCCC Conference of the Parties - COP 15 in Copenhagen // The Ecumenical Review. — 2010-06-15. — Т. 62, вип. 2. — С. 229–231. — ISSN 1758-6623 0013-0796, 1758-6623. — DOI:10.1111/j.1758-6623.2010.00060_3.x.
- IPCC 94 Proceedings. Scaling New Heights in Technical Communication // IPCC 94 Proceedings Scaling New Heights in Technical Communication IPCC-94. — IEEE, 1994. — . — DOI:10.1109/ipcc.1994.347556.
- Maurizio Michelini. IPCC 'Summary for Policymakers' in TAR: Do its Results Give a Support Always Adequate to the Urgencies of Kyoto Global Negotiations? // SSRN Electronic Journal. — 2001. — ISSN 1556-5068. — DOI:10.2139/ssrn.291944.
- Comparative price levels. dx.doi.org. 15 січня 2019. Процитовано 27 вересня 2020.
- Gyorgyi Gurban. United Nations Framework Convention on Climate Change // Encyclopedia of Global Warming & Climate Change. — 2455 Teller Road, Thousand Oaks California 91320 United States : SAGE Publications, Inc.. — , 978-1-4522-1856-4.
- Patricia Sturgess. Reading List: Training session on IPCC WGII contribution to AR5. — Evidence on Demand, 2014-11.
- Frederic Sampedro, Jaime Kulisevsky. Author response to Wang et al. Blood neurofilament light chain in Parkinson's disease: A biological marker for prediction of cognitive impairment? // Parkinsonism & Related Disorders. — 2020-06. — ISSN 1353-8020. — DOI:10.1016/j.parkreldis.2020.05.025.
- Eugenie L. Birch. A Review of “Climate Change 2014: Impacts, Adaptation, and Vulnerability” and “Climate Change 2014: Mitigation of Climate Change” // Journal of the American Planning Association. — 2014-04-03. — Т. 80, вип. 2. — С. 184–185. — ISSN 1939-0130 0194-4363, 1939-0130. — DOI:10.1080/01944363.2014.954464.
- H. Douglas Lightfoot. Nomenclature, Radiative Forcing and Temperature Projections in IPCC Climate Change 2007: The Physical Science Basis (AR4) // Energy & Environment. — 2010-11. — Т. 21, вип. 7. — С. 815–831. — ISSN 2048-4070 0958-305X, 2048-4070. — DOI:10.1260/0958-305x.21.7.815.
- K. S. Bose, R. H. Sarma. Delineation of the intimate details of the backbone conformation of pyridine nucleotide coenzymes in aqueous solution : [ 25 квітня 2020] // Biochemical and Biophysical Research Communications. — 1975-10-27. — Т. 66, вип. 4. — С. 1173–1179. — ISSN 1090-2104. — DOI:10.1016/0006-291x(75)90482-9.
- IPCC 96: Communication on the Fast Track. IPCC 96 Proceedings // IPCC 96 Communication on the Fast Track IPCC 96 Proceedings IPCC-96. — IEEE, 1996. — . — DOI:10.1109/ipcc.1996.552574.
- Marcelo De Sousa Tavares. Urological Disturbances in Children with Cerebral Palsy : Short Review // Integrative Pediatrics and Child Care. — 2018-12-31. — Т. 1, вип. 1. — С. 63–66. — ISSN 2637-966X. — DOI:10.18314/ipcc.v1i1.1446.
- Kevin Anderson, Alice Bows. Beyond ‘dangerous’ climate change: emission scenarios for a new world // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2011-01-13. — Т. 369, вип. 1934. — С. 20–44. — ISSN 1471-2962 1364-503X, 1471-2962. — DOI:10.1098/rsta.2010.0290.
- Kevin Anderson, Alice Bows. A new paradigm for climate change // Nature Climate Change. — 2012-08-28. — Т. 2, вип. 9. — С. 639–640. — ISSN 1758-6798 1758-678X, 1758-6798. — DOI:10.1038/nclimate1646.
- Mark Zeitoun, Marisa Goulden, David Tickner. Current and future challenges facing transboundary river basin management // Wiley Interdisciplinary Reviews: Climate Change. — 2013-05-29. — Т. 4, вип. 5. — С. 331–349. — ISSN 1757-7780. — DOI:10.1002/wcc.228.
- NETWATCH: Botany's Wayback Machine : [ 10 червня 2020] // Science. — 2007-06-15. — Т. 316, вип. 5831. — С. 1547d–1547d. — ISSN 1095-9203 0036-8075, 1095-9203. — DOI:10.1126/science.316.5831.1547d.
- . dx.doi.org. Архів оригіналу за 19 травня 2018. Процитовано 27 вересня 2020.
- G. Hymus, R. Valentini. Terrestrial vegetation as a carbon dioxide sink. // Greenhouse gas sinks. — Wallingford : CABI. — С. 11–30. — .
- Humberto Llavador, John E. Roemer. Global Unanimity Equilibrium on the Carbon Budget // SSRN Electronic Journal. — 2019. — ISSN 1556-5068. — DOI:10.2139/ssrn.3362590.
- Hans Pihan, Nils Peters, Jean-Marie Annoni, Ansgar Felbecker, Olivier Rouaud. Fortschritte bei der Diagnose und Therapie von Demenzerkrankungen // Schweizerische Ärztezeitung. — 2020-05-06. — ISSN 1424-4004 0036-7486, 1424-4004. — DOI:10.4414/saez.2020.18882.
- C.J. Hahn,, S.G. Warren, (2003-11). Cloud Climatology for Land Stations Worldwide, 1971-1996. Carbon Dioxide Information Analysis Center (CDIAC) Datasets. Процитовано 27 вересня 2020.
- Anonymous (6 березня 2017). review of 'Global fire emissions estimates during 1997-2015'. dx.doi.org. Процитовано 27 вересня 2020.
- Andrew Peters. O’Herlihy (Née Noonan) // The Missouri Review. — 2020. — Т. 43, вип. 1. — С. 10–23. — ISSN 1548-9930. — DOI:10.1353/mis.2020.0001.
- Liotyphlops albirostris (Peters, 1857). — Universidad de La Salle, 2020-05-14.
- Intergovernmental Panel on Climate Change. Introductory Chapter // Climate Change 2014 Mitigation of Climate Change. — Cambridge : Cambridge University Press. — С. 111–150. — .
- Will Steffen, Johan Rockström, Katherine Richardson, Timothy M. Lenton, Carl Folke. Trajectories of the Earth System in the Anthropocene // Proceedings of the National Academy of Sciences. — 2018-08-06. — Т. 115, вип. 33. — С. 8252–8259. — ISSN 1091-6490 0027-8424, 1091-6490. — DOI:10.1073/pnas.1810141115.
- Intergovernmental Panel on Climate Change. Social, Economic, and Ethical Concepts and Methods // Climate Change 2014 Mitigation of Climate Change. — Cambridge : Cambridge University Press. — С. 207–282. — .
- Shelagh Whitley, Laurie van der Burg. Reforming Fossil Fuel Subsidies // The Politics of Fossil Fuel Subsidies and their Reform. — Cambridge University Press. — С. 47–65. — , 978-1-108-41679-5.
- J. Bohannon. CLIMATE CHANGE: IPCC Report Lays Out Options for Taming Greenhouse Gases // Science. — 2007-05-11. — Т. 316, вип. 5826. — С. 812–814. — ISSN 1095-9203 0036-8075, 1095-9203. — DOI:10.1126/science.316.5826.812.
- Intergovernmental Panel on Climate Change. Sustainable Development and Equity // Climate Change 2014 Mitigation of Climate Change. — Cambridge : Cambridge University Press. — С. 283–350. — .
- . ICPSR Data Holdings. 1 травня 1990. Архів оригіналу за 23 березня 2019. Процитовано 30 вересня 2020.
- Paul Gipe. The Wind Rush of 99 // World Renewable Energy Congress VI. — Elsevier, 2000. — С. 124–129. — .
- John H. Perkins. Special Report on Renewable Energy Sources and Climate Change Mitigation: 2011. Intergovernmental Panel on Climate Change, Working Group III—Mitigation of Climate Change. Cambridge University Press, Cambridge, England. 1,088 pp. $100.00 hardcover (ISBN13: 9781107607101). Also available for free at http://srren.ipcc-wg3.de/report (ca. 1,544 pp.). // Environmental Practice. — 2012-09. — Т. 14, вип. 3. — С. 237–238. — ISSN 1466-0474 1466-0466, 1466-0474. — DOI:10.1017/s1466046612000233.
- Michael Godec, George Koperna, John Gale. CO2-ECBM: A Review of its Status and Global Potential // Energy Procedia. — 2014. — Т. 63. — С. 5858–5869. — ISSN 1876-6102. — DOI:10.1016/j.egypro.2014.11.619.
- Santosh Raikar, Seabron Adamson. Managing transmission costs and risks for renewable projects // Renewable Energy Finance. — Elsevier, 2020. — С. 131–140. — .
- Support System of China’s Energy Science & Technology Roadmap to 2050 // Energy Science & Technology in China: A Roadmap to 2050. — Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. — С. 99–102. — , 978-3-642-05320-7.
- Moiz Bohra, Nilay Shah. Optimising the role of solar PV in Qatar’s power sector // Energy Reports. — 2020-02. — Т. 6. — С. 194–198. — ISSN 2352-4847. — DOI:10.1016/j.egyr.2019.11.062.
- Available Solar Radiation // Solar Engineering of Thermal Processes, Photovoltaics and Wind. — 2020-02-25. — С. 45–140. — DOI:10.1002/9781119540328.ch2.
- M.Sc. in Wind Energy at the Technical University of Denmark (DTU) // Wind Engineering. — 2005-03. — Т. 29, вип. 2. — С. 187–190. — ISSN 2048-402X 0309-524X, 2048-402X. — DOI:10.1260/0309524054797177.
- Grain Transportation Report, March 19, 2020. — U.S. Department of Agriculture, Agricultural Marketing Service, 2020-03-19.
- Companion March 2020: full issue PDF // BSAVA Companion. — 2020-03-01. — Т. 2020, вип. 3. — С. 1–39. — ISSN 2041-2495 2041-2487, 2041-2495. — DOI:10.22233/20412495.0320.1.
- B. Glover, K.L. Walløe. Operation of large Norwegian hydropower reservoirs after quantifying the downstream flood control benefits // Sustainable and Safe Dams Around the World. — CRC Press, 2019-08-08. — С. 1563–1575. — .
- . dx.doi.org. Архів оригіналу за 15 вересня 2020. Процитовано 30 вересня 2020.
- Satellite helps estimate forest biomass, carbon sink // Nature India. — 2016-01-20. — ISSN 1755-3180. — DOI:10.1038/nindia.2016.7.
- Fiji should step up action to protect human rights from environmental risks, UN expert says. Climate Change and Law Collection. Процитовано 30 вересня 2020.
- S. Ion. Climate change in an energy hungry world brings new nuclear dawn // IET Seminar on Engineering a Safer Global Climate: The Power Sector's Response. — IEE, 2008. — . — DOI:10.1049/ic:20080650.
- Global Views on the Death of Osama Bin Laden, 2011. ICPSR Data Holdings. 3 липня 2012. Процитовано 30 вересня 2020.
- Ipsos. Der Neue Pauly. Процитовано 30 вересня 2020.
- Figure V.29. Official development assistance: the United Kingdom. dx.doi.org. Процитовано 30 вересня 2020.
- ITER L-Mode Confinement Database. — Office of Scientific and Technical Information (OSTI), 1997-10-01.
- Michael Kühn, Martin Streibel, Natalie Nakaten, Thomas Kempka. Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the “Power-to-gas-to-gas-to-power” Technology // Energy Procedia. — 2014. — Т. 59. — С. 9–15. — ISSN 1876-6102. — DOI:10.1016/j.egypro.2014.10.342.
- Mark Peplow. Cheap battery stores energy for a rainy day // Nature. — 2014-01-08. — ISSN 1476-4687 0028-0836, 1476-4687. — DOI:10.1038/nature.2014.14486.
- Larry Schuster. SURGERY MAY STOP THE SEIZURES // Neurology Now. — 2005. — Т. 1, вип. 1. — С. 28–30. — ISSN 1553-3271. — DOI:10.1097/01222928-200501010-00008.
- William Moomaw, Peter Burgherr, Garvin Heath, Manfred Lenzen, John Nyboer. Methodology // Renewable Energy Sources and Climate Change Mitigation. — Cambridge : Cambridge University Press. — С. 973–1000. — .
- Joachim Bertsch, Christian Growitsch, Stefan Lorenczik, Stephan Nagl. Flexibility in Europe's power sector — An additional requirement or an automatic complement? // Energy Economics. — 2016-01. — Т. 53. — С. 118–131. — ISSN 0140-9883. — DOI:10.1016/j.eneco.2014.10.022.
- Role of power-to-gas in energy transition. energyo. 1 січня 2019. Процитовано 30 вересня 2020.
- Anonymous (10 липня 2019). Review of manuscript by Schmidt et al. dx.doi.org. Процитовано 30 вересня 2020.
- BASF plans recycling plant for electric batteries // Focus on Catalysts. — 2020-05. — Т. 2020, вип. 5. — С. 4. — ISSN 1351-4180. — DOI:10.1016/j.focat.2020.04.022.
- Charles Thomas Parker, George M Garrity (1 січня 2003). Exemplar Abstract for Aliiroseovarius halocynthiae (Kim et al. 2012) Park et al. 2015 emend. Hördt et al. 2020, Pseudoroseovarius halocynthiae (Kim et al. 2012) Sun et al. 2015 emend. Hördt et al. 2020 pro synon. Aliiroseovarius halocynthiae (Kim et al. 2012) Park et al. 2015 emend. Hördt et al. 2020 and Roseovarius halocynthiae Kim et al. 2012. The NamesforLife Abstracts. Процитовано 30 вересня 2020.
- Our Wired Nerves. — 2020. — DOI:10.1016/c2019-0-03259-1.
- Hai-Wen Li, Etsuo Akiba. Hydrogen Storage: Conclusions and Future Perspectives // Green Energy and Technology. — Tokyo : Springer Japan, 2016. — С. 279–282. — , 978-4-431-56042-5.
- Sotirios Karellas, Tryfon C. Roumpedakis. Solar thermal power plants // Solar Hydrogen Production. — Elsevier, 2019. — С. 179–235. — .
- Green Shipping project to develop sustainable Wadden Sea shipping // Fuel Cells Bulletin. — 2020-08. — Т. 2020, вип. 8. — С. 6. — ISSN 1464-2859. — DOI:10.1016/s1464-2859(20)30340-0.
- Qili Huang. Insights for global energy interconnection from China renewable energy development // Global Energy Interconnection. — 2020-02. — Т. 3, вип. 1. — С. 1–11. — ISSN 2096-5117. — DOI:10.1016/j.gloei.2020.03.006.
- Michael West, Thomas Baldwin. Energy storage and supergrid integration // 2013 North American Power Symposium (NAPS). — IEEE, 2013-09. — . — DOI:10.1109/naps.2013.6666892.
- The University of Technology Sydney (UTS) // The Grants Register 2019. — London : Palgrave Macmillan UK, 2018-11-13. — С. 917–917. — , 978-1-349-95810-8.
- Feng Chen. Inductive power transfer technology for road transport electrification // Eco-Efficient Pavement Construction Materials. — Elsevier, 2020. — С. 383–399. — .
- How to build a better battery // Physics Today. — 2008. — ISSN 1945-0699. — DOI:10.1063/pt.5.022205.
- Paul L. Joskow. Transmission Capacity Expansion Is Needed to Decarbonize the Electricity Sector Efficiently // Joule. — 2020-01. — Т. 4, вип. 1. — С. 1–3. — ISSN 2542-4351. — DOI:10.1016/j.joule.2019.10.011.
- H2 Logic station for H2 Mobility Germany, Denmark repeat order // Fuel Cells Bulletin. — 2016-01. — Т. 2016, вип. 1. — С. 7. — ISSN 1464-2859. — DOI:10.1016/s1464-2859(16)30017-7.
- Kamil Liberadzki, Marcin Liberadzki. O zachowaniu sii hybrydowego kapitaau przedsiibiorstwa w sytuacji napiitej na przykkadzie Volkswagen AG (The Behaviour of Hybrid Capital Securities When Issuer is in Distress. The Volkswagen AG Case) // SSRN Electronic Journal. — 2017. — ISSN 1556-5068. — DOI:10.2139/ssrn.3082351.
- Simon Holoda, Branislav Kandera, Marian Jancik, Nikolas Zacik. Digital transformation of ATM - improving EUROCONTROL Network Manager B2B // 2019 New Trends in Aviation Development (NTAD). — IEEE, 2019-09. — . — DOI:10.1109/ntad.2019.8875558.
- SBTi представила методологію по декарбонізації для виробників сталі — Новини — GMK Center. GMK (укр.). Процитовано 26 вересня 2023.
- International Waste Hierarchy according to the IPCC. dx.doi.org. 24 травня 2018. Процитовано 4 жовтня 2020.
- Renovating Historic Buildings - IEA SHC Task 59 Flyer. — IEA SHC Task 59, 2019-01-15.
- Iain Staffell, Dan Brett, Nigel Brandon, Adam Hawkes. A review of domestic heat pumps // Energy & Environmental Science. — 2012. — Т. 5, вип. 11. — С. 9291. — ISSN 1754-5706 1754-5692, 1754-5706. — DOI:10.1039/c2ee22653g.
- Anabela Duarte Carvalho, Dimitris Mendrinos, Anibal T. De Almeida. Ground source heat pump carbon emissions and primary energy reduction potential for heating in buildings in Europe—results of a case study in Portugal // Renewable and Sustainable Energy Reviews. — 2015-05. — Т. 45. — С. 755–768. — ISSN 1364-0321. — DOI:10.1016/j.rser.2015.02.034.
- André Sternberg, André Bardow. Power-to-What? – Environmental assessment of energy storage systems // Energy & Environmental Science. — 2015. — Т. 8, вип. 2. — С. 389–400. — ISSN 1754-5706 1754-5692, 1754-5706. — DOI:10.1039/c4ee03051f.
- Imitate europeans and clean up confusion, says study // Banks in Insurance Report. — 1999-10. — Т. 15, вип. 6. — С. 14–16. — ISSN 1530-9991 8756-6079, 1530-9991. — DOI:10.1002/bir.3820150608.
- Intergovernmental Panel on Climate Change. Working Group III,. {{{Заголовок}}}. — , 1-107-05821-X, 978-1-107-65481-5, 1-107-65481-5.
- Facundo Alvaredo, Lucas Chancel, Thomas Piketty, Emmanuel Saez, Gabriel Zucman. Global Inequality Dynamics: New Findings from WID.world. — Cambridge, MA : National Bureau of Economic Research, 2017-02.
- Seth Wynes, Kimberly A Nicholas. The climate mitigation gap: education and government recommendations miss the most effective individual actions // Environmental Research Letters. — 2017-07-01. — Т. 12, вип. 7. — С. 074024. — ISSN 1748-9326. — DOI:10.1088/1748-9326/aa7541.
- Gerardo Ceballos, Paul R. Ehrlich, Rodolfo Dirzo. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines // Proceedings of the National Academy of Sciences. — 2017-07-10. — Т. 114, вип. 30. — С. E6089–E6096. — ISSN 1091-6490 0027-8424, 1091-6490. — DOI:10.1073/pnas.1704949114.
- S. L. Pimm, C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman. The biodiversity of species and their rates of extinction, distribution, and protection // Science. — 2014-05-29. — Т. 344, вип. 6187. — С. 1246752–1246752. — ISSN 1095-9203 0036-8075, 1095-9203. — DOI:10.1126/science.1246752.
- [Що таке декарбонізація? /Нікополь Сьогодні]
- Rakhee Goyal. Miosis with Dexmedetomidine -every little helps, every picture tells a story // BJA: British Journal of Anaesthesia. — 2013-11-18. — Т. 111, вип. eLetters. — ISSN 1471-6771 0007-0912, 1471-6771. — DOI:10.1093/bja/el_10817.
- Global warming could delay next ice age, say scientists // Physics Today. — 2012. — ISSN 1945-0699. — DOI:10.1063/pt.5.025804.
- Mitgliederversammlung 2016 // CNE Pflegemanagement. — 2016-12. — Т. 03, вип. 06. — С. 20–20. — ISSN 2626-6229 2196-9310, 2626-6229. — DOI:10.1055/s-0042-118340.
- United Kingdom 2016: marginal tax wedge decomposition. dx.doi.org. Процитовано 4 жовтня 2020.
- Marco Springmann, Daniel Mason-D’Croz, Sherman Robinson, Keith Wiebe, H. Charles J. Godfray. Mitigation potential and global health impacts from emissions pricing of food commodities // Nature Climate Change. — 2016-11-07. — Т. 7, вип. 1. — С. 69–74. — ISSN 1758-6798 1758-678X, 1758-6798. — DOI:10.1038/nclimate3155.
- Mark Stevenson. Fewer cars, healthier cities // BMJ. — 2019-12-18. — С. l6605. — ISSN 1756-1833. — DOI:10.1136/bmj.l6605.
- Frank Jung. "We believe in democratizing electric cars" // ATZ worldwide. — 2020-09-25. — Т. 122, вип. 10. — С. 22–25. — ISSN 2192-9076. — DOI:10.1007/s38311-020-0307-9.
- Bjarne R. Andersen, Dennis Woodford, Geoff Love. FACTS Planning Studies // CIGRE Green Books. — Cham : Springer International Publishing, 2020. — С. 1–34. — , 978-3-319-71926-9.
- Darya Bululukova, Momir Tabakovic, Harald Wahl. Smart Cities Education as Mobility, Energy & ICT Hub // Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems. — SCITEPRESS - Science and and Technology Publications, 2016. — . — DOI:10.5220/0005908601170124.
- Shahbaz, Muhammad; AlNouss, Ahmed; Ghiat, Ikhlas; Mckay, Gordon; Mackey, Hamish; Elkhalifa, Samar; Al-Ansari, Tareq (1 жовтня 2021). A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks. Resources, Conservation and Recycling. Т. 173. с. 105734. doi:10.1016/j.resconrec.2021.105734. ISSN 0921-3449. Процитовано 1 грудня 2023.
- Ozkan, Mihrimah; Nayak, Saswat Priyadarshi; Ruiz, Anthony D.; Jiang, Wenmei (2022-04). Current status and pillars of direct air capture technologies. iScience. Т. 25, № 4. с. 103990. doi:10.1016/j.isci.2022.103990. ISSN 2589-0042. PMC 8927912. PMID 35310937. Процитовано 1 грудня 2023.
{{}}
: Обслуговування CS1: Сторінки з PMC з іншим форматом () - Cooper, Jasmin; Dubey, Luke; Hawkes, Adam (1 січня 2022). Life cycle assessment of negative emission technologies for effectiveness in carbon sequestration. Procedia CIRP. Т. 105. с. 357—361. doi:10.1016/j.procir.2022.02.059. ISSN 2212-8271. Процитовано 1 грудня 2023.
- OECD Environmental Outlook to 2050 (Summary in Slovenian) // OECD Environmental Outlook. — 2012-03-15. — ISSN 1999-155X. — DOI:10.1787/env_outlook-2012-sum-sl.
- Technology Roadmap: Carbon Capture and Storage // IEA Technology Roadmaps. — 2009-10-09. — ISSN 2218-2837. — DOI:10.1787/9789264088122-en.
- Masahiro Sugiyama, Atsushi Ishii, Shinichiro Asayama, Takanobu Kosugi. Solar Geoengineering Governance // Oxford Research Encyclopedia of Climate Science. — 2018-04-26. — DOI:10.1093/acrefore/9780190228620.013.647.
- What You Need to Know About Energy. — 2008-04-25. — DOI:10.17226/12204.
- 3 The Website as Archived Object : [ 11 січня 2020] // Digital Methods. — The MIT Press, 2013. — .
- David D. Simpson. Archived Tips for Teaching Statistics // PsycCRITIQUES. — 2013. — Т. 58, вип. 14. — ISSN 1554-0138. — DOI:10.1037/a0031811.
- Nicholas Stern. The Economics of Stabilisation // The Economics of Climate Change. — Cambridge : Cambridge University Press. — С. 191–192. — .
- Figure 2.5. Two-thirds of potential revenue from concessions in natural forests is not collected. dx.doi.org. Процитовано 13 жовтня 2020.
- Robin Chazdon, Pedro Brancalion. Restoring forests as a means to many ends // Science. — 2019-07-04. — Т. 365, вип. 6448. — С. 24–25. — ISSN 1095-9203 0036-8075, 1095-9203. — DOI:10.1126/science.aax9539.
- Rachel Ehrenberg. Global forest survey finds trillions of trees // Nature. — 2015-09-02. — ISSN 1476-4687 0028-0836, 1476-4687. — DOI:10.1038/nature.2015.18287.
- AFN National Chief Tells World Leaders at UN Conference that Acting on Indigenous Rights Most Effective Way to Combat Climate Change. Climate Change and Law Collection. Процитовано 13 жовтня 2020.
- LAS VEGAS SANDS CORP., a Nevada corporation, Plaintiff, v. UKNOWN REGISTRANTS OF www.wn0000.com, www.wn1111.com, www.wn2222.com, www.wn3333.com, www.wn4444.com, www.wn5555.com, www.wn6666.com, www.wn7777.com, www.wn8888.com, www.wn9999.com, www.112211.com, www.4456888.com, www.4489888.com, www.001148.com, and www.2289888.com, Defendants. : [ 24 січня 2021] // Gaming Law Review and Economics. — 2016-12. — Т. 20, вип. 10. — С. 859–868. — ISSN 1941-5494 1097-5349, 1941-5494. — DOI:10.1089/glre.2016.201011.
- Sanja Bahun, Bojana Petrić. Homing in on Home // Thinking Home. — Routledge, 2020-06-07. — С. 1–13. — .
- Common treatments do more harm than good for chronic primary pain // PharmacoEconomics & Outcomes News. — 2020-08. — Т. 860, вип. 1. — С. 35–35. — ISSN 1179-2043 1173-5503, 1179-2043. — DOI:10.1007/s40274-020-7081-1.
- Lena R. Boysen, Wolfgang Lucht, Dieter Gerten, Vera Heck, Timothy M. Lenton. The limits to global-warming mitigation by terrestrial carbon removal // Earth's Future. — 2017-05. — Т. 5, вип. 5. — С. 463–474. — ISSN 2328-4277. — DOI:10.1002/2016ef000469.
- Drones find their way // New Scientist. — 2016-07. — Т. 231, вип. 3084. — С. 22–23. — ISSN 0262-4079. — DOI:10.1016/s0262-4079(16)31368-9.
- Hollins, Sir (Arthur) Meyrick, (16 July 1876–30 July 1938) // Who Was Who. — Oxford University Press, 2007-12-01.
- {{{Заголовок}}}.
- Allen Blackman, Peter Veit. Titled Amazon Indigenous Communities Cut Forest Carbon Emissions // Ecological Economics. — 2018-11. — Т. 153. — С. 56–67. — ISSN 0921-8009. — DOI:10.1016/j.ecolecon.2018.06.016.
- . ICPSR Data Holdings. 16 травня 2003. Архів оригіналу за 27 червня 2020. Процитовано 13 жовтня 2020.
- Litton, Andrew, (born 16 May 1959), conductor and pianist; Music Director, New York City Ballet, since 2016 // Who's Who. — Oxford University Press, 2007-12-01.
- Bjarne Lorenzen. Earth’s Magnetic Field—The Key to Global Warming // Journal of Geoscience and Environment Protection. — 2019. — Т. 07, вип. 07. — С. 25–38. — ISSN 2327-4344 2327-4336, 2327-4344. — DOI:10.4236/gep.2019.77003.
- Jean-Francois Bastin, Yelena Finegold, Claude Garcia, Danilo Mollicone, Marcelo Rezende. The global tree restoration potential // Science. — 2019-07-04. — Т. 365, вип. 6448. — С. 76–79. — ISSN 1095-9203 0036-8075, 1095-9203. — DOI:10.1126/science.aax0848.
- Big and beautiful: how the brics economies could save the planet // virtual water. — I.B. Tauris & Co Ltd, 2011. — , 978-1-84511-984-3.
- Global warming may affect Antarctic's ability to absorb carbon // Physics Today. — 2013. — ISSN 1945-0699. — DOI:10.1063/pt.5.026865.
- How the Courts Can Help in the Climate Change Fight. Climate Change and Law Collection. Процитовано 13 жовтня 2020.
- Tim Dutz, Martin Knöll, Sandro Hardy, Stefan Göbel. How Mobile Devices Could Change the Face of Serious Gaming // I-COM. — 2013-01. — Т. 12, вип. 2. — ISSN 1618-162X 2196-6826, 1618-162X. — DOI:10.1515/icom.2013.0013.
- P. Falkowski. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System // Science. — 2000-10-13. — Т. 290, вип. 5490. — С. 291–296. — ISSN 1095-9203 0036-8075, 1095-9203. — DOI:10.1126/science.290.5490.291.
- Sid Perkins. Some trees could help fight climate change // Science. — 2016-03-16. — ISSN 1095-9203 0036-8075, 1095-9203. — DOI:10.1126/science.aaf4200.
- K. M. Walter, S. A. Zimov, J. P. Chanton, D. Verbyla, F. S. Chapin. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming // Nature. — 2006-09. — Т. 443, вип. 7107. — С. 71–75. — ISSN 1476-4687 0028-0836, 1476-4687. — DOI:10.1038/nature05040.
- COVID-19 updates: 18 March 2020 – 3 April 2020 : [ 23 травня 2020] // The Pharmaceutical Journal. — 2020. — ISSN 2053-6186. — DOI:10.1211/pj.2020.20207894.
- The Guardian view on climate change: see you in court. Climate Change and Law Collection. Процитовано 13 жовтня 2020.
- Geoff Bertram, Simon Terry. How Did We Get Into This Mess? // The Carbon Challenge: New Zealand's Emissions Trading Scheme. — Bridget Williams Books, 2010. — С. 31–50. — .
- Nediljka Gaurina-Međimurec, Karolina Novak Mavar. Carbon Capture and Storage (CCS): Geological Sequestration of CO2 // CO2 Sequestration. — IntechOpen, 2020-07-22. — , 978-1-83962-993-8.
- Burden of Disease from Rising Coal-Fired Power Plant Emissions in Southeast Asia. dx.doi.org. Процитовано 13 жовтня 2020.
- Архівована копія. — , 0-521-88011-4, 978-0-521-70598-1, 0-521-70598-3. з джерела 24 січня 2022
- Policy Implications of Greenhouse Warming. — 1992-01-01. — DOI:10.17226/1605.
- S. Isono, R. Greif, T. C. Mort. Airway research: the current status and future directions // Anaesthesia. — 2011-11-10. — Т. 66. — С. 3–10. — ISSN 0003-2409. — DOI:10.1111/j.1365-2044.2011.06928.x.
- В Ісландії запрацював «найбільший у світі» завод-вакуум з вилучення CO2 з атмосфери. 08.05.2024, 22:39
- Ken Caldeira, Lowell Wood. Global and Arctic climate engineering: numerical model studies // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2008-08-29. — Т. 366, вип. 1882. — С. 4039–4056. — ISSN 1471-2962 1364-503X, 1471-2962. — DOI:10.1098/rsta.2008.0132.
- Eileen Nchanji. Sustainable Urban Agriculture in Ghana: What Governance System Works? // Sustainability. — 2017-11-14. — Т. 9, вип. 11. — С. 2090. — ISSN 2071-1050. — DOI:10.3390/su9112090.
- The Rainforest Alliance Recognizes Excellence In Advancing Sustainability And Climate Goals. Climate Change and Law Collection. Процитовано 20 жовтня 2020.
- Leon Schumacher, Jianfeng Zhou. Smart Farms and the Digital Age – A Reality // 2019 Boston, Massachusetts July 7- July 10, 2019. — St. Joseph, MI : American Society of Agricultural and Biological Engineers, 2019. — DOI:10.13031/aim.201901857.
- Figure 4.3 Greenhouse gas emissions by sector. dx.doi.org. Процитовано 20 жовтня 2020.
- Mechlem Kerstin. Food and Agriculture Organization of the United Nations (FAO) // Max Planck Encyclopedia of Public International Law. — Oxford University Press, 2006-11. — .
- David L. Adelson. Bovine Genome Architecture // Bovine Genomics. — Oxford, UK : Wiley-Blackwell, 2012-04-11. — С. 123–143. — , 978-0-8138-2122-1.
- Adam Vaughan. Breeding less gassy cattle could cut harmful emissions // New Scientist. — 2019-07. — Т. 243, вип. 3238. — С. 16. — ISSN 0262-4079. — DOI:10.1016/s0262-4079(19)31262-x.
- J. Jeyanathan, C. Martin, D. P. Morgavi. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review // Animal. — 2013-11-25. — Т. 8, вип. 2. — С. 250–261. — ISSN 1751-732X 1751-7311, 1751-732X. — DOI:10.1017/s1751731113002085.
- N.R. Parmar, J.I. Nirmal Kumar, C.G. Joshi. Exploring diet-dependent shifts in methanogen and methanotroph diversity in the rumen of Mehsani buffalo by a metagenomics approach // Frontiers in Life Science. — 2015-07-10. — Т. 8, вип. 4. — С. 371–378. — ISSN 2155-3777 2155-3769, 2155-3777. — DOI:10.1080/21553769.2015.1063550.
- D. Boadi, C. Benchaar, J. Chiquette, D. Massé. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review // Canadian Journal of Animal Science. — 2004-09-01. — Т. 84, вип. 3. — С. 319–335. — ISSN 1918-1825 0008-3984, 1918-1825. — DOI:10.4141/a03-109.
- C. Martin, D. P. Morgavi, M. Doreau. Methane mitigation in ruminants: from microbe to the farm scale // animal. — 2009-08-03. — Т. 4, вип. 03. — С. 351–365. — ISSN 1751-732X 1751-7311, 1751-732X. — DOI:10.1017/s1751731109990620.
- R.J. Eckard, C. Grainger, C.A.M. de Klein. Options for the abatement of methane and nitrous oxide from ruminant production: A review // Livestock Science. — 2010-05. — Т. 130, вип. 1-3. — С. 47–56. — ISSN 1871-1413. — DOI:10.1016/j.livsci.2010.02.010.
- John E. Hermansen, George Zervas. Livestock farming systems and their environmental impacts // Livestock Production Science. — 2005-09. — Т. 96, вип. 1. — С. 1. — ISSN 0301-6226. — DOI:10.1016/j.livprodsci.2005.05.015.
- Priyantha Jayakody, Prem B Parajuli, Gretchen Sassenrath. Impacts of climate variability on Soybean and Corn yields in Mississippi Delta // 2012 Dallas, Texas, July 29 - August 1, 2012. — St. Joseph, MI : American Society of Agricultural and Biological Engineers, 2012. — DOI:10.13031/2013.41778.
- DAVID PIMENTEL, PAUL HEPPERLY, JAMES HANSON, DAVID DOUDS, RITA SEIDEL. [0573:eeaeco2.0.co;2 Environmental, Energetic, and Economic Comparisons of Organic and Conventional Farming Systems] // BioScience. — 2005. — Т. 55, вип. 7. — С. 573. — ISSN 0006-3568. — DOI:10.1641/0006-3568(2005)055[0573:eeaeco]2.0.co;2.
- R. Lal. ECOLOGY: Managing Soil Carbon // Science. — 2004-04-16. — Т. 304, вип. 5669. — С. 393–393. — ISSN 1095-9203 0036-8075, 1095-9203. — DOI:10.1126/science.1093079.
- A. N. Thanos Papanicolaou, Kenneth M. Wacha, Benjamin K. Abban, Christopher G. Wilson, Jerry L. Hatfield. From soilscapes to landscapes: A landscape-oriented approach to simulate soil organic carbon dynamics in intensively managed landscapes // Journal of Geophysical Research: Biogeosciences. — 2015-11. — Т. 120, вип. 11. — С. 2375–2401. — ISSN 2169-8953. — DOI:10.1002/2015jg003078.
- Eric Justes. Erratum to: Cover Crops for Sustainable Farming // Cover Crops for Sustainable Farming. — Dordrecht : Springer Netherlands, 2017. — С. E1–E1. — , 978-94-024-0986-4.
- Emanuele Lugato, Francesca Bampa, Panos Panagos, Luca Montanarella, Arwyn Jones. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices // Global Change Biology. — 2014-05-02. — Т. 20, вип. 11. — С. 3557–3567. — ISSN 1354-1013. — DOI:10.1111/gcb.12551.
- 1.15. Greenhouse gas emissions. dx.doi.org. Процитовано 20 жовтня 2020.
- 'Up close and medical': 26 October 2019 // The Pharmaceutical Journal. — 2019. — ISSN 2053-6186. — DOI:10.1211/pj.2019.20207144.
- MacNaughton, Joan, (born 12 Sept. 1950), adviser globally on energy and environmental policies; Executive Chair, Energy and Policy Assessment (Trilemma), World Energy Council, since 2011 // Who's Who. — Oxford University Press, 2007-12-01.
- Marcia D. Lowe. The global rail revival // Society. — 1994-07. — Т. 31, вип. 5. — С. 51–56. — ISSN 1936-4725 0147-2011, 1936-4725. — DOI:10.1007/bf02693262.
- Hamed Mahmudi, Peter C. Flynn, M. David Checkel. Life Cycle Analysis of Biomass Transportation: Trains vs. Trucks // SAE Technical Paper Series. — 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2005-04-11. — DOI:10.4271/2005-01-1551.
- Sellwood, Philip Henry George, (born 10 Jan. 1954), Chief Executive, Energy Saving Trust, since 2003 // Who's Who. — Oxford University Press, 2007-12-01.
- Stephen Wilkinson. . IET.tv (англ.). Архів оригіналу за 26 жовтня 2020. Процитовано 20 жовтня 2020.
- Arthur H. Rosenfeld, Hashem Akbari, Joseph J. Romm, Melvin Pomerantz. Cool communities: strategies for heat island mitigation and smog reduction // Energy and Buildings. — 1998-08. — Т. 28, вип. 1. — С. 51–62. — ISSN 0378-7788. — DOI:10.1016/s0378-7788(97)00063-7.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Cya stattya mistit pravopisni leksichni gramatichni stilistichni abo inshi movni pomilki yaki treba vipraviti Vi mozhete dopomogti vdoskonaliti cyu stattyu pogodivshi yiyi iz chinnimi movnimi standartami Pom yakshennya naslidkiv zmini klimatu abo dekarbonizaciya kompleks zahodiv iz obmezhennya masshtabiv abo tempiv globalnogo poteplinnya i pov yazanih iz cim naslidkiv Yak pravilo ce pov yazano zi skorochennyam antropogennih vikidiv parnikovih gaziv PG Na chastku vikopnogo paliva pripadaye blizko 70 vikidiv parnikovih gaziv Golovne zavdannya polyagaye v tomu shob vidmovitisya vid vikoristannya vugillya nafti i gazu i zaminiti ci vikopni vidi paliva bezpechnimi dlya zdorov ya lyudini ta prirodi dzherelami energiyi Cherez rizke padinnya cin vitroenergetika i sonyachna fotovoltayika PV vse bilshe konkuruyut z naftoyu gazom i vugillyam hocha voni vimagayut nakopichennya energiyi i protyazhnih elektrichnih merezh Pom yakshennya abo povernennya nazad zmini klimatu takozh mozhe buti dosyagnuto shlyahom zamini benzinu i dizelnogo paliva elektromobilyami lisovidnovlennyam i zberezhennyam zalishkiv lisiv poglinachiv vuglecyu zmin v silskogospodarskij praktici napriklad permakultura abo organichne gospodarstvo i tehnici vidmovi vid finansuvannya vikopnogo paliva demokratichnih reform korporativnogo upravlinnya zmin v zakonodavstvi pro spozhivachiv i zdijsnennya vidnovlennya dobrobutu Zemli pislya pandemiyi COVID 19 Dosi vidsutnya tehnologiya viluchennya vuglekislogo gazu z atmosferi Zemli abo geoinzheneriyi v bezpechnomu chi dostatnomu masshtabi Majzhe vsi krayini ye uchasnikami Ramkovoyi konvenciyi Organizaciyi Ob yednanih Nacij pro zminu klimatu RKZK OON Kincevoyu metoyu RKZK OON ye stabilizaciya atmosfernih koncentracij PG na rivni yakij zapobig bi nebezpechne vtruchannya lyudini v klimatichnu sistemu U 2010 roci storoni RKZK OON pogodilisya z tim sho majbutnye globalne poteplinnya maye buti obmezhene rivnem nizhche 2 C 3 6 F v porivnyanni z doindustrialnim rivnem Z Parizkoyi ugodi 2015 roku ce bulo pidtverdzheno U specialnij dopovidi pro globalne poteplinnya na 1 5 C Mizhuryadova grupa ekspertiv zi zmini klimatu pidkreslila perevagi zberezhennya globalnogo poteplinnya nizhche cogo rivnya zaproponuvavshi globalni kolektivni zusillya yaki mozhut buti spryamovani na dosyagnennya Cilej stalogo rozvitku Organizaciyi Ob yednanih Nacij na 2015 rik Shlyahi vikidiv bez bud yakogo abo obmezhenogo perevishennya zazhadali b shvidkih i dalekosyazhnih peretvoren v energetici zemli mistah i infrastrukturi vklyuchayuchi transport i budivli a takozh promislovi sistemi Ninishnya trayektoriya globalnih vikidiv parnikovih gaziv mabut ne uzgodzhuyetsya z obmezhennyam globalnogo poteplinnya do rivnya nizhche 1 5 abo 2 C Odnak v globalnomu masshtabi vigodi vid zberezhennya poteplinnya nizhche 2 C perevishuyut vitrati na podolannya naslidkiv Koncentraciya i stabilizaciya parnikovih gazivRKZK OON spryamovana na stabilizaciyu koncentracij parnikovih gaziv PG v atmosferi na takomu rivni pri yakomu ekosistemi mozhut prirodnim chinom adaptuvatisya do zmini klimatu virobnictvo prodovolstva ne perebuvaye pid zagrozoyu a ekonomichnij rozvitok mozhe protikati stijkim chinom V danij chas lyudska diyalnist dodaye CO2 v atmosferu shvidshe nizh prirodni procesi mozhut vidaliti jogo Zgidno z amerikanskim doslidzhennyam 2011 roku stabilizaciya koncentraciyi atmosfernogo CO2 vimagatime skorochennya antropogennih vikidiv CO2 na 80 v porivnyanni z pikovim rivnem vikidiv MGEZK pracyuye z koncepciyeyu fiksovanogo emisijnogo byudzhetu Yaksho vikidi zalishatsya na potochnomu rivni 42 gigatonn CO2 vuglecevij byudzhet dlya 1 5 C mozhe buti vicherpanij 2028 roku Pidvishennya temperaturi do cogo rivnya vidbudetsya z deyakoyu zatrimkoyu mizh 2030 i 2052 rokami Navit yaksho v majbutnomu vdastsya domogtisya negativnih vikidiv 1 5 C ne povinno buti perevisheno v zhodnomu razi shob uniknuti masovoyi vtrati ekosistem na Zemli Pislya togo yak 9 milyardiv lyudej zalishat misce dlya vikidiv pri virobnictvi produktiv harchuvannya i dlya pidtrimki globalnoyi temperaturi nizhche 2 C vikidi vid virobnictva energiyi i transportu povinni budut majzhe vidrazu zh dosyagti piku v rozvinenih krayinah i znizhuvatisya priblizno na 10 shoroku poki nulovi vikidi ne budut dosyagnuti priblizno v 2030 roci Dzherela vikidiv parnikovih gaziv Zavdyaki Kiotskomu protokolu vdalosya virishiti problemu skorochennya majzhe vsih antropogennih parnikovih gaziv ale cogo nedostatno Cimi gazami ye CO2 metan CH4 oksid azotu N2O i ftorovani gazi F Gazi gidroftorvugleci DFU fluorokarboni PFU i geksaftorid sirki SF6 Yih potencial globalnogo poteplinnya PGP zalezhit vid trivalosti yih zhittya v atmosferi Metan maye vidnosno korotkij atmosfernij chas zhittya blizko 12 rokiv ale maye velikij bezposerednij vpliv osoblivo cherez m yasoyidnist bilshoyi chastini lyudstva Dlya metanu znizhennya priblizno na 30 nizhche ninishnih rivniv vikidiv prizvelo b do stabilizaciyi jogo atmosfernoyi koncentraciyi v toj chas yak dlya N2O treba bulo b skorochennya vikidiv bilsh nizh na 50 Ocinki v znachnij miri zalezhat vid zdatnosti okeaniv i nazemnih poglinachiv poglinati PG Rizik vplivu zvorotnogo zv yazku pri globalnomu poteplinni prizvodit do visokoyi neviznachenosti u viznachenni znachen PGP Vuglekislij gaz CO2 Vikopne palivo nafta gaz i vugillya ye osnovnimi faktorami antropogennogo globalnogo poteplinnya z shorichnimi vikidami 34 6 gigatonn CO2 v 2018 roci Virobnictvo cementu ocinyuyetsya v 1 5 gigatonn CO2 Zmina zemlekoristuvannya ce disbalans mizh virubkoyu lisiv i lisovidnovlennyam Ocinki duzhe neviznacheni i znahodyatsya na rivni 3 8 gigatonn CO2 Lisovi pozhezhi viklikayut vikidi blizko 7 gigatonn CO2 pri vidobutku siroyi nafti velichezna kilkist poputnogo naftovogo gazu zazvichaj spalyuyetsya na fakelah yak vidpracovanij abo nepridatnij dlya vikoristannya gaz Metan SN4 Vikopne palivo 33 takozh stanovit bilshu chastinu vikidiv metanu vklyuchayuchi gazorozpodil vitoki i gazovidvid Na chastku velikoyi rogatoyi hudobi 21 pripadaye dvi tretini metanu sho vidilyayetsya hudoboyu za yakim sliduyut bujvoli vivci i kozi Lyudski vidhodi i stichni vodi 21 koli vidhodi biomasi na zvalishah i organichni rechovini v pobutovih i promislovih stichnih vodah rozkladayutsya bakteriyami v anaerobnih umovah utvoryuyetsya znachna kilkist metanu Viroshuvannya risu 10 na zatoplenih risovih polyah ye she odnim silskogospodarskim dzherelom de anaerobne rozkladannya organichnogo materialu prizvodit do utvorennya metanu Oksidi azotu N2O Bilshist vikidiv provoditsya silskim gospodarstvom osoblivo m yasnim virobnictvom velika rogata hudoba poslid na pasovishi dobriva gnij tvarin Ftorovmisni gazi Rozpodilni pristroyi v energetici virobnictvo napivprovidnikiv i virobnictvo alyuminiyu Skladannya prognoziv Prognozi majbutnih vikidiv parnikovih gaziv duzhe neviznacheni Za vidsutnosti politiki pom yakshennya naslidkiv zmini klimatu vikidi parnikovih gaziv mozhut znachno zrosti protyagom 21 stolittya Suchasni naukovi prognozi poperedzhayut pro pidvishennya temperaturi na 4 5 gradusa protyagom nastupnih desyatilit Metodi i zasobi Oskilki vitrati na skorochennya vikidiv parnikovih gaziv v elektroenergetichnomu sektori mabut nizhche nizh v inshih sektorah takih yak transportnij sektor elektroenergetichnij sektor mozhe zabezpechiti najbilsh proporcijne skorochennya vikidiv vuglecyu v ramkah ekonomichno efektivnoyi klimatichnoyi politiki Ekonomichni instrumenti mozhut buti korisni pri rozrobci politiki pom yakshennya naslidkiv zmini klimatu Skasuvannya subsidij na vikopne palivo duzhe vazhlive ale musit buti zrobleno oberezhno shob ne zrobiti bidnih lyudej she bidnishimi Inshi chasto obgovoryuvani koshti vklyuchayut efektivnist gromadskij transport sho vklyuchaye vikoristannya elektrichnih gibridiv zaryadku gibridiv i elektromobiliv nizkovuglecevoyi elektrikoyu vnesennya individualnih zmin i zmina dilovoyi praktiki Zamina benzinovih i dizelnih avtomobiliv elektrichnimi oznachaye sho yih vikidi budut znizheni i yak naslidok znizitisya chislo zahvoryuvan viklikanih zabrudnennyam navkolishnogo seredovisha She odne mirkuvannya stosuyetsya togo yak bude rozvivatisya majbutnye rozvitok Zamishennya vikopnogo palivaOskilki velika chastina vikidiv parnikovih gaziv pripadaye na vikopne palivo vkraj vazhlivo shvidko vidmovitisya vid nafti gazu i vugillya Stimul do vikoristannya 100 ponovlyuvanih dzherel energiyi buv stvorenij globalnim poteplinnyam ta inshimi ekologichnimi a takozh ekonomichnimi problemami Na dumku MGEZK isnuye kilka fundamentalnih tehnologichnih obmezhen dlya integraciyi portfelya tehnologij vikoristannya ponovlyuvanih dzherel energiyi dlya zadovolennya bilshoyi chastini zagalnogo globalnogo popitu na energiyu Svitovij popit na pervinnu energiyu v 2018 roci sklav 161320 TVt god Ce vidnositsya do elektriki transportu i opalennya vklyuchayuchi vsi vtrati Popit na pervinnu energiyu v nizkovuglecevij ekonomici vazhko viznachiti U transporti ta virobnictvi elektroenergiyi vikoristannya vikopnogo paliva maye nizku efektivnist menshe 50 Dviguni transportnih zasobiv vikonuyut bagato tepla yake vitrachayetsya daremno Elektrifikaciya vsih sektoriv i perehid na ponovlyuvani dzherela energiyi mozhut znachno zniziti popit na pervinnu energiyu Z inshogo boku vimogi do zberigannya problemi shilnosti energiyi batarej i povtorne peretvorennya v elektriku znizhuyut efektivnist ponovlyuvanih dzherel energiyi U 2018 roci biomasa i vidhodi buli pererahovani z chastkoyu 10 pervinnoyi energiyi gidroenergetika z 3 Viter sonyachna energiya ta inshi ponovlyuvani dzherela energiyi buli na rivni 2 Nizkovuglecevi dzherela energiyi Viter i Sonce mozhut buti dzherelami velikoyi kilkosti nizkovuglecevoyi energiyi pri konkurentospromozhnih virobnichih vitratah Cini na sonyachni fotoelektrichni moduli vpali priblizno na 80 v 2010 h rokah a cini na vitryani turbini na 30 40 Ale navit v poyednanni generaciya zminnoyi vidnovlyuvanoyi energiyi silno kolivayetsya Ce mozhna virishiti shlyahom rozshirennya merezh na velikih ploshah z dostatnoyu potuzhnistyu abo za dopomogoyu nakopichuvachiv energiyi Za danimi IRENA vprovadzhennya ponovlyuvanih dzherel energiyi maye buti priskoreno v shist raziv hocha i maye zalishatisya nizhche cilovogo pokaznika v 2 C Upravlinnya navantazhennyam promislovogo energospozhivannya mozhe dopomogti zbalansuvati virobnictvo vidnovlyuvanoyi energiyi ta yiyi popit Virobnictvo elektroenergiyi za dopomogoyu biogazu i gidroenergetiki mozhe sliduvati za popitom na energiyu Sonyachna energiya Sonyachna fotovoltayika stala najdeshevshim sposobom virobnictva elektroenergiyi v bagatoh regionah svitu pri comu virobnichi vitrati znizilisya do 0 015 0 02 dol KVt god v pustelnih regionah Zrostannya fotovoltayiki ye eksponencialnim i podvoyuyetsya kozhni tri roki z 1990 h rokiv Insha tehnologiya ce koncentrovana sonyachna energiya CSP z vikoristannyam dzerkal abo linz dlya koncentraciyi velikoyi ploshi sonyachnogo svitla na prijmachi Za dopomogoyu CSP energiya mozhe buti nakopichena protyagom dekilkoh godin Sonyachne vodyane opalennya vnosit vazhlivij i shoraz bilshij vnesok v bagato krayin osoblivo v Kitaj yakij v danij chas maye 70 vid zagalnosvitovogo obsyagu 180 GVt U vsomu sviti zagalni vstanovleni sonyachni sistemi vodyanogo opalennya zadovolnyayut chastina potreb u vodyanomu opalenni bilsh nizh 70 miljoniv domashnih gospodarstv Energiya vitru Regioni v bilsh visokih pivnichnih i pivdennih shirotah mayut najbilshij potencial dlya otrimannya energiyi vitru Vstanovlena potuzhnist dosyagla 650 GVt v 2019 roci Na chastku morskoyi vitroenergetiki v danij chas pripadaye blizko 10 novih ustanovok Ofshorni vitroelektrostanciyi koshtuyut dorozhche ale ci ustanovki dayut bilshe energiyi na vstanovlenu potuzhnist z menshimi kolivannyami Gidroenergetika Gidroenergetika graye providnu rol v takih krayinah yak Braziliya Norvegiya i Kitaj ale isnuyut geografichni obmezhennya i ekologichni problemi Prilivna energiya mozhe buti vikoristana v priberezhnih rajonah Bioenergetika Biogazovi ustanovki mozhut zabezpechiti dispetcherizovane virobnictvo elektroenergiyi i tepla koli ce neobhidno Zagalnoyu koncepciyeyu ye spilne brodinnya energetichnih kultur zmishanih z gnoyem v silskomu gospodarstvi Spalyuvannya biomasi roslinnogo pohodzhennya vidilyaye CO2 ale vono vse she bulo klasifikovano yak ponovlyuvane dzherelo energiyi v pravovih ramkah YeS i OON tomu sho fotosintez cikliruyuchih CO2 povernutisya do novih kultur Te yak viroblyayetsya transportuyetsya i pereroblyayetsya palivo znachno vplivaye na vikidi protyagom zhittyevogo ciklu Transportuvannya paliva na veliki vidstani i nadmirne vikoristannya azotnih dobriv mozhut zniziti ekonomiyu vikidiv vid odnogo i togo zh paliva v porivnyanni z prirodnim gazom na 15 50 Ponovlyuvani dzherela biopaliva pochinayut vikoristovuvatisya v aviaciyi Atomna energiya Golovnoyu perevagoyu yadernoyi energetiki ye mozhlivist dostavlyati veliki obsyagi bazovogo navantazhennya koli ponovlyuvani dzherela energiyi nedostupni Yiyi neodnorazovo klasifikuvali yak tehnologiyu pom yakshennya naslidkiv zmini klimatu Z inshogo boku yaderna energetika pov yazana z ekologichnimi rizikami yaki mozhut perevazhiti vigodi Krim yadernih avarij pohovannya radioaktivnih vidhodiv mozhe privesti do zbitku i vtrat protyagom bilsh nizh odnogo miljona rokiv Vidilenij plutonij mozhe buti vikoristanij dlya stvorennya yadernoyi zbroyi Gromadska dumka pro yadernu energetiku v riznih krayinah silno riznitsya Stanom na 2019 rik vartist prodovzhennya terminu sluzhbi atomnih elektrostancij konkurentospromozhna z inshimi tehnologiyami virobnictva elektroenergiyi vklyuchno z novimi sonyachnimi i vitrovimi proyektami Povidomlyayetsya sho novi proyekti silno zalezhat vid derzhavnih subsidij Vedutsya doslidzhennya yadernogo sintezu v formi Mizhnarodnogo eksperimentalnogo termoyadernogo reaktora ale navryad chi termoyadernij sintez otrimaye komercijne poshirennya do 2050 roku Vuglecevi nejtralni i negativni vidi paliva Vikopne palivo mozhe buti likvidovano z nulovim balansom vikidiv vuglecyu i vuglec negativnih virobnictvo i transportuvannya paliva stvoreni z siloyu gazu i Prirodnij gaz Prirodnij gaz yakij v osnovnomu ye metan rozglyadayetsya yak mostove palivo oskilki vin viroblyaye priblizno vdvichi menshe CO2 nizh vugil rozpalenij Gazovi elektrostanciyi mozhut zabezpechiti neobhidnu gnuchkist u virobnictvi elektroenergiyi v poyednanni z vitrovoyu ta sonyachnoyu energiyami Ale metan sam po sobi ye potuzhnim parnikovim gazom i v danij chas vin protikaye z vidobuvnih sverdlovin rezervuariv dlya zberigannya truboprovodiv i miskih rozpodilchih trub dlya prirodnogo gazu U nizkovuglecevogo scenariyu gazovi elektrostanciyi vse she mogli b prodovzhuvati pracyuvati yakbi metan provodivsya z vikoristannyam tehnologiyi peretvorennya energiyi v gaz z vikoristannyam vidnovlyuvanih dzherel energiyi Zberezhennya energiyi Energiya vitru i fotovoltayika mozhut postavlyati veliku kilkist elektrichnoyi energiyi ale ne v bud yakij chas i misce Odin z pidhodiv ce rozmova pro zapasayutsya formah energiyi Ce zazvichaj prizvodit do vtrati efektivnosti V hodi doslidzhennya provedenogo Imperskim koledzhem Londona buli rozrahovani najnizhchi rivni vartosti riznih sistem dlya serednostrokovogo i sezonnogo zberigannya U 2020 roci najbilsh ekonomichno efektivnimi v zalezhnosti vid ritmu zaryadki budut gidroakumulyuvalni elektrostanciyi PHES stisnene povitrya CAES i litij ionni akumulyatori Na 2040 rik prognozuyetsya bilsh znachna rol litiyu i vodnyu Litij ionni akumulyatori shiroko vikoristovuyutsya na akumulyatornih elektrostanciyah i z 2020 roku pochinayut vikoristovuvatisya v sistemah zberigannya vehicle to grid Voni zabezpechuyut dostatnyu efektivnist krugovogo hodu 75 90 Odnak yih virobnictvo mozhe viklikati ekologichni problemi Voden mozhe buti korisnij dlya sezonnogo nakopichennya energiyi Nizka efektivnist 30 povinna znachno pokrashitisya persh nizh nakopichennya vodnyu zmozhe zabezpechiti taku zh zagalnu energoefektivnist yak i batareyi Dlya elektrichnoyi merezhi nimecke doslidzhennya ocinilo visoki vitrati na povtornu konversiyu v rozmiri 0 176 yevro kVt god uklavshi sho zamina rozshirennya elektrichnoyi merezhi povnistyu sistemami povtornoyi konversiyi vodnyu ne maye sensu z ekonomichnoyi tochki zoru Koncepciya sonyachnogo vodnyu obgovoryuyetsya dlya viddalenih pustelnih proyektiv de merezhevi z yednannya z centrami popitu nedostupni Tomu sho vin maye bilshe energiyi na odinicyu ob yemu i inodi mozhe buti krashe vikoristovuvati voden v amiaku Nadmerezha Mizhnarodni liniyi elektroprovidnikiv dopomagayut minimizuvati vimogi do zberezhennya Velika merezha mozhe zgladiti kolivannya energiyi vitru Z globalnoyu merezheyu navit fotovoltayika mozhe buti dostupna protyagom dnya ta vnochi Ocinka vtrat u najpotuzhnishih visokovoltnih liniyah postijnogo strumu HVDC vsogo 1 6 na 1000 km HVDC zaraz vikoristovuyut lishe dlya z yednan tochka tochka Kitaj pobuduvav veliku kilkist z yednan HVDC vseredini krayini ta pidtrimuye ideyu globalnoyi mizhkontinentalnoyi merezhi yak sistemotvornoyi sistemi dlya nayavnih nacionalnih merezh zminnogo strumu Nadmerezha v SShA v poyednanni z vidnovlyuvanoyu energiyeyu mozhe skorotiti vikidi parnikovih gaziv na 80 Intelektualne upravlinnya merezhami i navantazhennyam Zamist togo shob rozshiryuvati merezhi i shovisha dlya zbilshennya potuzhnosti isnuye bezlich sposobiv vplinuti na rozmir i termini popitu na elektroenergiyu z boku spozhivachiv Identifikaciya ta zmishennya elektrichnih navantazhen mozhe zniziti vitrati na elektroenergiyu dlya vikoristannya perevag nizhchih shvidkostej poza pikiv i zgladzhuvannya pikiv popitu Tradicijno energetichna sistema rozglyadala spozhivchij popit yak fiksovanij i vikoristovuvala centralizovani varianti propoziciyi dlya upravlinnya zminnim popitom Teper doskonalishi sistemi obrobki danih i novi tehnologiyi zberigannya i generaciyi danih na miscyah mozhut poyednuvatisya z peredovim avtomatizovanim programnim zabezpechennyam dlya upravlinnya popitom shob aktivno upravlyati popitom i reaguvati na cini na energorinku Oblik chasu vikoristannya ye poshirenim sposobom motivaciyi spozhivachiv elektroenergiyi do znizhennya yih pikovogo spozhivannya navantazhennya Napriklad zapusk posudomijnih mashin i pralni v nichnij chas pislya togo yak pik projshov znizhuye vitrati na elektroenergiyu U dinamichnih planah popitu pristroyi pasivno vidklyuchayutsya koli napruga vidchuvayetsya v elektrichnij merezhi Cej metod mozhe duzhe dobre pracyuvati z termostatami koli potuzhnist na sitci prosidaye na neveliku kilkist avtomatichno vibirayetsya ustanovka temperaturi nizkoyi potuzhnosti sho znizhuye navantazhennya na sitku Napriklad miljoni holodilnikiv zmenshuyut svoye spozhivannya koli hmari prohodyat nad sonyachnimi ustanovkami Spozhivachi povinni mati rozumnij lichilnik dlya togo shob komunalni sluzhbi mogli rozrahovuvati krediti Pristroyi reaguvannya na zapiti mozhut otrimuvati vsi vidi povidomlen z merezhi Povidomlennya mozhe buti zapitom na vikoristannya rezhimu nizkoyi potuzhnosti analogichnogo dinamichnomu popitu na povne vidklyuchennya pri raptovomu zboyi v elektromerezhi abo povidomlennyam pro potochni ta ochikuvani cini na elektroenergiyu Ce dozvolyaye elektromobilyam zaryadzhatisya po najmensh dorogim tarifami nezalezhno vid chasu dobi inshi movi vikoristovuye avtomobilnu batareyu abo palivnij element dlya timchasovogo harchuvannya merezhi Dekarbonizaciya transportu ta promislovosti Za prognozami do 2050 roku vid chverti do troh chvertej avtomobiliv na dorogah budut elektrichnimi Voden mozhe buti rishennyam dlya dalekih perevezen na vantazhivkah i vodnevih sudah de batareyi sami po sobi duzhe vazhki Legkovi avtomobili sho vikoristovuyut voden vzhe viroblyayutsya v nevelikih kilkostyah Buduchi bilsh dorogimi nizh avtomobili na batarejkah voni mozhut zapravlyatisya nabagato shvidshe proponuyuchi bilsh visoku dalnist polotu do 700 km Osnovnim nedolikom vodnyu ye nizkij KKD vsogo 30 Pri vikoristanni dlya transportnih zasobiv potribno bilsh nizh v dva razi bilshe energiyi v porivnyanni z elektromobilem na batarejkah Hocha aviacijne biopalivo vikoristovuyetsya v deyakij miri za stanom na 2019 rik dekarbonizaciya aviaciyi do 2050 roku yak stverdzhuyetsya bude dijsno vazhkoyu U veresni 2023 roku Iniciativa en oprilyudnila pershe u sviti naukovo obgruntovane kerivnictvo iz dekarbonizaciyi dlya metalurgiv Dekarbonizaciya nagrivu Na chastku budivelnogo sektora pripadaye 23 svitovih energetichnih vikidiv CO2 blizko polovini energiyi vikoristovuyetsya dlya obigrivu primishen ta vodi Poyednannya elektrichnih teplovih nasosiv ta insolyaciyi budinkiv mozhe znachno zniziti potrebu v pervinnij energiyi Yak pravilo elektrifikaciya opalennya prizvede do skorochennya vikidiv parnikovih gaziv lishe v tomu vipadku yaksho elektroenergiya nadhoditime z nizkovuglecevih dzherel Elektrostanciya na vikopnomu palivi mozhe postachati tilki 3 odinici elektrichnoyi energiyi na kozhni 10 odinic vivilnyayetsya palivnoyi energiyi Elektrifikaciya teplovih navantazhen mozhe takozh zabezpechiti gnuchkij resurs yakij mozhe brati uchast v dlya integraciyi zminnih ponovlyuvanih resursiv v merezhu Teplovij nasos Suchasnij teplovij nasos zazvichaj viroblyaye priblizno v tri razi bilshe teplovoyi energiyi nizh spozhivana elektrichna energiya sho daye efektivnij KKD 300 v zalezhnosti vid koeficiyenta korisnoyi diyi Vin vikoristovuye kompresor z elektrichnim privodom dlya roboti holodilnogo ciklu yakij vityaguye teplovu energiyu iz zovnishnogo povitrya i peremishuye yiyi v prostir dlya obigrivu U litni misyaci cikl kondicionuvannya povitrya mozhe buti zminenij na zvorotnij U rajonah z serednimi zimovimi temperaturami znachno nizhche nulya nazemni teplovi nasosi bilsh efektivni nizh povitryani teplovi nasosi Visoka zakupivelna cina teplovogo nasosa v porivnyanni z nagrivachami oporu mozhe buti kompensovana koli takozh potribno kondicionuvannya povitrya Mayuchi chastku rinku v 30 i chistu elektroenergiyu teplovi nasosi mozhut zniziti globalnij riven CO2 vikidi na 8 shorichno Vikoristannya nazemnih teplovih nasosiv mozhe zniziti blizko 60 potrebi v pervinnoyi energiyi Vikoristannya nadlishkovoyi vidnovlyuvanoyi energiyi v teplovih nasosah vvazhayetsya najbilsh efektivnim pobutovim zasobom znizhennya globalnogo poteplinnya i visnazhennya zapasiv vikopnogo paliva Nagrivannya elektrichnim oporom Promenisti obigrivachi v domashnih gospodarstvah deshevi i shiroko poshireni ale mensh efektivni nizh teplovi nasosi U takih rajonah yak Norvegiya Braziliya i Kvebek de ye velika kilkist gidroelektroenergiyi elektrichne teplo i garyacha voda poshireni povsyudno Velikomasshtabni rezervuari dlya garyachoyi vodi mozhut vikoristovuvatisya dlya upravlinnya popitom i zberigannya zminnoyi vidnovlyuvanoyi energiyi protyagom dekilkoh godin abo dniv EnergozberezhennyaSkorochennya energospozhivannya rozglyadayetsya yak klyuchove rishennya problemi skorochennya vikidiv parnikovih gaziv Za danimi Mizhnarodnogo energetichnogo agentstva pidvishennya promislovih procesiv i transportu mozhe skorotiti svitovi potrebi v energiyi v 2050 roci na tretinu i dopomogti kontrolyuvati globalni vikidi parnikovih gaziv Energetichna efektivnist Efektivnist ohoplyuye shirokij spektr zasobiv vid izolyaciyi budivel do gromadskogo transportu Kogeneraciya elektrichnoyi energiyi ta centralizovanogo teplopostachannya takozh pidvishuye efektivnist Sposib zhittya ta povedinka U p yatij ocinyuvalnij dopovidi MGEZK nagoloshuyut sho povedinka sposib zhittya i kulturni zmini mayut visokij potencial pom yakshennya naslidkiv v deyakih sektorah osoblivo v dodatok do tehnologichnih i strukturnih zmin Napriklad ce menshe opalennya kimnati abo menshe vodinnya avtomobilya V cilomu vishij riven spozhivannya nadaye bilshij vpliv na navkolishnye seredovishe Bulo takozh pokazano sho dzherela vikidiv rozpodileni vkraj nerivnomirno 45 vikidiv pripadaye na sposib zhittya vsogo lishe 10 svitovogo naselennya Kilka naukovih doslidzhen pokazali sho koli vidnosno bagati lyudi hochut zmenshiti svij vuglecevij slid voni mozhut zrobiti kilka klyuchovih dij takih yak zhittya bez avtomobiliv 2 4 tonni CO2 uniknennya odnogo transatlantichnogo rejsu tudi i nazad 1 6 tonni i harchuvannya 0 8 tonni Voni mabut znachno vidriznyayutsya vid populyarnih porad z ozelenennyu svogo sposobu zhittya yaki mabut vidnosyatsya v osnovnomu do kategoriyi maloefektivnih zamina zvichajnogo avtomobilya gibridom 0 52 tonni prannya odyagu v holodnij vodi 0 25 tonni pererobka vidhodiv 0 21 tonni modernizaciya lampochok 0 10 tonni it d Doslidniki viyavili sho publichnij diskurs pro skorochennya vuglecevogo slidu v perevazhnij bilshosti vipadkiv fokusuyetsya na povedinci z nizkim rivnem vplivu i sho zgadka pro povedinku z visokim rivnem vplivu majzhe vidsutnya v osnovnih zasobah masovoyi informaciyi uryadovih publikaciyah shkilnih pidruchnikah tosho Vcheni takozh stverdzhuyut sho chastkovi zmini v povedinci taki yak povtorne vikoristannya plastikovih paketiv ne ye proporcijnoyu reakciyeyu na zminu klimatu Hocha ci debati i buli b korisnimi voni vidvernuli b uvagu gromadskosti vid neobhidnosti bezprecedentnoyi masshtabnoyi zmini energetichnoyi sistemi dlya shvidkogo vidalennya vuglecyu Diyetichni zmini lyudstva V cilomu na prodovolstvo pripadaye najbilsha chastka vikidiv parnikovih gaziv zasnovanih na spozhivanni i majzhe 20 globalnogo vuglecevogo slidu za yakim sliduyut zhitlo mobilnist poslugi promislovi tovari i budivnictvo Prodovolstvo i poslugi znachnishi v bidnih krayinah v toj chas yak mobilnist i promislovi tovari znachnishi v bagatih krayinah Shiroke vprovadzhennya vegetarianskoyi diyeti mozhe skorotiti pov yazani z harchovimi produktami vikidi parnikovih gaziv na 63 do 2050 roku Kitaj vviv novi diyetichni rekomendaciyi v 2016 roci yaki spryamovani na skorochennya spozhivannya m yasa na 50 i tim samim skorochennya vikidiv parnikovih gaziv na 1 milyard tonn do 2030 roku Doslidzhennya 2016 roku pokazalo sho podatki na m yaso i moloko mozhut odnochasno privesti do skorochennya vikidiv parnikovih gaziv i bilsh zdorovogo harchuvannyu Doslidzhennya proanalizuvalo nadbavki v rozmiri 40 na yalovichinu i 20 na moloko i pokazalo sho optimalnij plan dozvolit skorotiti vikidi na 1 milyard tonn na rik Pererozpodil perevezen za vidami transportu Velikovagovi veliki osobisti transportni zasobi napriklad avtomobili vimagayut bagato energiyi dlya peremishennya i zajmayut bagato miskogo prostoru Dlya yih zamini ye kilka alternativnih vidiv transportu Yevropejskij Soyuz zrobiv rozumnu mobilnist chastinoyu svoyeyi yevropejskoyi zelenoyi ugodi i v rozumnih mistah rozumna mobilnist takozh vazhliva Poglinannya i vidalennya vuglecyuMozhlivist negativnoyi emisiyi tobto viluchennya vuglekislogo gazu CO2 z atmosferi ye stanom na 2023 rik mozhlivoyu ta poki sho nedostatno efektivnoyu dlya povnogo i shvidkogo virishennya problemi ale neobhidnoyu vzhe sogodni dlya zmenshennya globalnogo poteplinnya pokrashennya emisijnogo byudzhetu CO2 i spriyannya stalomu rozvitku Napriklad negativnoyi emisiyi mozhlivo dosyagti zavdyaki bioenergetici z ulovlyuvannyam ta zberigannyam vuglecyu BECCS tehnologiyi DAC zalisnennyu lisovidnovlennyu tehnologiyi Vuglecevij stik ce prirodnij abo shtuchnij rezervuar yakij nakopichuye i zberigaye deyaki vuglecevmisni himichni spoluki protyagom neviznachenogo periodu chasu napriklad viroshenij lis Vidalennya vuglekislogo gazu z inshogo boku ce postijne vidalennya vuglekislogo gazu z atmosferi Prikladami ye pryame zahoplennya povitrya vdoskonaleni tehnologiyi vivitryuvannya taki yak zberigannya jogo v geologichnih formaciyah pid zemleyu Ci procesi inodi rozglyadayutsya yak variaciyi poglinannya abo pom yakshennya naslidkiv a inodi yak geoinzheneriya U poyednanni z inshimi zahodami shodo pom yakshennya naslidkiv poglinannya i vidalennya vuglecyu mayut virishalne znachennya dlya dosyagnennya cilovogo pokaznika v 2 gradusi Antarktichnij Centr spilnih doslidzhen klimatu ta ekosistem ACE CRC zaznachaye sho odna tretina shorichnih vikidiv CO2 lyudstvom poglinayetsya okeanami Odnak ce takozh prizvodit do sho mozhe zavdati shkodi morskij flori i fauni Pidkislennya znizhuye riven karbonatnih ioniv dostupnih dlya kalcifikaciyi organizmiv z utvorennyam yih obolonok Ci organizmi vklyuchayut v sebe vidi planktonu yaki vnosyat svij vnesok v osnovu harchovoyi merezhi Pivdennogo okeanu Odnak pidkislennya mozhe vplivati na shirokij spektr inshih fiziologichnih i ekologichnih procesiv takih yak dihannya rib rozvitok lichinok j zmina rozchinnosti yak pozhivnih rechovin tak i toksiniv Lisovidnovlennya zapobigannya znishennya lisu Majzhe 20 8 gigatonn CO2 rik vid zagalnogo obsyagu vikidiv parnikovih gaziv buli pov yazani zi zniknennyam lisiv u 2007 roci Pidrahovano sho vidvernene zniknennya lisiv skorochuye vikidi CO2 v rozmiri 1 tonni CO2 na 1 5 dol SShA u viglyadi alternativnih vitrat vid vtrachenogo silskogo gospodarstva Lisovidnovlennya yake predstavlyaye soboyu popovnennya zapasiv visnazhenih lisiv mozhe zaoshaditi she shonajmenshe 1 gigatonn CO2 v rik za peredbachenih vitratah v rozmiri 5 15 dolariv Zgidno z doslidzhennyami provedenimi v ETH Zurich vidnovlennya vsih degradovanih lisiv u vsomu sviti mozhe zahopiti v cilomu blizko 205 milyardiv tonn vuglecyu sho stanovit blizko 2 3 vsih vikidiv vuglecyu v rezultati chogo globalne poteplinnya opustitsya nizhche 2 C Lisorozvedennya vidbuvayetsya tam de ranishe ne bulo lisu Zgidno z doslidzhennyami Toma Kroutera i in Tam vse she dostatno miscya shob posaditi dodatkovi 1 2 triljona derev Taka kilkist derev moglo b zvesti nanivec ostanni 10 rokiv vikidiv CO2 i sekvestruvati 160 milyardiv tonn vuglecyu Ce bachennya realizuyetsya v ramkah Inshi doslidzhennya pokazali sho velikomasshtabne zalisennya mozhe prinesti bilshe shkodi nizh koristi abo taki plantaciyi za ocinkami povinni buti nadmirno masivnimi dlya skorochennya vikidiv Peredacha prav na Zemlyu zi suspilnogo nadbannya yiyi korinnim zhitelyam yaki protyagom tisyacholit buli zacikavleni v zberezhenni lisiv vid yakih voni zalezhat vvazhayetsya ekonomichno efektivnoyu strategiyeyu zberezhennya lisiv Ce vklyuchaye v sebe zahist takih prav zakriplenih v nayavnih zakonah takih yak zakon Indiyi Pro prava na lis Peredacha takih prav v Kitayi mozhlivo najbilsha zemelna reforma v nash chas yak stverdzhuyetsya privela do zbilshennya lisovogo pokrivu Nadannya prava vlasnosti na zemlyu pokazalo sho vona maye v dva abo tri razi menshe rozchishennya nizh navit derzhavni parki osoblivo v brazilskij Amazonci Metodi zberezhennya yaki viklyuchayut lyudej i navit viselyayut meshkanciv z ohoronnih teritorij zvani zberezhennyam forteci chasto prizvodyat do bilshoyi ekspluataciyi zemli oskilki korinni zhiteli potim zvertayutsya do roboti dlya vidobuvnih kompanij shob vizhiti Z rostom intensivnogo silskogo gospodarstva i urbanizaciyi zbilshuyetsya kilkist pokinutih silskogospodarskih ugid Za deyakimi ocinkami na kozhen akr virubanogo pervinnogo bagatolitnogo lisu pripadaye ponad 50 akriv novih hocha voni i ne volodiyut tim zhe biologichnim rozmayittyam sho i pervinni lisi a pervinni lisi zberigayut na 60 bilshe vuglecyu nizh ci novi vtorinni lisi Zgidno z doslidzhennyam v Science stimulyuvannya zrostannya na zanedbanih silskogospodarskih zemlyah mozhe kompensuvati bagatorichni vikidi vuglekislogo gazu Doslidzhennya Cyurihskogo universitetu ETH pokazuyut sho Rosiya Spolucheni Shtati i Kanada Ukrayina mayut najbilsh pridatni dlya lisovidnovlennya zemli Uniknuti opustelyuvannya Vidnovlennya lugiv nakopichuye CO2 z povitrya v roslinnomu materiali Hudoba sho pasetsya zazvichaj ne pokinuta broditi poyidaye travu i zmenshuye bud yake zrostannya travi Odnak trava zalishena v spokoyi v reshti resht viroste shob pokriti svoyi vlasni zrostalni nirki pereshkodzhayuchi yih fotosintezu i roslina sho vmirala zalishitsya na misci Metod zaproponovanij dlya vidnovlennya pasovish vikoristovuye ogorozhi z bagatma nevelikimi zagonami i peremishennya stad z odnogo zagonu v inshij cherez den abo dva shob imituvati prirodni pasovisha i dozvoliti travi rosti optimalno Krim togo koli chastina listovoyi rechovini spozhivayetsya tvarinam v stadi vidpovidna kilkist korenevoyi materiyi takozh vidsharovuyetsya oskilki vona ne zmozhe pidtrimuvati kolishnyu kilkist korenevoyi materiyi i v toj chas yak bilsha chastina vtrachenoyi korenevoyi materiyi zgniye i potrapit v atmosferu chastina vuglecyu bude poglinena v grunt Pidrahovano sho zbilshennya vmistu vuglecyu v gruntah na 3 5 milyarda gektariv silskogospodarskih pasovish v sviti na 1 kompensuvalo b majzhe 12 richni vikidi CO2 Allan Sejvori yak chastina cilisnogo upravlinnya stverdzhuye sho v toj chas yak veliki stada chasto zvinuvachuyut v opustelyuvannya doistorichni zemli pidtrimuvali veliki abo bilshi stada i rajoni de stada buli vidaleni v Spoluchenih Shtatah vse she opustelyuyut Krim togo globalne poteplinnya viklikane tanennyam vichnoyi merzloti yaka zberigaye priblizno v dva razi bilshe vuglecyu yakij vidilyayetsya v danij chas v atmosferu vivilnyaye potuzhnij parnikovij gaz metan v cikli pozitivnogo zvorotnogo zv yazku yakij yak poboyuyutsya prizvede do perelomnogo momentu zvanogo U toj chas yak vichna merzlota stanovit blizko 14 gradusiv za Farengejtom snizhna kovdra izolyuye yiyi vid holodnishogo povitrya vishe yakogo mozhe buti 40 gradusiv nizhche nulya za Farengejtom Metod zaproponovanij dlya zapobigannya takogo scenariyu polyagaye v tomu shob povernuti velikih travoyidnih tvarin takih yak pomicheni v de voni zberigayut zemlyu bilsh proholodnoyu zmenshuyut visotu snigovogo pokrivu priblizno napolovinu i usuvayut chagarniki i takim chinom zberigayut zemlyu vidkritishoyu dlya holodnogo povitrya Zahist zdorovih gruntiv i vidnovlennya poshkodzhenih gruntiv mogli b shorichno vidalyati z atmosferi 5 5 milyarda tonn vuglekislogo gazu sho priblizno dorivnyuye shorichnim vikidam SShA Ulovlennya ta zberigannya vuglecyu Ulovlennya ta zberigannya vuglecyu CCS ce metod pom yakshennya naslidkiv zmini klimatu shlyahom ulovlennya vuglekislogo gazu CO2 z velikih tochkovih dzherel takih yak elektrostanciyi i podalshogo bezpechnogo zberigannya jogo zamist vikidu v atmosferu Za ocinkami MGEZK vitrati na pripinennya globalnogo poteplinnya podvoyilisya b bez CCS Mizhnarodne energetichne agentstvo zayavlyaye sho CCS ye najvazhlivishoyu yedinoyi novoyu tehnologiyeyu dlya ekonomiyi CO2 u virobnictvi elektroenergiyi ta promislovosti Norvezke gazove rodovishe sho pochalosya v 1996 roci zberigaye majzhe miljon tonn CO2 v rik shob uniknuti shtrafiv pid chas vidobutku prirodnogo gazu z nadzvichajno visokim rivnem CO2 Zgidno z analizom Sierra Club proyekt US Kemper yakij povinni buli zapustiti v 2017 roci ce najdorozhcha elektrostanciya koli nebud pobudovana dlya vat elektroenergiyi yaku vona bude generuvati Pidvishena stijkist do atmosfernih vpliviv Posilene vivitryuvannya ce vidalennya vuglecyu z povitrya v zemlyu posilennya koli vuglec mineralizuetsya v porodu Proyekt CarbFix poyednuyetsya zi zahoplennyam ta zberigannyam vuglecyu na elektrostanciyah shob peretvoriti vuglekislij gaz v kamin za vidnosno korotkij period v dva roki Hocha v comu proyekti vikoristovuvalisya bazaltovi porodi olivin takozh pokazav sebe perspektivnim GeoinzheneriyaMGEZK 2007 prijshla do visnovku sho varianti geoinzheneriyi taki yak udobrennya okeanu dlya vidalennya CO 2 z atmosferi zalishayutsya v znachnij miri nedovedenimi Bulo viznano sho nadijni ocinki vitrat na geoinzheneriyu she ne opublikovani Glava 28 dopovidi Nacionalnoyi Akademiyi Nauk SShA NAS Pro politichni naslidki parnikovogo poteplinnya Pom yakshennya naslidkiv adaptaciya ta naukova baza 1992 viznachila geoinzheneriyu yak varianti yaki vklyuchali b velikomasshtabne proyektuvannya nashogo navkolishnogo seredovisha z metoyu borotbi abo protidiyi naslidkam zmin v himiyi atmosferi Voni ocinili ryad variantiv shob sprobuvati dati poperedni vidpovidi na dva pitannya Chi mozhut ci varianti pracyuvati i chi mozhut voni buti vikonani z rozumnoyu vartistyu Voni takozh pragnuli stimulyuvati obgovorennya tretogo pitannya yaki mozhut buti nespriyatlivi pobichni efekti Buli ocineni zbilshennya poglinannya okeanom vuglekislogo gazu zv yazuvannya vuglecyu i ekranuvannya deyakoyi kilkosti sonyachnogo svitla NAS takozh stverdzhuvav sho inzhenerni kontrzahodi povinni buti ocineni ale ne povinni buti realizovani bez shirokogo rozuminnya pryamih naslidkiv i potencijnih pobichnih efektiv etichnih problem i rizikiv U lipni 2011 roku zvit po geoinzheneriyi pokazalo sho v danij chas tehnologiyi climate engineering ne proponuye zhittyezdatnoyi vidpovidi na globalnu zminu klimatu Vidalennya vuglekislogo gazu Vidalennya vuglekislogo gazu bulo zaproponovano yak metod zmenshennya kilkosti radiacijnogo vplivu V danij chas vivchayutsya rizni sposobi shtuchnogo ulovlyuvannya ta zberigannya vuglecyu a takozh posilennya prirodnih procesiv zv yazuvannya Osnovnim prirodnim procesom ye fotosintez roslin i odnoklitinnih organizmiv Shtuchni procesi rozriznyayutsya i buli vislovleni poboyuvannya z privodu dovgostrokovih naslidkiv deyakih z cih procesiv Primitno sho nayavnist deshevoyi energiyi i vidpovidnih dilyanok dlya geologichnogo zberigannya vuglecyu mozhe zrobiti ulovlyuvannya vuglekislogo gazu v povitri komercijno zhittyezdatnim Odnak yak pravilo ochikuyetsya sho ulovlyuvannya vuglekislogo gazu v povitri mozhe buti neekonomichnim v porivnyanni zi shoplennyam z osnovnih dzherel zokrema elektrostancij sho pracyuyut na vikopnomu palivi naftopererobnih zavodiv tosho Yak i u vipadku z amerikanskim proyektom Kempera zi shoplennyam vuglecyu vitrati na viroblenu energiyu znachno virostut CO2 takozh mozhe buti vikoristanij v komercijnih teplicyah sho daye mozhlivist zapustiti tehnologiyu 8 travnya 2024 roku v Islandiyi zapracyuvav najbilshij u sviti zavod Mammoth priznachenij dlya viluchennya vuglekislogo gazu z atmosferi Zemli Ce vzhe drugij komercijnij zavod vidkritij shvejcarskoyu kompaniyeyu Climeworks AG sho u desyat raziv bilshij za svogo poperednika Orca yakij buv zapushenij u 2021 roci Zavod skladayetsya z 72 kolektornih kontejneriv yaki vlovlyuyut vuglekislij gaz z povitrya Zgidno z danimi Climeworks AG Mammoth zmozhe vityaguvati z atmosferi 36000 t vuglekislogo gazu na rik Upravlinnya sonyachnoyu radiaciyeyu Osnovna meta upravlinnya sonyachnoyu radiaciyeyu vidbivati sonyachne svitlo i tim samim zmenshuvati globalne poteplinnya Zdatnist stratosfernih sulfatnih aerozoliv stvoryuvati globalnij efekt zatemnennya zrobila yih mozhlivim kandidatom na vikoristannya v proyektah klimatichnoyi inzheneriyi Rozpodil za sektoramiSilske gospodarstvo U silskogospodarskoyi diyalnosti sho pom yakshuye naslidok zmini klimatu zazvichaj nazivayut viznachayetsya yak gospodarstvo yake zadovolnyaye prodovolchi i tekstilni potrebi suspilstva v danij chas bez shkodi dlya zdatnosti majbutnih pokolin zadovolnyati svoyi vlasni potrebi Odnim z vidiv silskogo gospodarstva yakij vvazhayetsya vidnosno stijkim ye regenerativne silske gospodarstvo Vono vklyuchaye v sebe kilka metodiv osnovnimi z yakih ye zberezhennya obrobki gruntu riznomanitnist sivozmin i pokrivnih kultur minimizaciya fizichnih zburen minimizaciya vikoristannya himichnih rechovin Vono maye i inshi perevagi taki yak polipshennya stanu gruntu i otzhe vrozhajnosti Deyaki veliki silskogospodarski kompaniyi taki yak General Mills i chiselni fermi pidtrimuyut jogo U Spoluchenih Shtatah na grunti pripadaye blizko polovini silskogospodarskih vikidiv parnikovih gaziv v toj chas yak silske gospodarstvo lisove gospodarstvo ta inshi vidi zemlekoristuvannya vidilyayut 24 U vsomu sviti tvarinnictvo vidpovidaye za 18 vikidiv parnikovih gaziv zgidno z dopoviddyu Prodovolchoyi i silskogospodarskoyi organizaciyi OON pid nazvoyu Dovga tin tvarinnictva ekologichni problemi i varianti AOOS SShA stverdzhuye sho metodi upravlinnya gruntom yaki mozhut zmenshiti vikidi oksidu azotu N2O z gruntiv vklyuchayut vikoristannya dobriv zroshennya i Obrobka gnoyu i viroshuvannya risu takozh viroblyayut gazopodibni vikidi Vazhlivi varianti pom yakshennya naslidkiv dlya skorochennya vikidiv parnikovih gaziv vid domashnoyi hudobi osoblivo zhujnih tvarin vklyuchayut genetichnij vidbir vvedennya metanotrofnih bakterij v rubec modifikaciyu racionu i upravlinnya vipasom hudobi Inshi varianti vklyuchayut v sebe prosto vikoristannya alternativ bez zhujnih tvarin takih yak zaminniki moloka i analogi m yasa Nezhujna hudoba napriklad ptah viroblyaye nabagato menshe vikidiv Metodi yaki posilyuyut zv yazuvannya vuglecyu v grunti vklyuchayut bezvidvalne zemlerobstvo mulchuvannya zalishkiv pokrivnu obrizku i sivozmina yaki vse bilsh shiroko vikoristovuyutsya v nizh v zvichajnomu zemlerobstvi Oskilki tilki 5 silskogospodarskih ugid SShA v danij chas vikoristovuyut mulchuvannya bez obrobki gruntu i zalishkiv isnuye velikij potencial dlya zv yazuvannya vuglecyu Doslidzhennya 2015 roku pokazalo sho silske gospodarstvo mozhe visnazhiti vuglec gruntu i zrobiti grunt nezdatnij pidtrimuvati zhittya prote doslidzhennya takozh pokazalo sho zberezhennya silskogo gospodarstva mozhe zahistiti vuglec v grunti i vidnoviti zbitok z plinom chasu Praktika zemlerobstva pokrivnih kultur bula viznana klimatichno rozumnim silskim gospodarstvom Najkrashi metodi upravlinnya dlya yevropejskih gruntiv buli opisani yak zbilshennya organichnogo vuglecyu gruntu peretvorennya ornih zemel v pasovisha vnesennya solomi zmenshena obrobka gruntu vnesennya solomi v poyednanni zi zmenshenoyu obrobitkom gruntu sistema smugovogo zemlerobstva i pokrivni kulturi Sho stosuyetsya profilaktiki to v Avstraliyi rozroblyayutsya vakcini dlya zmenshennya znachnogo vnesku v globalne poteplinnya metanu sho vidilyayetsya hudoboyu v rezultati meteorizmu i vidrizhki Proyekt shodo pom yakshennya naslidkiv zmini klimatu za dopomogoyu silskogo gospodarstva buv zapushenij v 2019 roci Globalnim Alyansom vichnozelenih roslin Meta polyagaye v tomu shob izolyuvati vuglec z atmosferi za dopomogoyu Do 2050 roku vidnovlena zemlya povinna sekvestruvati 20 milyardiv vuglecyu shorichno Transport Transportni vikidi skladayut priblizno 1 4 vikidiv u vsomu sviti i she bilsh vazhlivi z tochki zoru vplivu v rozvinenih krayinah Bagato gromadyan rozvinenih krayin yaki chasto yizdyat na osobistih avtomobilyah bachat sho bilshe polovini yih vplivu na zminu klimatu pov yazane z vikidami viroblenimi yih avtomobilyami Taki vidi masovogo transportu yak avtobus legkorejkovij transport metro it d I mizhmiskij zaliznichnij transport ye daleko ne samimi energoefektivnimi zasobami motorizovanogo transportu dlya pasazhiriv zdatnimi vikoristovuvati v bagatoh vipadkah bilsh nizh v dvadcyat raziv menshe energiyi na lyudinu vidstan nizh osobistij avtomobil Suchasni energoefektivni tehnologiyi taki yak elektromobili vuglecevo nejtralnij sintetichnij benzin i reaktivne palivo takozh mozhut dopomogti zniziti spozhivannya nafti zmini v zemlekoristuvanni ta vikidi vuglekislogo gazu Vikoristannya zaliznichnogo transportu osoblivo elektrorelsovogo v porivnyanni z nabagato mensh efektivnim povitryanim transportom i avtomobilnim transportom znachno znizhuye vikidi shkidlivih rechovin Z vikoristannyam elektropoyizdiv i avtomobiliv v transporti z yavlyayetsya mozhlivist zapuskati yih z nizkovuglecevoyi potuzhnisti viroblyayuchi nabagato menshe vikidiv Mistobudivnictvo Efektivne miske planuvannya dlya eksurbanizaciyi napravleno na skorochennya projdenih transportnih mil znizhennya vikidiv vid transportu Osobisti avtomobili vkraj neefektivni pri peremishenni pasazhiriv v toj chas yak gromadskij transport i velosipedi v bagato raziv efektivnishe yak i najprostishij vid lyudskogo transportu hodba Vse ce zaohochuyetsya miskim obshinnim planuvannyam i ye efektivnim sposobom skorochennya vikidiv parnikovih gaziv Neefektivna praktika rozvitku zemlekoristuvannya privela do zbilshennya vitrat na infrastrukturu a takozh kilkosti energiyi neobhidnoyi dlya transportu komunalnih poslug ta budivel U toj zhe chas vse bilshe chislo gromadyan i uryadovciv stali vistupati za bilsh racionalnij pidhid do planuvannya zemlekoristuvannya Ci vklyuchayut kompaktnij rozvitok gromad mnozhinnij vibir transportu zmishane zemlekoristuvannya ta praktiku zberezhennya zelenih nasadzhen Ci programi zabezpechuyut ekologichni ekonomichni i yakisni perevagi zhittya a takozh spriyayut skorochennyu spozhivannya energiyi ta vikidiv parnikovih gaziv Taki pidhodi yak novij urbanizm i spryamovani na skorochennya vidstanej yakij mozhe zdolati osoblivo privatnimi transportnimi zasobami stimulyuvannya gromadskogo transportu i pidvishennya privablivosti pishohidnih ta velosipednih marshrutiv Ce dosyagayetsya za rahunok serednoyi shilnosti zmishanogo planuvannya j koncentraciyi zhitla v krokovoyi dostupnosti vid miskih centriv i transportnih vuzliv Bilsh rozumna politika zemlekoristuvannya zrostannya nadaye yak pryamij tak i nepryamij vpliv na povedinku spozhivachiv energiyi Napriklad vikoristannya energiyi transportu sho ye golovnim spozhivachem naftovogo paliva mozhe buti znachno skorocheno za rahunok bilsh kompaktnih i zmishanih modelej osvoyennya zemel sho v svoyu chergu mozhe buti zabezpecheno velikoyu riznomanitnistyu neavtomobilnih vidiv transportu Proyektuvannya budivel Vikidi vid zhitlovogo budivnictva ye suttyevimi i pidtrimuvani uryadom programi pidvishennya energoefektivnosti mozhut mati velike znachennya Novi budivli mozhut buti pobudovani z vikoristannyam pasivnih sonyachnih konstrukcij budivel abo tehnologij budivnictva z nulovoyu energiyeyu z vikoristannyam vidnovlyuvanih dzherel tepla Nayavni budivli mozhna zrobiti efektivnishimi za rahunok vikoristannya teploizolyaciyi visokoefektivnih priladiv zokrema vodonagrivachiv i pechej gazonapovnenih vikon z podvijnim abo potrijnim sklinnyam zovnishnih vikonnih shtor a takozh oriyentaciyi i rozmishennya budivel Ponovlyuvani dzherela tepla taki yak negliboka geotermalna i pasivna sonyachna energiya zmenshuyut kilkist vidilenih parnikovih gaziv Na dodatok do proyektuvannya budivel yaki bilsh energoefektivni dlya obigrivu mozhna proyektuvati budivli yaki bilsh energoefektivni dlya oholodzhennya vikoristovuyuchi svitlishi bilsh vidobrazhayut materiali pri rozvitku miskih rajoniv napriklad farbuyuchi dahi v bilij kolir i sadzhayuchi dereva Ce ekonomit energiyu oskilki oholodzhuye budivli i zmenshuye efekt miskogo tim samim zmenshuyuchi vikoristannya kondicioneriv Suspilnij kontrol Inshij rozglyanutij metod polyagaye v tomu shob zrobiti vuglec novoyu valyutoyu shlyahom vvedennya torgovih osobistih vuglecevih kreditiv Ideya polyagaye v tomu sho ce bude stimulyuvati i motivuvati lyudej skorochuvati svij vuglecevij slid tim yak voni zhivut Kozhen gromadyanin otrimaye bezkoshtovnu shorichnu kvotu vuglecyu yaku vin zmozhe vikoristovuvati dlya podorozhej pokupki produktiv harchuvannya i vedennya svoyih sprav Bulo vislovleno pripushennya sho za dopomogoyu ciyeyi koncepciyi mozhna bulo b faktichno virishiti dvi problemi zabrudnennya navkolishnogo seredovisha i bidnist pensioneri po starosti naspravdi budut zhiti krashe tomu sho voni litayut ridshe tomu voni mozhut perevesti v gotivku svoyu kvotu v kinci roku shob oplatiti rahunki za opalennya i tak dali Naselennya Rizni organizaciyi prosuvayut planuvannya narodonaselennya lyudini yak zasib pom yakshennya naslidkiv globalnogo poteplinnya Proponovani zahodi vklyuchayut polipshennya dostupu do poslug u sferi planuvannya sim yi ta reproduktivnogo zdorov ya ta informaciyi skorochennya natalistichnoyi politiki prosvitnictvo gromadskosti pro naslidki potochnogo trivalogo zrostannya naselennya i polipshennya dostupu zhinok do osviti i ekonomichnih mozhlivostej Zgidno z doslidzhennyam 2017 roku opublikovanomu v zhurnali Environmental Research Letters narodzhennya odniyeyi ditini menshe bude mati nabagato bilsh istotnij vpliv na vikidi parnikovih gaziv u porivnyanni napriklad z prozhivannyam bez avtomobilya abo vzhivannyam roslinnoyi diyeti Odnak ce bulo piddano kritici yak za kategorialnij pomilku pri vidnesenni vikidiv nashadkiv do yih predkiv tak i za duzhe trivalu timchasovu shkalu skorochen Zusillya po kontrolyu za naselennyam strimuyutsya tim sho v deyakih krayinah isnuye svogo rodu tabu na rozglyad bud yakih takih zusil Krim togo rizni religiyi ne zaohochuyut abo zaboronyayut deyaki abo vsi formi kontrolyu nad narodzhuvanistyu Chiselnist naselennya nadaye znachno riznij vpliv na globalne poteplinnya v riznih krayinah na dushu naselennya oskilki virobnictvo antropogennih parnikovih gaziv na dushu naselennya silno variyuyetsya v zalezhnosti vid krayini Div takozhYevropejskij zelenij kurs Globalne poteplinnya na 1 5 C Vuglekislij gaz v atmosferi Zemli Emisijnij byudzhet SO2 Stalij rozvitokPrimitkiIntergovernmental Panel on Climate Change ISBN 978 0 511 54601 3 Intergovernmental Panel on Climate Change Summary for Policymakers Climate Change 2007 Cambridge Cambridge University Press S 1 24 ISBN 978 0 511 54601 3 Indonesian Climate Policy and Data in CAIT Indonesia Climate Data Explorer PINDAI Climate Change and Law Collection Procitovano 27 veresnya 2020 Joyce Laird PV s falling costs Renewable Energy Focus 2011 03 T 12 vip 2 S 52 56 ISSN 1755 0084 DOI 10 1016 s1755 0084 11 70048 5 Edward B Barbier PIIE WRI analysis of a green recovery program for the United States A Global Green New Deal Cambridge Cambridge University Press S 281 286 ISBN 978 0 511 84460 7 Liqi CHEN The role of the Arctic and Antarctic and their impact on global climate change Further findings since the release of IPCC AR4 2007 ADVANCES IN POLAR SCIENCE 2014 01 08 T 24 vip 2 S 79 85 ISSN 1674 9928 DOI 10 3724 sp j 1085 2013 00079 K Baxby Lack of transparency regarding collaboration with industry BMJ 2013 10 29 T 347 vip oct29 30 S f6469 f6469 ISSN 1756 1833 DOI 10 1136 bmj f6469 Annex A OECD Country Pledges to UNFCCC dx doi org 7 listopada 2011 Procitovano 27 veresnya 2020 Minute on UNFCCC Conference of the Parties COP 15 in Copenhagen The Ecumenical Review 2010 06 15 T 62 vip 2 S 229 231 ISSN 1758 6623 0013 0796 1758 6623 DOI 10 1111 j 1758 6623 2010 00060 3 x IPCC 94 Proceedings Scaling New Heights in Technical Communication IPCC 94 Proceedings Scaling New Heights in Technical Communication IPCC 94 IEEE 1994 ISBN 0 7803 1936 2 DOI 10 1109 ipcc 1994 347556 Maurizio Michelini IPCC Summary for Policymakers in TAR Do its Results Give a Support Always Adequate to the Urgencies of Kyoto Global Negotiations SSRN Electronic Journal 2001 ISSN 1556 5068 DOI 10 2139 ssrn 291944 Comparative price levels dx doi org 15 sichnya 2019 Procitovano 27 veresnya 2020 Gyorgyi Gurban United Nations Framework Convention on Climate Change Encyclopedia of Global Warming amp Climate Change 2455 Teller Road Thousand Oaks California 91320 United States SAGE Publications Inc ISBN 978 1 4129 9261 9 978 1 4522 1856 4 Patricia Sturgess Reading List Training session on IPCC WGII contribution to AR5 Evidence on Demand 2014 11 Frederic Sampedro Jaime Kulisevsky Author response to Wang et al Blood neurofilament light chain in Parkinson s disease A biological marker for prediction of cognitive impairment Parkinsonism amp Related Disorders 2020 06 ISSN 1353 8020 DOI 10 1016 j parkreldis 2020 05 025 Eugenie L Birch A Review of Climate Change 2014 Impacts Adaptation and Vulnerability and Climate Change 2014 Mitigation of Climate Change Journal of the American Planning Association 2014 04 03 T 80 vip 2 S 184 185 ISSN 1939 0130 0194 4363 1939 0130 DOI 10 1080 01944363 2014 954464 H Douglas Lightfoot Nomenclature Radiative Forcing and Temperature Projections in IPCC Climate Change 2007 The Physical Science Basis AR4 Energy amp Environment 2010 11 T 21 vip 7 S 815 831 ISSN 2048 4070 0958 305X 2048 4070 DOI 10 1260 0958 305x 21 7 815 K S Bose R H Sarma Delineation of the intimate details of the backbone conformation of pyridine nucleotide coenzymes in aqueous solution 25 kvitnya 2020 Biochemical and Biophysical Research Communications 1975 10 27 T 66 vip 4 S 1173 1179 ISSN 1090 2104 DOI 10 1016 0006 291x 75 90482 9 IPCC 96 Communication on the Fast Track IPCC 96 Proceedings IPCC 96 Communication on the Fast Track IPCC 96 Proceedings IPCC 96 IEEE 1996 ISBN 0 7803 3689 5 DOI 10 1109 ipcc 1996 552574 Marcelo De Sousa Tavares Urological Disturbances in Children with Cerebral Palsy Short Review Integrative Pediatrics and Child Care 2018 12 31 T 1 vip 1 S 63 66 ISSN 2637 966X DOI 10 18314 ipcc v1i1 1446 Kevin Anderson Alice Bows Beyond dangerous climate change emission scenarios for a new world Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 2011 01 13 T 369 vip 1934 S 20 44 ISSN 1471 2962 1364 503X 1471 2962 DOI 10 1098 rsta 2010 0290 Kevin Anderson Alice Bows A new paradigm for climate change Nature Climate Change 2012 08 28 T 2 vip 9 S 639 640 ISSN 1758 6798 1758 678X 1758 6798 DOI 10 1038 nclimate1646 Mark Zeitoun Marisa Goulden David Tickner Current and future challenges facing transboundary river basin management Wiley Interdisciplinary Reviews Climate Change 2013 05 29 T 4 vip 5 S 331 349 ISSN 1757 7780 DOI 10 1002 wcc 228 NETWATCH Botany s Wayback Machine 10 chervnya 2020 Science 2007 06 15 T 316 vip 5831 S 1547d 1547d ISSN 1095 9203 0036 8075 1095 9203 DOI 10 1126 science 316 5831 1547d dx doi org Arhiv originalu za 19 travnya 2018 Procitovano 27 veresnya 2020 G Hymus R Valentini Terrestrial vegetation as a carbon dioxide sink Greenhouse gas sinks Wallingford CABI S 11 30 ISBN 978 1 84593 189 6 Humberto Llavador John E Roemer Global Unanimity Equilibrium on the Carbon Budget SSRN Electronic Journal 2019 ISSN 1556 5068 DOI 10 2139 ssrn 3362590 Hans Pihan Nils Peters Jean Marie Annoni Ansgar Felbecker Olivier Rouaud Fortschritte bei der Diagnose und Therapie von Demenzerkrankungen Schweizerische Arztezeitung 2020 05 06 ISSN 1424 4004 0036 7486 1424 4004 DOI 10 4414 saez 2020 18882 C J Hahn S G Warren 2003 11 Cloud Climatology for Land Stations Worldwide 1971 1996 Carbon Dioxide Information Analysis Center CDIAC Datasets Procitovano 27 veresnya 2020 Anonymous 6 bereznya 2017 review of Global fire emissions estimates during 1997 2015 dx doi org Procitovano 27 veresnya 2020 Andrew Peters O Herlihy Nee Noonan The Missouri Review 2020 T 43 vip 1 S 10 23 ISSN 1548 9930 DOI 10 1353 mis 2020 0001 Liotyphlops albirostris Peters 1857 Universidad de La Salle 2020 05 14 Intergovernmental Panel on Climate Change Introductory Chapter Climate Change 2014 Mitigation of Climate Change Cambridge Cambridge University Press S 111 150 ISBN 978 1 107 41541 6 Will Steffen Johan Rockstrom Katherine Richardson Timothy M Lenton Carl Folke Trajectories of the Earth System in the Anthropocene Proceedings of the National Academy of Sciences 2018 08 06 T 115 vip 33 S 8252 8259 ISSN 1091 6490 0027 8424 1091 6490 DOI 10 1073 pnas 1810141115 Intergovernmental Panel on Climate Change Social Economic and Ethical Concepts and Methods Climate Change 2014 Mitigation of Climate Change Cambridge Cambridge University Press S 207 282 ISBN 978 1 107 41541 6 Shelagh Whitley Laurie van der Burg Reforming Fossil Fuel Subsidies The Politics of Fossil Fuel Subsidies and their Reform Cambridge University Press S 47 65 ISBN 978 1 108 24194 6 978 1 108 41679 5 J Bohannon CLIMATE CHANGE IPCC Report Lays Out Options for Taming Greenhouse Gases Science 2007 05 11 T 316 vip 5826 S 812 814 ISSN 1095 9203 0036 8075 1095 9203 DOI 10 1126 science 316 5826 812 Intergovernmental Panel on Climate Change Sustainable Development and Equity Climate Change 2014 Mitigation of Climate Change Cambridge Cambridge University Press S 283 350 ISBN 978 1 107 41541 6 ICPSR Data Holdings 1 travnya 1990 Arhiv originalu za 23 bereznya 2019 Procitovano 30 veresnya 2020 Paul Gipe The Wind Rush of 99 World Renewable Energy Congress VI Elsevier 2000 S 124 129 ISBN 978 0 08 043865 8 John H Perkins Special Report on Renewable Energy Sources and Climate Change Mitigation 2011 Intergovernmental Panel on Climate Change Working Group III Mitigation of Climate Change Cambridge University Press Cambridge England 1 088 pp 100 00 hardcover ISBN13 9781107607101 Also available for free at http srren ipcc wg3 de report ca 1 544 pp Environmental Practice 2012 09 T 14 vip 3 S 237 238 ISSN 1466 0474 1466 0466 1466 0474 DOI 10 1017 s1466046612000233 Michael Godec George Koperna John Gale CO2 ECBM A Review of its Status and Global Potential Energy Procedia 2014 T 63 S 5858 5869 ISSN 1876 6102 DOI 10 1016 j egypro 2014 11 619 Santosh Raikar Seabron Adamson Managing transmission costs and risks for renewable projects Renewable Energy Finance Elsevier 2020 S 131 140 ISBN 978 0 12 816441 9 Support System of China s Energy Science amp Technology Roadmap to 2050 Energy Science amp Technology in China A Roadmap to 2050 Berlin Heidelberg Springer Berlin Heidelberg 2010 S 99 102 ISBN 978 3 642 05319 1 978 3 642 05320 7 Moiz Bohra Nilay Shah Optimising the role of solar PV in Qatar s power sector Energy Reports 2020 02 T 6 S 194 198 ISSN 2352 4847 DOI 10 1016 j egyr 2019 11 062 Available Solar Radiation Solar Engineering of Thermal Processes Photovoltaics and Wind 2020 02 25 S 45 140 DOI 10 1002 9781119540328 ch2 M Sc in Wind Energy at the Technical University of Denmark DTU Wind Engineering 2005 03 T 29 vip 2 S 187 190 ISSN 2048 402X 0309 524X 2048 402X DOI 10 1260 0309524054797177 Grain Transportation Report March 19 2020 U S Department of Agriculture Agricultural Marketing Service 2020 03 19 Companion March 2020 full issue PDF BSAVA Companion 2020 03 01 T 2020 vip 3 S 1 39 ISSN 2041 2495 2041 2487 2041 2495 DOI 10 22233 20412495 0320 1 B Glover K L Walloe Operation of large Norwegian hydropower reservoirs after quantifying the downstream flood control benefits Sustainable and Safe Dams Around the World CRC Press 2019 08 08 S 1563 1575 ISBN 978 0 429 31977 8 dx doi org Arhiv originalu za 15 veresnya 2020 Procitovano 30 veresnya 2020 Satellite helps estimate forest biomass carbon sink Nature India 2016 01 20 ISSN 1755 3180 DOI 10 1038 nindia 2016 7 Fiji should step up action to protect human rights from environmental risks UN expert says Climate Change and Law Collection Procitovano 30 veresnya 2020 S Ion Climate change in an energy hungry world brings new nuclear dawn IET Seminar on Engineering a Safer Global Climate The Power Sector s Response IEE 2008 ISBN 978 0 86341 943 0 DOI 10 1049 ic 20080650 Global Views on the Death of Osama Bin Laden 2011 ICPSR Data Holdings 3 lipnya 2012 Procitovano 30 veresnya 2020 Ipsos Der Neue Pauly Procitovano 30 veresnya 2020 Figure V 29 Official development assistance the United Kingdom dx doi org Procitovano 30 veresnya 2020 ITER L Mode Confinement Database Office of Scientific and Technical Information OSTI 1997 10 01 Michael Kuhn Martin Streibel Natalie Nakaten Thomas Kempka Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the Power to gas to gas to power Technology Energy Procedia 2014 T 59 S 9 15 ISSN 1876 6102 DOI 10 1016 j egypro 2014 10 342 Mark Peplow Cheap battery stores energy for a rainy day Nature 2014 01 08 ISSN 1476 4687 0028 0836 1476 4687 DOI 10 1038 nature 2014 14486 Larry Schuster SURGERY MAY STOP THE SEIZURES Neurology Now 2005 T 1 vip 1 S 28 30 ISSN 1553 3271 DOI 10 1097 01222928 200501010 00008 William Moomaw Peter Burgherr Garvin Heath Manfred Lenzen John Nyboer Methodology Renewable Energy Sources and Climate Change Mitigation Cambridge Cambridge University Press S 973 1000 ISBN 978 1 139 15115 3 Joachim Bertsch Christian Growitsch Stefan Lorenczik Stephan Nagl Flexibility in Europe s power sector An additional requirement or an automatic complement Energy Economics 2016 01 T 53 S 118 131 ISSN 0140 9883 DOI 10 1016 j eneco 2014 10 022 Role of power to gas in energy transition energyo 1 sichnya 2019 Procitovano 30 veresnya 2020 Anonymous 10 lipnya 2019 Review of manuscript by Schmidt et al dx doi org Procitovano 30 veresnya 2020 BASF plans recycling plant for electric batteries Focus on Catalysts 2020 05 T 2020 vip 5 S 4 ISSN 1351 4180 DOI 10 1016 j focat 2020 04 022 Charles Thomas Parker George M Garrity 1 sichnya 2003 Exemplar Abstract for Aliiroseovarius halocynthiae Kim et al 2012 Park et al 2015 emend Hordt et al 2020 Pseudoroseovarius halocynthiae Kim et al 2012 Sun et al 2015 emend Hordt et al 2020 pro synon Aliiroseovarius halocynthiae Kim et al 2012 Park et al 2015 emend Hordt et al 2020 and Roseovarius halocynthiae Kim et al 2012 The NamesforLife Abstracts Procitovano 30 veresnya 2020 Our Wired Nerves 2020 DOI 10 1016 c2019 0 03259 1 Hai Wen Li Etsuo Akiba Hydrogen Storage Conclusions and Future Perspectives Green Energy and Technology Tokyo Springer Japan 2016 S 279 282 ISBN 978 4 431 56040 1 978 4 431 56042 5 Sotirios Karellas Tryfon C Roumpedakis Solar thermal power plants Solar Hydrogen Production Elsevier 2019 S 179 235 ISBN 978 0 12 814853 2 Green Shipping project to develop sustainable Wadden Sea shipping Fuel Cells Bulletin 2020 08 T 2020 vip 8 S 6 ISSN 1464 2859 DOI 10 1016 s1464 2859 20 30340 0 Qili Huang Insights for global energy interconnection from China renewable energy development Global Energy Interconnection 2020 02 T 3 vip 1 S 1 11 ISSN 2096 5117 DOI 10 1016 j gloei 2020 03 006 Michael West Thomas Baldwin Energy storage and supergrid integration 2013 North American Power Symposium NAPS IEEE 2013 09 ISBN 978 1 4799 1255 1 DOI 10 1109 naps 2013 6666892 The University of Technology Sydney UTS The Grants Register 2019 London Palgrave Macmillan UK 2018 11 13 S 917 917 ISBN 978 1 349 95809 2 978 1 349 95810 8 Feng Chen Inductive power transfer technology for road transport electrification Eco Efficient Pavement Construction Materials Elsevier 2020 S 383 399 ISBN 978 0 12 818981 8 How to build a better battery Physics Today 2008 ISSN 1945 0699 DOI 10 1063 pt 5 022205 Paul L Joskow Transmission Capacity Expansion Is Needed to Decarbonize the Electricity Sector Efficiently Joule 2020 01 T 4 vip 1 S 1 3 ISSN 2542 4351 DOI 10 1016 j joule 2019 10 011 H2 Logic station for H2 Mobility Germany Denmark repeat order Fuel Cells Bulletin 2016 01 T 2016 vip 1 S 7 ISSN 1464 2859 DOI 10 1016 s1464 2859 16 30017 7 Kamil Liberadzki Marcin Liberadzki O zachowaniu sii hybrydowego kapitaau przedsiibiorstwa w sytuacji napiitej na przykkadzie Volkswagen AG The Behaviour of Hybrid Capital Securities When Issuer is in Distress The Volkswagen AG Case SSRN Electronic Journal 2017 ISSN 1556 5068 DOI 10 2139 ssrn 3082351 Simon Holoda Branislav Kandera Marian Jancik Nikolas Zacik Digital transformation of ATM improving EUROCONTROL Network Manager B2B 2019 New Trends in Aviation Development NTAD IEEE 2019 09 ISBN 978 1 7281 4079 7 DOI 10 1109 ntad 2019 8875558 SBTi predstavila metodologiyu po dekarbonizaciyi dlya virobnikiv stali Novini GMK Center GMK ukr Procitovano 26 veresnya 2023 International Waste Hierarchy according to the IPCC dx doi org 24 travnya 2018 Procitovano 4 zhovtnya 2020 Renovating Historic Buildings IEA SHC Task 59 Flyer IEA SHC Task 59 2019 01 15 Iain Staffell Dan Brett Nigel Brandon Adam Hawkes A review of domestic heat pumps Energy amp Environmental Science 2012 T 5 vip 11 S 9291 ISSN 1754 5706 1754 5692 1754 5706 DOI 10 1039 c2ee22653g Anabela Duarte Carvalho Dimitris Mendrinos Anibal T De Almeida Ground source heat pump carbon emissions and primary energy reduction potential for heating in buildings in Europe results of a case study in Portugal Renewable and Sustainable Energy Reviews 2015 05 T 45 S 755 768 ISSN 1364 0321 DOI 10 1016 j rser 2015 02 034 Andre Sternberg Andre Bardow Power to What Environmental assessment of energy storage systems Energy amp Environmental Science 2015 T 8 vip 2 S 389 400 ISSN 1754 5706 1754 5692 1754 5706 DOI 10 1039 c4ee03051f Imitate europeans and clean up confusion says study Banks in Insurance Report 1999 10 T 15 vip 6 S 14 16 ISSN 1530 9991 8756 6079 1530 9991 DOI 10 1002 bir 3820150608 Intergovernmental Panel on Climate Change Working Group III Zagolovok ISBN 978 1 107 05821 7 1 107 05821 X 978 1 107 65481 5 1 107 65481 5 Facundo Alvaredo Lucas Chancel Thomas Piketty Emmanuel Saez Gabriel Zucman Global Inequality Dynamics New Findings from WID world Cambridge MA National Bureau of Economic Research 2017 02 Seth Wynes Kimberly A Nicholas The climate mitigation gap education and government recommendations miss the most effective individual actions Environmental Research Letters 2017 07 01 T 12 vip 7 S 074024 ISSN 1748 9326 DOI 10 1088 1748 9326 aa7541 Gerardo Ceballos Paul R Ehrlich Rodolfo Dirzo Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines Proceedings of the National Academy of Sciences 2017 07 10 T 114 vip 30 S E6089 E6096 ISSN 1091 6490 0027 8424 1091 6490 DOI 10 1073 pnas 1704949114 S L Pimm C N Jenkins R Abell T M Brooks J L Gittleman The biodiversity of species and their rates of extinction distribution and protection Science 2014 05 29 T 344 vip 6187 S 1246752 1246752 ISSN 1095 9203 0036 8075 1095 9203 DOI 10 1126 science 1246752 Sho take dekarbonizaciya Nikopol Sogodni Rakhee Goyal Miosis with Dexmedetomidine every little helps every picture tells a story BJA British Journal of Anaesthesia 2013 11 18 T 111 vip eLetters ISSN 1471 6771 0007 0912 1471 6771 DOI 10 1093 bja el 10817 Global warming could delay next ice age say scientists Physics Today 2012 ISSN 1945 0699 DOI 10 1063 pt 5 025804 Mitgliederversammlung 2016 CNE Pflegemanagement 2016 12 T 03 vip 06 S 20 20 ISSN 2626 6229 2196 9310 2626 6229 DOI 10 1055 s 0042 118340 United Kingdom 2016 marginal tax wedge decomposition dx doi org Procitovano 4 zhovtnya 2020 Marco Springmann Daniel Mason D Croz Sherman Robinson Keith Wiebe H Charles J Godfray Mitigation potential and global health impacts from emissions pricing of food commodities Nature Climate Change 2016 11 07 T 7 vip 1 S 69 74 ISSN 1758 6798 1758 678X 1758 6798 DOI 10 1038 nclimate3155 Mark Stevenson Fewer cars healthier cities BMJ 2019 12 18 S l6605 ISSN 1756 1833 DOI 10 1136 bmj l6605 Frank Jung We believe in democratizing electric cars ATZ worldwide 2020 09 25 T 122 vip 10 S 22 25 ISSN 2192 9076 DOI 10 1007 s38311 020 0307 9 Bjarne R Andersen Dennis Woodford Geoff Love FACTS Planning Studies CIGRE Green Books Cham Springer International Publishing 2020 S 1 34 ISBN 978 3 319 71926 9 978 3 319 71926 9 Darya Bululukova Momir Tabakovic Harald Wahl Smart Cities Education as Mobility Energy amp ICT Hub Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems SCITEPRESS Science and and Technology Publications 2016 ISBN 978 989 758 184 7 DOI 10 5220 0005908601170124 Shahbaz Muhammad AlNouss Ahmed Ghiat Ikhlas Mckay Gordon Mackey Hamish Elkhalifa Samar Al Ansari Tareq 1 zhovtnya 2021 A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks Resources Conservation and Recycling T 173 s 105734 doi 10 1016 j resconrec 2021 105734 ISSN 0921 3449 Procitovano 1 grudnya 2023 Ozkan Mihrimah Nayak Saswat Priyadarshi Ruiz Anthony D Jiang Wenmei 2022 04 Current status and pillars of direct air capture technologies iScience T 25 4 s 103990 doi 10 1016 j isci 2022 103990 ISSN 2589 0042 PMC 8927912 PMID 35310937 Procitovano 1 grudnya 2023 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite news title Shablon Cite news cite news a Obslugovuvannya CS1 Storinki z PMC z inshim formatom posilannya Cooper Jasmin Dubey Luke Hawkes Adam 1 sichnya 2022 Life cycle assessment of negative emission technologies for effectiveness in carbon sequestration Procedia CIRP T 105 s 357 361 doi 10 1016 j procir 2022 02 059 ISSN 2212 8271 Procitovano 1 grudnya 2023 OECD Environmental Outlook to 2050 Summary in Slovenian OECD Environmental Outlook 2012 03 15 ISSN 1999 155X DOI 10 1787 env outlook 2012 sum sl Technology Roadmap Carbon Capture and Storage IEA Technology Roadmaps 2009 10 09 ISSN 2218 2837 DOI 10 1787 9789264088122 en Masahiro Sugiyama Atsushi Ishii Shinichiro Asayama Takanobu Kosugi Solar Geoengineering Governance Oxford Research Encyclopedia of Climate Science 2018 04 26 DOI 10 1093 acrefore 9780190228620 013 647 What You Need to Know About Energy 2008 04 25 DOI 10 17226 12204 3 The Website as Archived Object 11 sichnya 2020 Digital Methods The MIT Press 2013 ISBN 978 0 262 31338 4 David D Simpson Archived Tips for Teaching Statistics PsycCRITIQUES 2013 T 58 vip 14 ISSN 1554 0138 DOI 10 1037 a0031811 Nicholas Stern The Economics of Stabilisation The Economics of Climate Change Cambridge Cambridge University Press S 191 192 ISBN 978 0 511 81743 4 Figure 2 5 Two thirds of potential revenue from concessions in natural forests is not collected dx doi org Procitovano 13 zhovtnya 2020 Robin Chazdon Pedro Brancalion Restoring forests as a means to many ends Science 2019 07 04 T 365 vip 6448 S 24 25 ISSN 1095 9203 0036 8075 1095 9203 DOI 10 1126 science aax9539 Rachel Ehrenberg Global forest survey finds trillions of trees Nature 2015 09 02 ISSN 1476 4687 0028 0836 1476 4687 DOI 10 1038 nature 2015 18287 AFN National Chief Tells World Leaders at UN Conference that Acting on Indigenous Rights Most Effective Way to Combat Climate Change Climate Change and Law Collection Procitovano 13 zhovtnya 2020 LAS VEGAS SANDS CORP a Nevada corporation Plaintiff v UKNOWN REGISTRANTS OF www wn0000 com www wn1111 com www wn2222 com www wn3333 com www wn4444 com www wn5555 com www wn6666 com www wn7777 com www wn8888 com www wn9999 com www 112211 com www 4456888 com www 4489888 com www 001148 com and www 2289888 com Defendants 24 sichnya 2021 Gaming Law Review and Economics 2016 12 T 20 vip 10 S 859 868 ISSN 1941 5494 1097 5349 1941 5494 DOI 10 1089 glre 2016 201011 Sanja Bahun Bojana Petric Homing in on Home Thinking Home Routledge 2020 06 07 S 1 13 ISBN 978 1 003 08721 2 Common treatments do more harm than good for chronic primary pain PharmacoEconomics amp Outcomes News 2020 08 T 860 vip 1 S 35 35 ISSN 1179 2043 1173 5503 1179 2043 DOI 10 1007 s40274 020 7081 1 Lena R Boysen Wolfgang Lucht Dieter Gerten Vera Heck Timothy M Lenton The limits to global warming mitigation by terrestrial carbon removal Earth s Future 2017 05 T 5 vip 5 S 463 474 ISSN 2328 4277 DOI 10 1002 2016ef000469 Drones find their way New Scientist 2016 07 T 231 vip 3084 S 22 23 ISSN 0262 4079 DOI 10 1016 s0262 4079 16 31368 9 Hollins Sir Arthur Meyrick 16 July 1876 30 July 1938 Who Was Who Oxford University Press 2007 12 01 Zagolovok Allen Blackman Peter Veit Titled Amazon Indigenous Communities Cut Forest Carbon Emissions Ecological Economics 2018 11 T 153 S 56 67 ISSN 0921 8009 DOI 10 1016 j ecolecon 2018 06 016 ICPSR Data Holdings 16 travnya 2003 Arhiv originalu za 27 chervnya 2020 Procitovano 13 zhovtnya 2020 Litton Andrew born 16 May 1959 conductor and pianist Music Director New York City Ballet since 2016 Who s Who Oxford University Press 2007 12 01 Bjarne Lorenzen Earth s Magnetic Field The Key to Global Warming Journal of Geoscience and Environment Protection 2019 T 07 vip 07 S 25 38 ISSN 2327 4344 2327 4336 2327 4344 DOI 10 4236 gep 2019 77003 Jean Francois Bastin Yelena Finegold Claude Garcia Danilo Mollicone Marcelo Rezende The global tree restoration potential Science 2019 07 04 T 365 vip 6448 S 76 79 ISSN 1095 9203 0036 8075 1095 9203 DOI 10 1126 science aax0848 Big and beautiful how the brics economies could save the planet virtual water I B Tauris amp Co Ltd 2011 ISBN 978 0 7556 2052 4 978 1 84511 984 3 Global warming may affect Antarctic s ability to absorb carbon Physics Today 2013 ISSN 1945 0699 DOI 10 1063 pt 5 026865 How the Courts Can Help in the Climate Change Fight Climate Change and Law Collection Procitovano 13 zhovtnya 2020 Tim Dutz Martin Knoll Sandro Hardy Stefan Gobel How Mobile Devices Could Change the Face of Serious Gaming I COM 2013 01 T 12 vip 2 ISSN 1618 162X 2196 6826 1618 162X DOI 10 1515 icom 2013 0013 P Falkowski The Global Carbon Cycle A Test of Our Knowledge of Earth as a System Science 2000 10 13 T 290 vip 5490 S 291 296 ISSN 1095 9203 0036 8075 1095 9203 DOI 10 1126 science 290 5490 291 Sid Perkins Some trees could help fight climate change Science 2016 03 16 ISSN 1095 9203 0036 8075 1095 9203 DOI 10 1126 science aaf4200 K M Walter S A Zimov J P Chanton D Verbyla F S Chapin Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming Nature 2006 09 T 443 vip 7107 S 71 75 ISSN 1476 4687 0028 0836 1476 4687 DOI 10 1038 nature05040 COVID 19 updates 18 March 2020 3 April 2020 23 travnya 2020 The Pharmaceutical Journal 2020 ISSN 2053 6186 DOI 10 1211 pj 2020 20207894 The Guardian view on climate change see you in court Climate Change and Law Collection Procitovano 13 zhovtnya 2020 Geoff Bertram Simon Terry How Did We Get Into This Mess The Carbon Challenge New Zealand s Emissions Trading Scheme Bridget Williams Books 2010 S 31 50 ISBN 978 1 877242 46 5 Nediljka Gaurina Međimurec Karolina Novak Mavar Carbon Capture and Storage CCS Geological Sequestration of CO2 CO2 Sequestration IntechOpen 2020 07 22 ISBN 978 1 83962 992 1 978 1 83962 993 8 Burden of Disease from Rising Coal Fired Power Plant Emissions in Southeast Asia dx doi org Procitovano 13 zhovtnya 2020 Arhivovana kopiya ISBN 978 0 521 88011 4 0 521 88011 4 978 0 521 70598 1 0 521 70598 3 z dzherela 24 sichnya 2022 Policy Implications of Greenhouse Warming 1992 01 01 DOI 10 17226 1605 S Isono R Greif T C Mort Airway research the current status and future directions Anaesthesia 2011 11 10 T 66 S 3 10 ISSN 0003 2409 DOI 10 1111 j 1365 2044 2011 06928 x V Islandiyi zapracyuvav najbilshij u sviti zavod vakuum z viluchennya CO2 z atmosferi 08 05 2024 22 39 Ken Caldeira Lowell Wood Global and Arctic climate engineering numerical model studies Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 2008 08 29 T 366 vip 1882 S 4039 4056 ISSN 1471 2962 1364 503X 1471 2962 DOI 10 1098 rsta 2008 0132 Eileen Nchanji Sustainable Urban Agriculture in Ghana What Governance System Works Sustainability 2017 11 14 T 9 vip 11 S 2090 ISSN 2071 1050 DOI 10 3390 su9112090 The Rainforest Alliance Recognizes Excellence In Advancing Sustainability And Climate Goals Climate Change and Law Collection Procitovano 20 zhovtnya 2020 Leon Schumacher Jianfeng Zhou Smart Farms and the Digital Age A Reality 2019 Boston Massachusetts July 7 July 10 2019 St Joseph MI American Society of Agricultural and Biological Engineers 2019 DOI 10 13031 aim 201901857 Figure 4 3 Greenhouse gas emissions by sector dx doi org Procitovano 20 zhovtnya 2020 Mechlem Kerstin Food and Agriculture Organization of the United Nations FAO Max Planck Encyclopedia of Public International Law Oxford University Press 2006 11 ISBN 978 0 19 923169 0 David L Adelson Bovine Genome Architecture Bovine Genomics Oxford UK Wiley Blackwell 2012 04 11 S 123 143 ISBN 978 1 118 30173 9 978 0 8138 2122 1 Adam Vaughan Breeding less gassy cattle could cut harmful emissions New Scientist 2019 07 T 243 vip 3238 S 16 ISSN 0262 4079 DOI 10 1016 s0262 4079 19 31262 x J Jeyanathan C Martin D P Morgavi The use of direct fed microbials for mitigation of ruminant methane emissions a review Animal 2013 11 25 T 8 vip 2 S 250 261 ISSN 1751 732X 1751 7311 1751 732X DOI 10 1017 s1751731113002085 N R Parmar J I Nirmal Kumar C G Joshi Exploring diet dependent shifts in methanogen and methanotroph diversity in the rumen of Mehsani buffalo by a metagenomics approach Frontiers in Life Science 2015 07 10 T 8 vip 4 S 371 378 ISSN 2155 3777 2155 3769 2155 3777 DOI 10 1080 21553769 2015 1063550 D Boadi C Benchaar J Chiquette D Masse Mitigation strategies to reduce enteric methane emissions from dairy cows Update review Canadian Journal of Animal Science 2004 09 01 T 84 vip 3 S 319 335 ISSN 1918 1825 0008 3984 1918 1825 DOI 10 4141 a03 109 C Martin D P Morgavi M Doreau Methane mitigation in ruminants from microbe to the farm scale animal 2009 08 03 T 4 vip 03 S 351 365 ISSN 1751 732X 1751 7311 1751 732X DOI 10 1017 s1751731109990620 R J Eckard C Grainger C A M de Klein Options for the abatement of methane and nitrous oxide from ruminant production A review Livestock Science 2010 05 T 130 vip 1 3 S 47 56 ISSN 1871 1413 DOI 10 1016 j livsci 2010 02 010 John E Hermansen George Zervas Livestock farming systems and their environmental impacts Livestock Production Science 2005 09 T 96 vip 1 S 1 ISSN 0301 6226 DOI 10 1016 j livprodsci 2005 05 015 Priyantha Jayakody Prem B Parajuli Gretchen Sassenrath Impacts of climate variability on Soybean and Corn yields in Mississippi Delta 2012 Dallas Texas July 29 August 1 2012 St Joseph MI American Society of Agricultural and Biological Engineers 2012 DOI 10 13031 2013 41778 DAVID PIMENTEL PAUL HEPPERLY JAMES HANSON DAVID DOUDS RITA SEIDEL 0573 eeaeco2 0 co 2 Environmental Energetic and Economic Comparisons of Organic and Conventional Farming Systems BioScience 2005 T 55 vip 7 S 573 ISSN 0006 3568 DOI 10 1641 0006 3568 2005 055 0573 eeaeco 2 0 co 2 R Lal ECOLOGY Managing Soil Carbon Science 2004 04 16 T 304 vip 5669 S 393 393 ISSN 1095 9203 0036 8075 1095 9203 DOI 10 1126 science 1093079 A N Thanos Papanicolaou Kenneth M Wacha Benjamin K Abban Christopher G Wilson Jerry L Hatfield From soilscapes to landscapes A landscape oriented approach to simulate soil organic carbon dynamics in intensively managed landscapes Journal of Geophysical Research Biogeosciences 2015 11 T 120 vip 11 S 2375 2401 ISSN 2169 8953 DOI 10 1002 2015jg003078 Eric Justes Erratum to Cover Crops for Sustainable Farming Cover Crops for Sustainable Farming Dordrecht Springer Netherlands 2017 S E1 E1 ISBN 978 94 024 0985 7 978 94 024 0986 4 Emanuele Lugato Francesca Bampa Panos Panagos Luca Montanarella Arwyn Jones Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices Global Change Biology 2014 05 02 T 20 vip 11 S 3557 3567 ISSN 1354 1013 DOI 10 1111 gcb 12551 1 15 Greenhouse gas emissions dx doi org Procitovano 20 zhovtnya 2020 Up close and medical 26 October 2019 The Pharmaceutical Journal 2019 ISSN 2053 6186 DOI 10 1211 pj 2019 20207144 MacNaughton Joan born 12 Sept 1950 adviser globally on energy and environmental policies Executive Chair Energy and Policy Assessment Trilemma World Energy Council since 2011 Who s Who Oxford University Press 2007 12 01 Marcia D Lowe The global rail revival Society 1994 07 T 31 vip 5 S 51 56 ISSN 1936 4725 0147 2011 1936 4725 DOI 10 1007 bf02693262 Hamed Mahmudi Peter C Flynn M David Checkel Life Cycle Analysis of Biomass Transportation Trains vs Trucks SAE Technical Paper Series 400 Commonwealth Drive Warrendale PA United States SAE International 2005 04 11 DOI 10 4271 2005 01 1551 Sellwood Philip Henry George born 10 Jan 1954 Chief Executive Energy Saving Trust since 2003 Who s Who Oxford University Press 2007 12 01 Stephen Wilkinson IET tv angl Arhiv originalu za 26 zhovtnya 2020 Procitovano 20 zhovtnya 2020 Arthur H Rosenfeld Hashem Akbari Joseph J Romm Melvin Pomerantz Cool communities strategies for heat island mitigation and smog reduction Energy and Buildings 1998 08 T 28 vip 1 S 51 62 ISSN 0378 7788 DOI 10 1016 s0378 7788 97 00063 7