Блочна матриця — матриця, що уявно поділена на однакові прямокутні частини (блоки), які самі розглядаються як матриці.
Приклад
Матриця складається з наступних блоків (матриць):
І може бути записана як блочна матриця
Множення блочних матриць
Множення блочних матриць може бути обчислене тільки за допомогою операцій над блоками. Якщо
- — матриця розміру m×p, поділена на q×s блоків,
- — матриця розміру p×n, поділена на s×r блоків,
тоді добуток
буде матрицею розміру m×n, поділеною на q×r блоків. Блоки обчислюватимуться за формулою:
Або, використовуючи нотацію Ейнштейна, цю формулу можна записати так:
Обернена до блочної матриця
Нехай A, B, C, D є матрицями розмірів p×p, p×q, q×p і q×q відповідно і P — наступна блочна матриця:
Якщо A і доповнення Шура D - CA-1B для блоку A матриці P є оборотними матрицями, то
Якщо D і доповнення Шура A - BD-1C для блоку D матриці P є оборотними матрицями, то
Якщо наведені вище умови виконуються разом, то
Визначник блочної матриці
Для блочної матриці, яка складається з чотирьох матриць A, B, C, D розмірів p×p, p×q, q×p і q×q відповідно, при умові, що одна з матриць B або C нульова, можна вивести формулу визначника, яка схожа на формулу визначника матриці 2×2:
Якщо A — оборотна матриця, то
Якщо D — оборотна матриця, то
Тепер нехай всі блоки будуть квадратними матрицями однакового розміру і
Якщо A і B комутують, то
Якщо A і C комутують, то
Якщо B і D комутують, то
Якщо C і D комутують, то
Блочні діагональні матриці
Блочна діагональна матриця — це блочна матриця що є квадратною матрицею, блоки якої також є квадратними матрицями і блоки поза основною діагоналлю є нульовими матрицями. Тобто має форму
де Ak — квадратні матриці; іншими словами, пряма сума матриць A1, …, An. Записується A1 A2 An чи diag(A1, A2,, An).
Визначник та слід такої матриці мають наступні властивості:
- ,
- .
Блочна діагональна матриця оборотна тоді і тільки тоді, коли кожен з її блоків на діагоналі є оборотною матрицею, і тоді
Для довільного натурального m буде:
Множина власних векторів блочної матриці збігається з об'єднанням множин власних векторів матриць на її діагоналі. Те саме стосується і власних значень.
Блочна тридіагональна матриця
Блочна тридіагональна матриця - це квадратна матриця, яка має квадратні матриці (блоки) на головній діагоналі та діагоналях під та над нею, а всі інші блоки - нульові матриці.
Це по-суті тридіагональна матриця, але на місці скалярів в неї підматриці. Така матриця має наступний вигляд:
де Ak, Bk та Ck - квадратні підматриці нижньої, головної та вищої діагоналі відповідно.
Блочні тридіагональні матриці зустрічаються при розв'язанні інженерних задач (наприклад в обчислювальній гідродинаміці). Існують оптимізовані чисельні методи для LU-розкладу, і відповідно ефективні алгоритми розв'язку систем рівнянь з матрицею кофіцієнтів, яка є блочною тридіагональною матрицею. Алгоритм Томаса, який використовується для ефективного розв'язку систем рівнянь з тридіагональною матрицею також може застосовуватись при використанні матричних операцій до блочних тридіагональних матриць.
Пряма сума
Для довільних матриць A (розміру m×n) та B (розміру p×q), прямою сумою (позначається A B) буде матриця
Наприклад:
Ця операція узагальнюється на масиви довільної розмірності (не потрібно щоб A та B мали однакову розмірність).
Див. також
Джерела
- Гантмахер Ф. Р. Теория матриц. — 5-е. — М: : Физматлит, 2010. — 559 с. — .(рос.)
- Strang, Gilbert (1999). Lecture 3: Multiplication and inverse matrices. MIT Open Course ware. 18:30–21:10.
Примітки
- Dennis Bernstein. Matrix Mathematics. — Princeton University Press, 2005. — 44 с. — .
- Silvester, J. R. (2000). (PDF). Math. Gaz. 84 (501): 460—467. doi:10.2307/3620776. JSTOR 3620776. Архів оригіналу (PDF) за 18 березня 2015. Процитовано 25 червня 2021.
- Sothanaphan, Nat (January 2017). Determinants of block matrices with noncommuting blocks. Linear Algebra and Its Applications. 512: 202—218. arXiv:1805.06027. doi:10.1016/j.laa.2016.10.004. S2CID 119272194.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Blochna matricya matricya sho uyavno podilena na odnakovi pryamokutni chastini bloki yaki sami rozglyadayutsya yak matrici PrikladMatricya P 1122112233443344 displaystyle P begin pmatrix 1 amp 1 amp 2 amp 2 1 amp 1 amp 2 amp 2 3 amp 3 amp 4 amp 4 3 amp 3 amp 4 amp 4 end pmatrix skladayetsya z nastupnih blokiv matric P11 1111 P12 2222 P21 3333 P22 4444 displaystyle P 11 begin pmatrix 1 amp 1 1 amp 1 end pmatrix P 12 begin pmatrix 2 amp 2 2 amp 2 end pmatrix P 21 begin pmatrix 3 amp 3 3 amp 3 end pmatrix P 22 begin pmatrix 4 amp 4 4 amp 4 end pmatrix I mozhe buti zapisana yak blochna matricya P P11P12P21P22 displaystyle P begin pmatrix P 11 amp P 12 P 21 amp P 22 end pmatrix Mnozhennya blochnih matricMnozhennya blochnih matric mozhe buti obchislene tilki za dopomogoyu operacij nad blokami Yaksho A A11A12 A1sA21A22 A2s Aq1Aq2 Aqs displaystyle A begin pmatrix A 11 amp A 12 amp cdots amp A 1s A 21 amp A 22 amp cdots amp A 2s vdots amp vdots amp ddots amp vdots A q1 amp A q2 amp cdots amp A qs end pmatrix matricya rozmiru m p podilena na q s blokiv B B11B12 B1rB21B22 B2r Bs1Bs2 Bsr displaystyle B begin pmatrix B 11 amp B 12 amp cdots amp B 1r B 21 amp B 22 amp cdots amp B 2r vdots amp vdots amp ddots amp vdots B s1 amp B s2 amp cdots amp B sr end pmatrix matricya rozmiru p n podilena na s r blokiv todi dobutok C AB displaystyle C AB bude matriceyu rozmiru m n podilenoyu na q r blokiv Bloki obchislyuvatimutsya za formuloyu Cij k 1sAikBkj displaystyle C ij sum k 1 s A ik B kj Abo vikoristovuyuchi notaciyu Ejnshtejna cyu formulu mozhna zapisati tak Cij AikBkj displaystyle C ij A ik B kj Obernena do blochnoyi matricyaDiv takozh Nevirodzhena matricya Obernennya blokami Nehaj A B C D ye matricyami rozmiriv p p p q q p i q q vidpovidno i P nastupna blochna matricya P ABCD displaystyle P begin pmatrix A amp B C amp D end pmatrix Yaksho A i dopovnennya Shura D CA 1B dlya bloku A matrici P ye oborotnimi matricyami to P 1 A 1 A 1B D CA 1B 1CA 1 A 1B D CA 1B 1 D CA 1B 1CA 1 D CA 1B 1 displaystyle P 1 begin pmatrix A 1 A 1 B left D CA 1 B right 1 CA 1 amp A 1 B left D CA 1 B right 1 left D CA 1 B right 1 CA 1 amp left D CA 1 B right 1 end pmatrix Yaksho D i dopovnennya Shura A BD 1C dlya bloku D matrici P ye oborotnimi matricyami to P 1 A BD 1C 1 A BD 1C 1BD 1 D 1C A BD 1C 1D 1 D 1C A BD 1C 1BD 1 displaystyle P 1 begin pmatrix left A BD 1 C right 1 amp left A BD 1 C right 1 BD 1 D 1 C left A BD 1 C right 1 amp D 1 D 1 C left A BD 1 C right 1 BD 1 end pmatrix Yaksho navedeni vishe umovi vikonuyutsya razom to P 1 A BD 1C 100 D CA 1B 1 Ip BD 1 CA 1Iq displaystyle P 1 begin pmatrix left A BD 1 C right 1 amp 0 0 amp left D CA 1 B right 1 end pmatrix begin pmatrix I p amp BD 1 CA 1 amp I q end pmatrix Viznachnik blochnoyi matriciDlya blochnoyi matrici yaka skladayetsya z chotiroh matric A B C D rozmiriv p p p q q p i q q vidpovidno pri umovi sho odna z matric B abo C nulova mozhna vivesti formulu viznachnika yaka shozha na formulu viznachnika matrici 2 2 det A0CD det A det D det AB0D displaystyle det begin pmatrix A amp 0 C amp D end pmatrix det A det D det begin pmatrix A amp B 0 amp D end pmatrix Yaksho A oborotna matricya to det ABCD det A det D CA 1B displaystyle det begin pmatrix A amp B C amp D end pmatrix det A det left D CA 1 B right Yaksho D oborotna matricya to det ABCD det D det A BD 1C displaystyle det begin pmatrix A amp B C amp D end pmatrix det D det left A BD 1 C right Teper nehaj vsi bloki budut kvadratnimi matricyami odnakovogo rozmiru i P ABCD displaystyle P begin pmatrix A amp B C amp D end pmatrix Yaksho A i B komutuyut to detP det DA CB displaystyle det P det DA CB Yaksho A i C komutuyut to detP det AD CB displaystyle det P det AD CB Yaksho B i D komutuyut to detP det DA BC displaystyle det P det DA BC Yaksho C i D komutuyut to detP det AD BC displaystyle det P det AD BC Blochni diagonalni matriciBlochna diagonalna matricya ce blochna matricya sho ye kvadratnoyu matriceyu bloki yakoyi takozh ye kvadratnimi matricyami i bloki poza osnovnoyu diagonallyu ye nulovimi matricyami Tobto maye formu A A10 00A2 0 00 An displaystyle A begin pmatrix A 1 amp 0 amp cdots amp 0 0 amp A 2 amp cdots amp 0 vdots amp vdots amp ddots amp vdots 0 amp 0 amp cdots amp A n end pmatrix de Ak kvadratni matrici inshimi slovami pryama suma matric A1 An Zapisuyetsya A1 displaystyle oplus A2 displaystyle oplus ldots oplus An chi diag A1 A2 displaystyle ldots An Viznachnik ta slid takoyi matrici mayut nastupni vlastivosti detA k 1ndetAk displaystyle det A prod k 1 n det A k tr A k 1ntr Ak displaystyle operatorname tr A sum k 1 n operatorname tr A k Blochna diagonalna matricya oborotna todi i tilki todi koli kozhen z yiyi blokiv na diagonali ye oborotnoyu matriceyu i todi A10 00A2 0 00 An 1 A1 10 00A2 1 0 00 An 1 displaystyle begin pmatrix A 1 amp 0 amp cdots amp 0 0 amp A 2 amp cdots amp 0 vdots amp vdots amp ddots amp vdots 0 amp 0 amp cdots amp A n end pmatrix 1 begin pmatrix A 1 1 amp 0 amp cdots amp 0 0 amp A 2 1 amp cdots amp 0 vdots amp vdots amp ddots amp vdots 0 amp 0 amp cdots amp A n 1 end pmatrix Dlya dovilnogo naturalnogo m bude A10 00A2 0 00 An m A1m0 00A2m 0 00 Anm displaystyle begin pmatrix A 1 amp 0 amp cdots amp 0 0 amp A 2 amp cdots amp 0 vdots amp vdots amp ddots amp vdots 0 amp 0 amp cdots amp A n end pmatrix m begin pmatrix A 1 m amp 0 amp cdots amp 0 0 amp A 2 m amp cdots amp 0 vdots amp vdots amp ddots amp vdots 0 amp 0 amp cdots amp A n m end pmatrix Mnozhina vlasnih vektoriv blochnoyi matrici zbigayetsya z ob yednannyam mnozhin vlasnih vektoriv matric na yiyi diagonali Te same stosuyetsya i vlasnih znachen Blochna tridiagonalna matricyaBlochna tridiagonalna matricya ce kvadratna matricya yaka maye kvadratni matrici bloki na golovnij diagonali ta diagonalyah pid ta nad neyu a vsi inshi bloki nulovi matrici Ce po suti tridiagonalna matricya ale na misci skalyariv v neyi pidmatrici Taka matricya maye nastupnij viglyad A B1C1 0A2B2C2 AkBkCk An 1Bn 1Cn 10 AnBn displaystyle A begin pmatrix B 1 amp C 1 amp amp amp cdots amp amp 0 A 2 amp B 2 amp C 2 amp amp amp amp amp ddots amp ddots amp ddots amp amp amp vdots amp amp A k amp B k amp C k amp amp vdots amp amp amp ddots amp ddots amp ddots amp amp amp amp amp A n 1 amp B n 1 amp C n 1 0 amp amp cdots amp amp amp A n amp B n end pmatrix de Ak Bk ta Ck kvadratni pidmatrici nizhnoyi golovnoyi ta vishoyi diagonali vidpovidno Blochni tridiagonalni matrici zustrichayutsya pri rozv yazanni inzhenernih zadach napriklad v obchislyuvalnij gidrodinamici Isnuyut optimizovani chiselni metodi dlya LU rozkladu i vidpovidno efektivni algoritmi rozv yazku sistem rivnyan z matriceyu koficiyentiv yaka ye blochnoyu tridiagonalnoyu matriceyu Algoritm Tomasa yakij vikoristovuyetsya dlya efektivnogo rozv yazku sistem rivnyan z tridiagonalnoyu matriceyu takozh mozhe zastosovuvatis pri vikoristanni matrichnih operacij do blochnih tridiagonalnih matric Pryama sumaDokladnishe Dodavannya matric Pryama suma Dlya dovilnih matric A rozmiru m n ta B rozmiru p q pryamoyu sumoyu poznachayetsya A displaystyle oplus B bude matricya A B a11 a1n0 0 am1 amn0 00 0b11 b1q 0 0bp1 bpq displaystyle A oplus B begin pmatrix a 11 amp cdots amp a 1n amp 0 amp cdots amp 0 vdots amp cdots amp vdots amp vdots amp cdots amp vdots a m1 amp cdots amp a mn amp 0 amp cdots amp 0 0 amp cdots amp 0 amp b 11 amp cdots amp b 1q vdots amp cdots amp vdots amp vdots amp cdots amp vdots 0 amp cdots amp 0 amp b p1 amp cdots amp b pq end pmatrix Napriklad 132231 1601 13200231000001600001 displaystyle begin pmatrix 1 amp 3 amp 2 2 amp 3 amp 1 end pmatrix oplus begin pmatrix 1 amp 6 0 amp 1 end pmatrix begin pmatrix 1 amp 3 amp 2 amp 0 amp 0 2 amp 3 amp 1 amp 0 amp 0 0 amp 0 amp 0 amp 1 amp 6 0 amp 0 amp 0 amp 0 amp 1 end pmatrix Cya operaciya uzagalnyuyetsya na masivi dovilnoyi rozmirnosti ne potribno shob A ta B mali odnakovu rozmirnist Div takozhDobutok Kronekera Zhordanova normalna formaDzherelaGantmaher F R Teoriya matric 5 e M Fizmatlit 2010 559 s ISBN 5 9221 0524 8 ros Strang Gilbert 1999 Lecture 3 Multiplication and inverse matrices MIT Open Course ware 18 30 21 10 PrimitkiDennis Bernstein Matrix Mathematics Princeton University Press 2005 44 s ISBN 0 691 11802 7 Silvester J R 2000 PDF Math Gaz 84 501 460 467 doi 10 2307 3620776 JSTOR 3620776 Arhiv originalu PDF za 18 bereznya 2015 Procitovano 25 chervnya 2021 Sothanaphan Nat January 2017 Determinants of block matrices with noncommuting blocks Linear Algebra and Its Applications 512 202 218 arXiv 1805 06027 doi 10 1016 j laa 2016 10 004 S2CID 119272194