Ця стаття містить правописні, лексичні, граматичні, стилістичні або інші мовні помилки, які треба виправити. |
Зображення графів знаходиться на перетині математики та комп'ютерних наук, тому, що об'єднує [en] теорію графів з візуалізацією інформації для отримання двовимірних зображень графів, що виникають в практичних задачах аналізу соціальних мереж, картографії, лінгвістики, та біоінформатики.
Зображення графа або мережевої діаграми — це графічне представлення вершин та ребер графа. Зображення не слід плутати з самим графом: зовні дуже різні зображення можуть відповідати одному і тому ж графу. З точки зору теорії, все, що має значення — це які саме пари вершин з'єднуються ребрами. Однак, у конкретних ситуаціях, розташування вершин і ребер в межах малюнка впливає на його зрозумілість, зручність використання, вартість виготовлення та на естетичне сприйняття. Задача стає більш складною, якщо граф змінюється з часом, коли додаються і видаляються ребра (зображення динамічного графа), або мета полягає у збереженні мапи думок користувача.
Домовленості
Графи зазвичай зображуються як діаграми, що наголошують на зв'язках між вузлами, де вершини представлені у вигляді дисків, коробок або текстових міток, і ребер, зображених відрізками, ламаними або кривими в евклідовому просторі. Такі діаграми можна побачити у роботах 13-го століття Раймунда Луллія, які він використовував для зображення повних графів, з метою аналізу усіх попарних комбінацій для множини метафізичних понять.
У випадку орієнтованих графів стрілки вживаються для зазначення їх орієнтації; Проте, дослідження користувачів показали, що використання такого способу, як звуження, цю інформацію надає ефективніше. [en] використовує домовленість, що кожне ребро орієнтується від нижчої до вищої вершини, що робить непотрібним зображення кінцівок стріл.
- Альтернативні домовленості використовують такі уявлення суміжності, як [en], де вершини представлені у вигляді областей в площині, що не перетинаються, а ребра зображені як примикання між областями.
- Зображення перетинів, в яких вершини зображені, як геометричні об'єкти, що не перетинаються, а ребра — їх перетинами.
- Зображення видимості, в яких вершини представлені областями в площині, а ребра областями, що мають безперешкодну пряму видимість одне одного.
- Зображення зливання, на яких ребра — гладкі, криві в межах математичних [en].
- Зображення у вигляді тканини, де вершини представлені у вигляді горизонтальних ліній, а ребра у вигляді вертикальних ліній.
- Зображення матриці суміжності графа.
Критерії якості
Багато різних критеріїв якості були визначені для креслень графа в спробі знайти об'єктивний спосіб оцінки їх естетичності та практичності. Крім спрямування вибору між різними методами компонування для графа, деякі методи компонування намагаються безпосередньо оптимізувати ці заходи.
- Числом схрещень креслення є число пар ребер, що перетинаються між собою. Якщо цей граф є планарним, то часто буває зручно зобразити його без будь-яких перетинів ребер; тобто, в такому випадку, графік являє собою граф вкладення. Однак неплоскі графи часто виникають у додатках, тому алгоритми малювання графа, як правило, повинні дозволяти перетин ребер.
- Площина зображення — це найменша територія вікна обмеження графа, щодо найближчої відстані між будь-якими двома вершинами. Креслення з меншою площею, як правило, краще, ніж з більшою площею, бо вони дозволяють зберегти особливості малюнка, що будуть показані в більшому розмірі й, отже, більш розбірливо. Співвідношення сторін обмежувального блоку також може бути важливим.
- Симетрія зображення — це проблема пошуку груп симетрії у даному графі, і знаходження зображення, що є найбільш симетричним. Деякі методи розташування автоматично ведуть до симетричних зображень; з іншого боку, деякі методи зображення починаються зі знаходження симетрії отриманого графа для його зображення.
- Важливо, що ребра мають якомога простішу форму, аби оку людини було легше їх відстежувати. У полілінійних кресленнях, важкість конструкції ребра може вимірюватися у [en], і багато методів мають на меті надати креслення з невеликою кількістю загальних згинів або кількома згинами на ребро. Подібним чином для сплайн-кривих складність ребра може бути виміряна кількістю контрольних точок на ребрі.
- Кілька популярних критеріїв якості, пов'язаних з довжиною ребер: в загальному випадку бажано звести до мінімуму загальну довжину країв, а також максимальну довжину будь-якого краю. Крім того, для довжин ребер може бути кращим залишатися однаковими, а не різноманітними.
- Кутова роздільність — це міра найгострішого кута у зображенні графа. Якщо граф має вершини з великими степенями, то він обов'язково матиме не велику кутову роздільність, але кутова роздільність може бути обмежена знизу функцією степеня.
- Число нахилів графа — це мінімальна кількість різних нахилів, що потрібні для зображення прямими лініями ребер сегмента (з перетином). Кубічний граф має кількість нахилів не більше чотирьох, але граф з п'ятьма кутами може мати необмежену кількість нахилів; ще залишається не зрозумілим, чи обмежена кількість нахилів 4-кутного графа.
Методи макетування
Існує багато стратегій компонування графів:
- У системі силового компонування, програми зображення графів змінюють початкове розміщення вершин шляхом безперервного переміщення вершин відповідно до системи сил, заснованої на фізичних метафорах, пов'язаних з системами пружин або молекулярної механіки. Зазвичай, ці системи поєднують в собі сили тяжіння між сусідніми вершинами з силами відштовхування між усіма парами вершин, щоб знайти макет, в якому довжини ребер малі, в той час, як вершини добре розділені. Ці системи можуть виконувати метод найшвидшого спуску на основі мінімізації з функції енергії, або ж вони можуть перевести свої сили безпосередньо у швидкості або прискорення для рухомих вершин.
- Метод [en] використовує власні вектори матриці, такі як [en] отриманого з матриці суміжності графа.
- Ортогональні методи компонування, що дозволяють ребрам графа йти горизонтально або вертикально, паралельно осям координат макета. Ці методи були спочатку розроблені для схем надвеликого рівня інтеграції, друкованих плат і проблем компонування, але вони також були пристосовані до зображення графів. Вони зазвичай включають багатофазний підхід, в якому введення графа вирівнюється шляхом заміни точок перетину вершинами, знаходиться топологічне вкладення планаризованного графа, орієнтація сторін вибирається так, щоб звести до мінімуму вигини, вершини розташовуються послідовно з цими орієнтаціями, і, нарешті, етап ущільнення макету зменшує площу малюнка.
- Алгоритми макету дерев використовують для зображення деревоподібних структур з коренем, зокрема, це пасує для дерев. Зазвичай, у техніці, що називається «кульовий макет» (англ. balloon layout), нащадок кожного вузла у дереві малюється на колі, що оточує вузол, із радіусом цих кіл, що спадає на нижчих рівнях дерева так, щоб ці кола не накладалися одне на одного.
- Методи [en] (які часто називають зображеннями у стилі Сугияма) найкраще підходять для орієнтованого ациклічного графа або графів, близьких до ациклічних, таких як графи залежностей між модулями або функціями в програмній системі. У цих методах, вузли графа розташовані на горизонтальних шарах з використанням методів, таких як [en], таким чином, що більшість ребер йдуть вниз від одного шару до іншого; після цього кроку вузли в кожному шарі розташовуються з метою мінімізації перетинів.
- Дугова діаграма, це стиль компонування, відомий з 1960-х років, розташуємо вершини в одну лінію; ребра можуть бути зображені як півкола вище або нижче лінії, або як плавні криві, з'єднані з декількох півкіл.
- У коловій схемі вершини обережно розташовані по колу, з метою зменшення перетинів та розташування сусідніх вершин якомога ближче одне до одного. Ребра можуть бути зображені як хорди кола чи його арки зсередини або зовні. Іноді можуть бути використані декілька кіл.
- У [en] вершини записуються таким чином, що кожна вершина знаходиться вище, справа, або з обох боків від іншої, тоді й тільки тоді, коли вона [en] з цієї вершини. Таким чином, стиль макета робить відношення досяжності графа візуально очевидним.
Графічні креслення для конкретних додатків
Графи та зображення графа, що виникають в інших областях застосування, включають:
- [en], зображення соціальної мережі, що часто пропонується [en].
- Діаграма Гассе, це спеціалізований тип зображення графа, спеціалізований на частково впорядковані множини.
- [en] (фр. дитячий малюнок), тип графічного малювання, що використовується в алгебричній геометрії.
- Діаграма станів автомата, графічне зображення скінченного автомата.
- Схема комп'ютерної мережі, зображення вузлів і з'єднань Комп'ютерної мережі.
- Блок-схема, зображення, у якому вузли представляють кроки алгоритму, та сторони — Потік керування між кроками.
- Діаграма потоків даних, зображення в якому вузли беруться за компоненти Інформаційної системи та сторони — рух інформації з одного компонента у інший.
- Біоінформатика включає філогенетичне дерево, мережу білок-білкової взаємодії, та [en].
Крім того, [en] та трасування — кроки автоматизації проєктування електроніки (EDA) схожі у багатьох аспектах до зображення графів, оскільки існує проблема [en] у розподілених обчисленнях, та література з зображення графів містить декілька результатів, позичених з літератури EDA. Однак, ці проблеми також різняться у деяких важливих аспектах: наприклад, у EDA, область мінімізації та довжина сигналу важливіші за естетичність, але проблеми зв'язку у EDA можуть мати понад два термінали на мережу у той час, як аналогічна проблема у зображенні графа зазвичай містить пари вершин для кожного ребра.
Програмне забезпечення
Програмне забезпечення, системи та провайдери систем для малювання графів:
- [en], програма з відкритим вихідним кодом від [en] для зображення великих мереж шляхом малювання вузлів у вигляді горизонтальних ліній.
- [en], програмне забезпечення з відкритим вихідним кодом для візуалізації мереж молекулярної взаємодії.
- Gephi, програмне забезпечення для аналізу та візуалізації мережі з відкритим кодом.
- graph-tool — безкоштовна бібліотека Python для аналізу графів.
- Graphviz, система для малювання графів з відкритим вихідним кодом від [en].
- [en], програмне забезпечення для комерційного аналізу та візуалізації мережі для графових баз даних.
- Mathematica, засіб обчислення загального призначення, що містить 2D і 3D візуалізації графа та інструменти аналізу графів.
- [en], бібліотека .NET (раніше називалася GLEE) з відкритим кодом для зображення графів.
- NetworkX — це бібліотека Python для вивчення графів та мереж.
- [en] — інструмент візуалізації даних з відкритим кодом.
- yEd, редактор графів з функціоналом розмітки.
- [en] 3.0 з
graphdrawing
пакетом (необхідно мати [en]). - [en], програмне забезпечення для візуалізації великих мереж з відкритим кодом.
Див. також
Примітки
- Виноски
- Di Battista та ін., (1994), pp. vii–viii; Herman, Melançon та Marshall, (2000), Section 1.1, «Typical Application Areas».
- Di Battista та ін., (1994), p. 6.
- Di Battista та ін., (1994), p. viii.
- Misue та ін., (1995)
- Knuth, Donald E. (2013), Two thousand years of combinatorics, у Wilson, Robin; Watkins, John J. (ред.), Combinatorics: Ancient and Modern, Oxford University Press, с. 7—37.
- Holten та van Wijk, (2009); Holten та ін., (2011).
- Garg та Tamassia, (1995).
- Longabaugh, (2012).
- Di Battista та ін., (1994), Section 2.1.2, Aesthetics, pp. 14–16; Purchase, Cohen та James, (1997).
- Di Battista та ін., (1994), p 14.
- Di Battista та ін., (1994), p. 16.
- Pach та Sharir, (2009).
- Published in Grandjean, Martin (2014). . Les Cahiers du Numérique. 10 (3): 37—54. doi:10.3166/lcn.10.3.37-54. Архів оригіналу за 27 червня 2015. Процитовано 15 жовтня 2014.
- Di Battista та ін., (1994), Section 2.7, «The Force-Directed Approach», pp. 29–30, and Chapter 10, «Force-Directed Methods», pp. 303—326.
- Beckman, (1994); Koren, (2005).
- Di Battista та ін., (1994), Chapter 5, «Flow and Orthogonal Drawings», pp. 137—170; (Eiglsperger, Fekete та Klau, 2001).
- Herman, Melançon та Marshall, (2000), Section 2.2, «Traditional Layout — An Overview».
- Sugiyama, Tagawa та Toda, (1981); Bastert та Matuszewski, (2001); Di Battista та ін., (1994), Chapter 9, «Layered Drawings of Digraphs», pp. 265—302.
- Saaty, (1964).
- Doğrusöz, Madden та Madden, (1997).
- Di Battista та ін., (1994), Section 4.7, «Dominance Drawings», pp. 112—127.
- Scott, (2000); Brandes, Freeman та Wagner, (2014).
- Di Battista та ін., (1994), pp. 15-16, and Chapter 6, «Flow and Upward Planarity», pp. 171—214; Freese, (2004).
- Zapponi, (2003).
- Anderson та Head, (2006).
- Di Battista та Rimondini, (2014).
- Bachmaier, Brandes та Schreiber, (2014).
- «Graphviz and Dynagraph — Static and Dynamic Graph Drawing Tools», by John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gordon Woodhull, in Jünger та Mutzel, (2004).
- GraphPlot [ 3 лютого 2014 у Wayback Machine.] Mathematica documentation
- . Архів оригіналу за 12 вересня 2013. Процитовано 20 березня 2016.
- Nachmanson, Robertson та Lee, (2008).
- «Tulip — A Huge Graph Visualization Framework», by David Auber, in Jünger та Mutzel, (2004).
- «yFiles — Visualization and Automatic Layout of Graphs», by Roland Wiese, Markus Eiglsperger, and Michael Kaufmann, in Jünger та Mutzel, (2004).
- Tantau, (2013); see also the older GD 2012 presentation [ 27 травня 2016 у Wayback Machine.]
- Загальні посилання
- Di Battista, Giuseppe; ; ; Tollis, Ioannis G. (1994), , , 4: 235—282, doi:10.1016/0925-7721(94)00014-x, архів оригіналу за 27 березня 2016, процитовано 20 березня 2016.
- Di Battista, Giuseppe; ; ; Tollis, Ioannis G. (1998), Graph Drawing: Algorithms for the Visualization of Graphs, Prentice Hall, ISBN .
- Herman, Ivan; Melançon, Guy; Marshall, M. Scott (2000), , IEEE Transactions on Visualization and Computer Graphics, 6 (1): 24—43, doi:10.1109/2945.841119, архів оригіналу за 23 липня 2011, процитовано 20 березня 2016.
- Jünger, Michael; (2004), Graph Drawing Software, Springer-Verlag, ISBN .
- Kaufmann, Michael; , ред. (2001), Drawing Graphs: Methods and Models, , т. 2025, Springer-Verlag, doi:10.1007/3-540-44969-8.
- , ред. (2014), , CRC Press, архів оригіналу за 15 серпня 2013, процитовано 20 березня 2016.
- Спеціалізовані підтеми
- Anderson, James Andrew; Head, Thomas J. (2006), , Cambridge University Press, с. 38—41, ISBN , архів оригіналу за 23 червня 2013, процитовано 20 березня 2016.
- Bachmaier, Christian; Brandes, Ulrik; Schreiber, Falk (2014), Biological Networks, у (ред.), Handbook of Graph Drawing and Visualization, CRC Press, с. 621—651.
- Bastert, Oliver; Matuszewski, Christian (2001), Layered drawings of digraphs, у Kaufmann, Michael; (ред.), Drawing Graphs: Methods and Models, Lecture Notes in Computer Science, т. 2025, Springer-Verlag, с. 87—120, doi:10.1007/3-540-44969-8_5.
- Beckman, Brian (1994), , Tech. Report MSR-TR-94-04, Microsoft Research, архів оригіналу за 1 квітня 2016, процитовано 20 березня 2016.
- Brandes, Ulrik; Freeman, Linton C.; (2014), Social Networks, у (ред.), Handbook of Graph Drawing and Visualization, CRC Press, с. 805—839.
- Di Battista, Giuseppe; Rimondini, Massimo (2014), Computer Networks, у (ред.), Handbook of Graph Drawing and Visualization, CRC Press, с. 763—803.
- Doğrusöz, Uğur; Madden, Brendan; Madden, Patrick (1997), Circular layout in the Graph Layout toolkit, у North, Stephen (ред.), Symposium on Graph Drawing, GD '96 Berkeley, California, USA, September 18–20, 1996, Proceedings, Lecture Notes in Computer Science, т. 1190, Springer-Verlag, с. 92—100, doi:10.1007/3-540-62495-3_40.
- Eiglsperger, Markus; Fekete, Sándor; Klau, Gunnar (2001), Orthogonal graph drawing, у Kaufmann, Michael; (ред.), Drawing Graphs, Lecture Notes in Computer Science, т. 2025, Springer Berlin / Heidelberg, с. 121—171, doi:10.1007/3-540-44969-8_6.
- Freese, Ralph (2004), Automated lattice drawing, у Eklund, Peter (ред.), Concept Lattices: Second International Conference on Formal Concept Analysis, ICFCA 2004, Sydney, Australia, February 23-26, 2004, Proceedings (PDF), Lecture Notes in Computer Science, т. 2961, Springer-Verlag, с. 589—590, doi:10.1007/978-3-540-24651-0_12, архів оригіналу (PDF) за 14 березня 2016, процитовано 20 березня 2016.
- Garg, Ashim; Tamassia, Roberto (1995), Upward planarity testing, , 12 (2): 109—133, doi:10.1007/BF01108622, MR 1354797.
- Holten, Danny; Isenberg, Petra; ; Fekete, Jean-Daniel (2011), An extended evaluation of the readability of tapered, animated, and textured directed-edge representations in node-link graphs, (PDF), с. 195—202, doi:10.1109/PACIFICVIS.2011.5742390, архів оригіналу (PDF) за 11 квітня 2016, процитовано 20 березня 2016.
- Holten, Danny; (2009), A user study on visualizing directed edges in graphs, (PDF), с. 2299—2308, doi:10.1145/1518701.1519054, архів оригіналу (PDF) за 6 листопада 2011, процитовано 20 березня 2016.
- Koren, Yehuda (2005), (PDF), Computers & Mathematics with Applications, 49 (11-12): 1867—1888, doi:10.1016/j.camwa.2004.08.015, MR 2154691, архів оригіналу (PDF) за 2 квітня 2012, процитовано 20 березня 2016.
- Longabaugh, William (2012), (PDF), BMC Bioinformatics, 13: 275, doi:10.1186/1471-2105-13-275, PMID 23102059, архів оригіналу (PDF) за 24 вересня 2015, процитовано 20 березня 2016
{{}}
: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (). - Madden, Brendan; Madden, Patrick; Powers, Steve; Himsolt, Michael (1996), Portable graph layout and editing, у Brandenburg, Franz J. (ред.), Graph Drawing: Symposium on Graph Drawing, GD '95, Passau, Germany, September 20–22, 1995, Proceedings, Lecture Notes in Computer Science, т. 1027, Springer-Verlag, с. 385—395, doi:10.1007/BFb0021822.
- Misue, K.; Eades, P.; Lai, W.; Sugiyama, K. (1995), Layout Adjustment and the Mental Map, Journal of Visual Languages and Computing, 6 (2): 183—210, doi:10.1006/jvlc.1995.1010.
- Nachmanson, Lev; Robertson, George; Lee, Bongshin (2008), Drawing Graphs with GLEE (PDF), у Hong, Seok-Hee; ; Quan, Wu (ред.), Graph Drawing, 15th International Symposium, GD 2007, Sydney, Australia, September 24–26, 2007, Revised Папери, Lecture Notes in Computer Science, т. 4875, Springer-Verlag, с. 389—394, doi:10.1007/978-3-540-77537-9_38.
- ; (2009), 5.5 Angular resolution and slopes, Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures, Mathematical Surveys and Monographs, т. 152, American Mathematical Society, с. 126—127.
- Purchase, H. C.; Cohen, R. F.; James, M. I. (1997), An experimental study of the basis for graph drawing algorithms (PDF), Journal of Experimental Algorithmics, 2, Article 4, doi:10.1145/264216.264222[недоступне посилання з квітня 2019].
- Saaty, Thomas L. (1964), The minimum number of intersections in complete graphs, Proc. Natl. Acad. Sci. U.S.A., 52: 688—690, doi:10.1073/pnas.52.3.688.
- Scott, John (2000), Sociograms and Graph Theory, (вид. 2nd), Sage, с. 64—69, ISBN , архів оригіналу за 22 червня 2013, процитовано 20 березня 2016.
- ; Tagawa, Shôjirô; Toda, Mitsuhiko (1981), Methods for visual understanding of hierarchical system structures, , SMC-11 (2): 109—125, doi:10.1109/TSMC.1981.4308636, MR 0611436.
- Tantau, Till (2013), Graph Drawing in TikZ, , 17 (4): 495—513, doi:10.7155/jgaa.00301.
- Zapponi, Leonardo (August 2003), (PDF), Notices of the American Mathematical Society, 50: 788—789, архів оригіналу (PDF) за 3 березня 2016, процитовано 20 березня 2016.
Посилання
- GraphX library for .NET [ 26 січня 2018 у Wayback Machine.]: WPF бібліотека з відкритим кодом для обчислення та візуалізації графів. Підтримує багато макетів та алгоритмів з'єднання сторін.
- Graph drawing e-print archive [ 12 березня 2016 у Wayback Machine.]: включає інформацію на папері з усього симпозіуму з зображення графів.
- Візуалізація графів, каталог посилань Open Directory Project для багатьох додаткових посиланнь, що зв'язані з візуалізацією графів.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Cya stattya mistit pravopisni leksichni gramatichni stilistichni abo inshi movni pomilki yaki treba vipraviti Vi mozhete dopomogti vdoskonaliti cyu stattyu pogodivshi yiyi iz chinnimi movnimi standartami Zobrazhennya grafiv znahoditsya na peretini matematiki ta komp yuternih nauk tomu sho ob yednuye en teoriyu grafiv z vizualizaciyeyu informaciyi dlya otrimannya dvovimirnih zobrazhen grafiv sho vinikayut v praktichnih zadachah analizu socialnih merezh kartografiyi lingvistiki ta bioinformatiki Grafichne predstavlennya vsesvitnoyi merezhi za odnu hvilinu cherez giperposilannya Zobrazhennya grafa abo merezhevoyi diagrami ce grafichne predstavlennya vershin ta reber grafa Zobrazhennya ne slid plutati z samim grafom zovni duzhe rizni zobrazhennya mozhut vidpovidati odnomu i tomu zh grafu Z tochki zoru teoriyi vse sho maye znachennya ce yaki same pari vershin z yednuyutsya rebrami Odnak u konkretnih situaciyah roztashuvannya vershin i reber v mezhah malyunka vplivaye na jogo zrozumilist zruchnist vikoristannya vartist vigotovlennya ta na estetichne sprijnyattya Zadacha staye bilsh skladnoyu yaksho graf zminyuyetsya z chasom koli dodayutsya i vidalyayutsya rebra zobrazhennya dinamichnogo grafa abo meta polyagaye u zberezhenni mapi dumok koristuvacha DomovlenostiOriyentovanij graf z kincyami sho vkazuyut na napryam rebra Grafi zazvichaj zobrazhuyutsya yak diagrami sho nagoloshuyut na zv yazkah mizh vuzlami de vershini predstavleni u viglyadi diskiv korobok abo tekstovih mitok i reber zobrazhenih vidrizkami lamanimi abo krivimi v evklidovomu prostori Taki diagrami mozhna pobachiti u robotah 13 go stolittya Rajmunda Lulliya yaki vin vikoristovuvav dlya zobrazhennya povnih grafiv z metoyu analizu usih poparnih kombinacij dlya mnozhini metafizichnih ponyat U vipadku oriyentovanih grafiv strilki vzhivayutsya dlya zaznachennya yih oriyentaciyi Prote doslidzhennya koristuvachiv pokazali sho vikoristannya takogo sposobu yak zvuzhennya cyu informaciyu nadaye efektivnishe en vikoristovuye domovlenist sho kozhne rebro oriyentuyetsya vid nizhchoyi do vishoyi vershini sho robit nepotribnim zobrazhennya kincivok stril Alternativni domovlenosti vikoristovuyut taki uyavlennya sumizhnosti yak en de vershini predstavleni u viglyadi oblastej v ploshini sho ne peretinayutsya a rebra zobrazheni yak primikannya mizh oblastyami Zobrazhennya peretiniv v yakih vershini zobrazheni yak geometrichni ob yekti sho ne peretinayutsya a rebra yih peretinami Zobrazhennya vidimosti v yakih vershini predstavleni oblastyami v ploshini a rebra oblastyami sho mayut bezpereshkodnu pryamu vidimist odne odnogo Zobrazhennya zlivannya na yakih rebra gladki krivi v mezhah matematichnih en Zobrazhennya u viglyadi tkanini de vershini predstavleni u viglyadi gorizontalnih linij a rebra u viglyadi vertikalnih linij Zobrazhennya matrici sumizhnosti grafa Kriteriyi yakostiBagato riznih kriteriyiv yakosti buli viznacheni dlya kreslen grafa v sprobi znajti ob yektivnij sposib ocinki yih estetichnosti ta praktichnosti Krim spryamuvannya viboru mizh riznimi metodami komponuvannya dlya grafa deyaki metodi komponuvannya namagayutsya bezposeredno optimizuvati ci zahodi Planarnij graf zobrazhenij bez peretiniv reber Chislom shreshen kreslennya ye chislo par reber sho peretinayutsya mizh soboyu Yaksho cej graf ye planarnim to chasto buvaye zruchno zobraziti jogo bez bud yakih peretiniv reber tobto v takomu vipadku grafik yavlyaye soboyu graf vkladennya Odnak neploski grafi chasto vinikayut u dodatkah tomu algoritmi malyuvannya grafa yak pravilo povinni dozvolyati peretin reber Ploshina zobrazhennya ce najmensha teritoriya vikna obmezhennya grafa shodo najblizhchoyi vidstani mizh bud yakimi dvoma vershinami Kreslennya z menshoyu plosheyu yak pravilo krashe nizh z bilshoyu plosheyu bo voni dozvolyayut zberegti osoblivosti malyunka sho budut pokazani v bilshomu rozmiri j otzhe bilsh rozbirlivo Spivvidnoshennya storin obmezhuvalnogo bloku takozh mozhe buti vazhlivim Simetriya zobrazhennya ce problema poshuku grup simetriyi u danomu grafi i znahodzhennya zobrazhennya sho ye najbilsh simetrichnim Deyaki metodi roztashuvannya avtomatichno vedut do simetrichnih zobrazhen z inshogo boku deyaki metodi zobrazhennya pochinayutsya zi znahodzhennya simetriyi otrimanogo grafa dlya jogo zobrazhennya Vazhlivo sho rebra mayut yakomoga prostishu formu abi oku lyudini bulo legshe yih vidstezhuvati U polilinijnih kreslennyah vazhkist konstrukciyi rebra mozhe vimiryuvatisya u en i bagato metodiv mayut na meti nadati kreslennya z nevelikoyu kilkistyu zagalnih zginiv abo kilkoma zginami na rebro Podibnim chinom dlya splajn krivih skladnist rebra mozhe buti vimiryana kilkistyu kontrolnih tochok na rebri Kilka populyarnih kriteriyiv yakosti pov yazanih z dovzhinoyu reber v zagalnomu vipadku bazhano zvesti do minimumu zagalnu dovzhinu krayiv a takozh maksimalnu dovzhinu bud yakogo krayu Krim togo dlya dovzhin reber mozhe buti krashim zalishatisya odnakovimi a ne riznomanitnimi Kutova rozdilnist ce mira najgostrishogo kuta u zobrazhenni grafa Yaksho graf maye vershini z velikimi stepenyami to vin obov yazkovo matime ne veliku kutovu rozdilnist ale kutova rozdilnist mozhe buti obmezhena znizu funkciyeyu stepenya Chislo nahiliv grafa ce minimalna kilkist riznih nahiliv sho potribni dlya zobrazhennya pryamimi liniyami reber segmenta z peretinom Kubichnij graf maye kilkist nahiliv ne bilshe chotiroh ale graf z p yatma kutami mozhe mati neobmezhenu kilkist nahiliv she zalishayetsya ne zrozumilim chi obmezhena kilkist nahiliv 4 kutnogo grafa Metodi maketuvannyaSilova vizualizaciya merezhi Isnuye bagato strategij komponuvannya grafiv U sistemi silovogo komponuvannya programi zobrazhennya grafiv zminyuyut pochatkove rozmishennya vershin shlyahom bezperervnogo peremishennya vershin vidpovidno do sistemi sil zasnovanoyi na fizichnih metaforah pov yazanih z sistemami pruzhin abo molekulyarnoyi mehaniki Zazvichaj ci sistemi poyednuyut v sobi sili tyazhinnya mizh susidnimi vershinami z silami vidshtovhuvannya mizh usima parami vershin shob znajti maket v yakomu dovzhini reber mali v toj chas yak vershini dobre rozdileni Ci sistemi mozhut vikonuvati metod najshvidshogo spusku na osnovi minimizaciyi z funkciyi energiyi abo zh voni mozhut perevesti svoyi sili bezposeredno u shvidkosti abo priskorennya dlya ruhomih vershin Metod en vikoristovuye vlasni vektori matrici taki yak en otrimanogo z matrici sumizhnosti grafa Ortogonalni metodi komponuvannya sho dozvolyayut rebram grafa jti gorizontalno abo vertikalno paralelno osyam koordinat maketa Ci metodi buli spochatku rozrobleni dlya shem nadvelikogo rivnya integraciyi drukovanih plat i problem komponuvannya ale voni takozh buli pristosovani do zobrazhennya grafiv Voni zazvichaj vklyuchayut bagatofaznij pidhid v yakomu vvedennya grafa virivnyuyetsya shlyahom zamini tochok peretinu vershinami znahoditsya topologichne vkladennya planarizovannogo grafa oriyentaciya storin vibirayetsya tak shob zvesti do minimumu vigini vershini roztashovuyutsya poslidovno z cimi oriyentaciyami i nareshti etap ushilnennya maketu zmenshuye ploshu malyunka Algoritmi maketu derev vikoristovuyut dlya zobrazhennya derevopodibnih struktur z korenem zokrema ce pasuye dlya derev Zazvichaj u tehnici sho nazivayetsya kulovij maket angl balloon layout nashadok kozhnogo vuzla u derevi malyuyetsya na koli sho otochuye vuzol iz radiusom cih kil sho spadaye na nizhchih rivnyah dereva tak shob ci kola ne nakladalisya odne na odnogo Metodi en yaki chasto nazivayut zobrazhennyami u stili Sugiyama najkrashe pidhodyat dlya oriyentovanogo aciklichnogo grafa abo grafiv blizkih do aciklichnih takih yak grafi zalezhnostej mizh modulyami abo funkciyami v programnij sistemi U cih metodah vuzli grafa roztashovani na gorizontalnih sharah z vikoristannyam metodiv takih yak en takim chinom sho bilshist reber jdut vniz vid odnogo sharu do inshogo pislya cogo kroku vuzli v kozhnomu shari roztashovuyutsya z metoyu minimizaciyi peretiniv Dugova diagrama grafa Dugova diagrama ce stil komponuvannya vidomij z 1960 h rokiv roztashuyemo vershini v odnu liniyu rebra mozhut buti zobrazheni yak pivkola vishe abo nizhche liniyi abo yak plavni krivi z yednani z dekilkoh pivkil U kolovij shemi vershini oberezhno roztashovani po kolu z metoyu zmenshennya peretiniv ta roztashuvannya susidnih vershin yakomoga blizhche odne do odnogo Rebra mozhut buti zobrazheni yak hordi kola chi jogo arki zseredini abo zovni Inodi mozhut buti vikoristani dekilka kil U en vershini zapisuyutsya takim chinom sho kozhna vershina znahoditsya vishe sprava abo z oboh bokiv vid inshoyi todi j tilki todi koli vona en z ciyeyi vershini Takim chinom stil maketa robit vidnoshennya dosyazhnosti grafa vizualno ochevidnim Grafichni kreslennya dlya konkretnih dodatkivGrafi ta zobrazhennya grafa sho vinikayut v inshih oblastyah zastosuvannya vklyuchayut en zobrazhennya socialnoyi merezhi sho chasto proponuyetsya en Diagrama Gasse ce specializovanij tip zobrazhennya grafa specializovanij na chastkovo vporyadkovani mnozhini en fr dityachij malyunok tip grafichnogo malyuvannya sho vikoristovuyetsya v algebrichnij geometriyi Diagrama staniv avtomata grafichne zobrazhennya skinchennogo avtomata Shema komp yuternoyi merezhi zobrazhennya vuzliv i z yednan Komp yuternoyi merezhi Blok shema zobrazhennya u yakomu vuzli predstavlyayut kroki algoritmu ta storoni Potik keruvannya mizh krokami Diagrama potokiv danih zobrazhennya v yakomu vuzli berutsya za komponenti Informacijnoyi sistemi ta storoni ruh informaciyi z odnogo komponenta u inshij Bioinformatika vklyuchaye filogenetichne derevo merezhu bilok bilkovoyi vzayemodiyi ta en Krim togo en ta trasuvannya kroki avtomatizaciyi proyektuvannya elektroniki EDA shozhi u bagatoh aspektah do zobrazhennya grafiv oskilki isnuye problema en u rozpodilenih obchislennyah ta literatura z zobrazhennya grafiv mistit dekilka rezultativ pozichenih z literaturi EDA Odnak ci problemi takozh riznyatsya u deyakih vazhlivih aspektah napriklad u EDA oblast minimizaciyi ta dovzhina signalu vazhlivishi za estetichnist ale problemi zv yazku u EDA mozhut mati ponad dva terminali na merezhu u toj chas yak analogichna problema u zobrazhenni grafa zazvichaj mistit pari vershin dlya kozhnogo rebra Programne zabezpechennyaProgramne zabezpechennya sistemi ta provajderi sistem dlya malyuvannya grafiv en programa z vidkritim vihidnim kodom vid en dlya zobrazhennya velikih merezh shlyahom malyuvannya vuzliv u viglyadi gorizontalnih linij en programne zabezpechennya z vidkritim vihidnim kodom dlya vizualizaciyi merezh molekulyarnoyi vzayemodiyi Gephi programne zabezpechennya dlya analizu ta vizualizaciyi merezhi z vidkritim kodom graph tool bezkoshtovna biblioteka Python dlya analizu grafiv Graphviz sistema dlya malyuvannya grafiv z vidkritim vihidnim kodom vid en en programne zabezpechennya dlya komercijnogo analizu ta vizualizaciyi merezhi dlya grafovih baz danih Mathematica zasib obchislennya zagalnogo priznachennya sho mistit 2D i 3D vizualizaciyi grafa ta instrumenti analizu grafiv en biblioteka NET ranishe nazivalasya GLEE z vidkritim kodom dlya zobrazhennya grafiv NetworkX ce biblioteka Python dlya vivchennya grafiv ta merezh en instrument vizualizaciyi danih z vidkritim kodom yEd redaktor grafiv z funkcionalom rozmitki en 3 0 z graphdrawing paketom neobhidno mati en en programne zabezpechennya dlya vizualizaciyi velikih merezh z vidkritim kodom Div takozhOdnochasne vkladennya grafivPrimitkiVinoski Di Battista ta in 1994 pp vii viii Herman Melancon ta Marshall 2000 Section 1 1 Typical Application Areas Di Battista ta in 1994 p 6 Di Battista ta in 1994 p viii Misue ta in 1995 Knuth Donald E 2013 Two thousand years of combinatorics u Wilson Robin Watkins John J red Combinatorics Ancient and Modern Oxford University Press s 7 37 Holten ta van Wijk 2009 Holten ta in 2011 Garg ta Tamassia 1995 Longabaugh 2012 Di Battista ta in 1994 Section 2 1 2 Aesthetics pp 14 16 Purchase Cohen ta James 1997 Di Battista ta in 1994 p 14 Di Battista ta in 1994 p 16 Pach ta Sharir 2009 Published in Grandjean Martin 2014 Les Cahiers du Numerique 10 3 37 54 doi 10 3166 lcn 10 3 37 54 Arhiv originalu za 27 chervnya 2015 Procitovano 15 zhovtnya 2014 Di Battista ta in 1994 Section 2 7 The Force Directed Approach pp 29 30 and Chapter 10 Force Directed Methods pp 303 326 Beckman 1994 Koren 2005 Di Battista ta in 1994 Chapter 5 Flow and Orthogonal Drawings pp 137 170 Eiglsperger Fekete ta Klau 2001 Herman Melancon ta Marshall 2000 Section 2 2 Traditional Layout An Overview Sugiyama Tagawa ta Toda 1981 Bastert ta Matuszewski 2001 Di Battista ta in 1994 Chapter 9 Layered Drawings of Digraphs pp 265 302 Saaty 1964 Dogrusoz Madden ta Madden 1997 Di Battista ta in 1994 Section 4 7 Dominance Drawings pp 112 127 Scott 2000 Brandes Freeman ta Wagner 2014 Di Battista ta in 1994 pp 15 16 and Chapter 6 Flow and Upward Planarity pp 171 214 Freese 2004 Zapponi 2003 Anderson ta Head 2006 Di Battista ta Rimondini 2014 Bachmaier Brandes ta Schreiber 2014 Graphviz and Dynagraph Static and Dynamic Graph Drawing Tools by John Ellson Emden R Gansner Eleftherios Koutsofios Stephen C North and Gordon Woodhull in Junger ta Mutzel 2004 GraphPlot 3 lyutogo 2014 u Wayback Machine Mathematica documentation Arhiv originalu za 12 veresnya 2013 Procitovano 20 bereznya 2016 Nachmanson Robertson ta Lee 2008 Tulip A Huge Graph Visualization Framework by David Auber in Junger ta Mutzel 2004 yFiles Visualization and Automatic Layout of Graphs by Roland Wiese Markus Eiglsperger and Michael Kaufmann in Junger ta Mutzel 2004 Tantau 2013 see also the older GD 2012 presentation 27 travnya 2016 u Wayback Machine Zagalni posilannya Di Battista Giuseppe Tollis Ioannis G 1994 4 235 282 doi 10 1016 0925 7721 94 00014 x arhiv originalu za 27 bereznya 2016 procitovano 20 bereznya 2016 Di Battista Giuseppe Tollis Ioannis G 1998 Graph Drawing Algorithms for the Visualization of Graphs Prentice Hall ISBN 978 0 13 301615 4 Herman Ivan Melancon Guy Marshall M Scott 2000 IEEE Transactions on Visualization and Computer Graphics 6 1 24 43 doi 10 1109 2945 841119 arhiv originalu za 23 lipnya 2011 procitovano 20 bereznya 2016 Junger Michael 2004 Graph Drawing Software Springer Verlag ISBN 978 3 540 00881 1 Kaufmann Michael red 2001 Drawing Graphs Methods and Models t 2025 Springer Verlag doi 10 1007 3 540 44969 8 red 2014 CRC Press arhiv originalu za 15 serpnya 2013 procitovano 20 bereznya 2016 Specializovani pidtemi Anderson James Andrew Head Thomas J 2006 Cambridge University Press s 38 41 ISBN 978 0 521 84887 9 arhiv originalu za 23 chervnya 2013 procitovano 20 bereznya 2016 Bachmaier Christian Brandes Ulrik Schreiber Falk 2014 Biological Networks u red Handbook of Graph Drawing and Visualization CRC Press s 621 651 Bastert Oliver Matuszewski Christian 2001 Layered drawings of digraphs u Kaufmann Michael red Drawing Graphs Methods and Models Lecture Notes in Computer Science t 2025 Springer Verlag s 87 120 doi 10 1007 3 540 44969 8 5 Beckman Brian 1994 Tech Report MSR TR 94 04 Microsoft Research arhiv originalu za 1 kvitnya 2016 procitovano 20 bereznya 2016 Brandes Ulrik Freeman Linton C 2014 Social Networks u red Handbook of Graph Drawing and Visualization CRC Press s 805 839 Di Battista Giuseppe Rimondini Massimo 2014 Computer Networks u red Handbook of Graph Drawing and Visualization CRC Press s 763 803 Dogrusoz Ugur Madden Brendan Madden Patrick 1997 Circular layout in the Graph Layout toolkit u North Stephen red Symposium on Graph Drawing GD 96 Berkeley California USA September 18 20 1996 Proceedings Lecture Notes in Computer Science t 1190 Springer Verlag s 92 100 doi 10 1007 3 540 62495 3 40 Eiglsperger Markus Fekete Sandor Klau Gunnar 2001 Orthogonal graph drawing u Kaufmann Michael red Drawing Graphs Lecture Notes in Computer Science t 2025 Springer Berlin Heidelberg s 121 171 doi 10 1007 3 540 44969 8 6 Freese Ralph 2004 Automated lattice drawing u Eklund Peter red Concept Lattices Second International Conference on Formal Concept Analysis ICFCA 2004 Sydney Australia February 23 26 2004 Proceedings PDF Lecture Notes in Computer Science t 2961 Springer Verlag s 589 590 doi 10 1007 978 3 540 24651 0 12 arhiv originalu PDF za 14 bereznya 2016 procitovano 20 bereznya 2016 Garg Ashim Tamassia Roberto 1995 Upward planarity testing 12 2 109 133 doi 10 1007 BF01108622 MR 1354797 Holten Danny Isenberg Petra Fekete Jean Daniel 2011 An extended evaluation of the readability of tapered animated and textured directed edge representations in node link graphs PDF s 195 202 doi 10 1109 PACIFICVIS 2011 5742390 arhiv originalu PDF za 11 kvitnya 2016 procitovano 20 bereznya 2016 Holten Danny 2009 A user study on visualizing directed edges in graphs PDF s 2299 2308 doi 10 1145 1518701 1519054 arhiv originalu PDF za 6 listopada 2011 procitovano 20 bereznya 2016 Koren Yehuda 2005 PDF Computers amp Mathematics with Applications 49 11 12 1867 1888 doi 10 1016 j camwa 2004 08 015 MR 2154691 arhiv originalu PDF za 2 kvitnya 2012 procitovano 20 bereznya 2016 Longabaugh William 2012 PDF BMC Bioinformatics 13 275 doi 10 1186 1471 2105 13 275 PMID 23102059 arhiv originalu PDF za 24 veresnya 2015 procitovano 20 bereznya 2016 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Citation title Shablon Citation citation a Obslugovuvannya CS1 Storinki iz nepoznachenim DOI z bezkoshtovnim dostupom posilannya Madden Brendan Madden Patrick Powers Steve Himsolt Michael 1996 Portable graph layout and editing u Brandenburg Franz J red Graph Drawing Symposium on Graph Drawing GD 95 Passau Germany September 20 22 1995 Proceedings Lecture Notes in Computer Science t 1027 Springer Verlag s 385 395 doi 10 1007 BFb0021822 Misue K Eades P Lai W Sugiyama K 1995 Layout Adjustment and the Mental Map Journal of Visual Languages and Computing 6 2 183 210 doi 10 1006 jvlc 1995 1010 Nachmanson Lev Robertson George Lee Bongshin 2008 Drawing Graphs with GLEE PDF u Hong Seok Hee Quan Wu red Graph Drawing 15th International Symposium GD 2007 Sydney Australia September 24 26 2007 Revised Paperi Lecture Notes in Computer Science t 4875 Springer Verlag s 389 394 doi 10 1007 978 3 540 77537 9 38 2009 5 5 Angular resolution and slopes Combinatorial Geometry and Its Algorithmic Applications The Alcala Lectures Mathematical Surveys and Monographs t 152 American Mathematical Society s 126 127 Purchase H C Cohen R F James M I 1997 An experimental study of the basis for graph drawing algorithms PDF Journal of Experimental Algorithmics 2 Article 4 doi 10 1145 264216 264222 nedostupne posilannya z kvitnya 2019 Saaty Thomas L 1964 The minimum number of intersections in complete graphs Proc Natl Acad Sci U S A 52 688 690 doi 10 1073 pnas 52 3 688 Scott John 2000 Sociograms and Graph Theory vid 2nd Sage s 64 69 ISBN 978 0 7619 6339 4 arhiv originalu za 22 chervnya 2013 procitovano 20 bereznya 2016 Tagawa Shojiro Toda Mitsuhiko 1981 Methods for visual understanding of hierarchical system structures SMC 11 2 109 125 doi 10 1109 TSMC 1981 4308636 MR 0611436 Tantau Till 2013 Graph Drawing in TikZ 17 4 495 513 doi 10 7155 jgaa 00301 Zapponi Leonardo August 2003 PDF Notices of the American Mathematical Society 50 788 789 arhiv originalu PDF za 3 bereznya 2016 procitovano 20 bereznya 2016 PosilannyaGraphX library for NET 26 sichnya 2018 u Wayback Machine WPF biblioteka z vidkritim kodom dlya obchislennya ta vizualizaciyi grafiv Pidtrimuye bagato maketiv ta algoritmiv z yednannya storin Graph drawing e print archive 12 bereznya 2016 u Wayback Machine vklyuchaye informaciyu na paperi z usogo simpoziumu z zobrazhennya grafiv Vizualizaciya grafiv katalog posilan Open Directory Project dlya bagatoh dodatkovih posilann sho zv yazani z vizualizaciyeyu grafiv