Тор — геометричне тіло, що утворюється обертанням кола навколо осі, котра лежить у одній площині з колом, але не перетинає його. Форма тора зовні нагадує бублик.
Геометрія
Рівняння тора не складно отримати, перейшовши від декартових координат з початком в центрі тора (радіус-вектор ) до кутів та , що описують обертання навколо осей тора, як зображено на Рис. 2. В результаті має місце параметричне рівняння:
Тут , R — відстань від центру кола до осі обертання, r — радіус кола.
Не параметричне рівняння в декартових координатах і з тими ж радіусами має четвертий степінь:
Площа поверхні тора A та його об'єм V визначаються за формулами:
Ці формули точно збігаються з формулами для площі та об'єму циліндра з висотою та радіусом r, який утворюється при розрізанні тора та випрямленні його вздовж лінії, що проходить через центр труби. Втрати площі та об'єму на внутрішньому боці тора точно компенсуються збільшенням площі та об'єму на зовнішньому боці.
Топологія
З топологічного погляду тор — це замкнута поверхня, яка визначається як добуток двох кіл: S¹ × S¹.
Фундаментальною групою тора є прямий добуток фундаментальних груп кола:
Інтуїтивно це означає, що траєкторія, що спочатку обходить «дірку» тора (нехай для сталого кута p), а потім його тіло (нехай для сталого кута t) може бути деформована у траєкторію, що спочатку обходить тіло тора, а потім — дірку. Таким чином, обходи тора «по широті» та «по довготі» комутують.
Тор є поверхнею повноторія (заповненого тора).
n-вимірний тор
Застосування
- Поняття тора широко застосовується в теорії динамічних систем, а також у теорії КАМ. Зокрема, динаміка інтегровної гамільтонової системи відбувається на торах у фазовому просторі системи.
- В електро- та радіотехніці використовується тороїдальний трансформатор (схеми примножувачів напруги, відхилення променів ЕПТ, тощо).
Див. також
Посилання
- Тор // Термінологічний словник-довідник з будівництва та архітектури / Р. А. Шмиг, В. М. Боярчук, І. М. Добрянський, В. М. Барабаш ; за заг. ред. Р. А. Шмига. — Львів, 2010. — С. 194. — .
Вікісховище має мультимедійні дані за темою: Тор |
- Creation of a torus
Це незавершена стаття з математики. Ви можете проєкту, виправивши або дописавши її. |
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Tor geometrichne tilo sho utvoryuyetsya obertannyam kola navkolo osi kotra lezhit u odnij ploshini z kolom ale ne peretinaye jogo Forma tora zovni nagaduye bublik Ris 1 Tor U Vikipediyi ye statti pro inshi znachennya cogo termina Tor znachennya GeometriyaRis 2 Tor ta jogo osnovni parametri Rivnyannya tora ne skladno otrimati perejshovshi vid dekartovih koordinat z pochatkom v centri tora radius vektor X x y z displaystyle vec X x y z do kutiv p displaystyle p ta t displaystyle t sho opisuyut obertannya navkolo osej tora yak zobrazheno na Ris 2 V rezultati maye misce parametrichne rivnyannya x t p R r cos p cos t displaystyle x t p R r cos p cos t y t p R r cos p sin t displaystyle y t p R r cos p sin t z t p r sin p displaystyle z t p r sin p Tut t p 0 2 p displaystyle t p in 0 2 pi R vidstan vid centru kola do osi obertannya r radius kola Ne parametrichne rivnyannya v dekartovih koordinatah i z timi zh radiusami maye chetvertij stepin x 2 y 2 z 2 R 2 r 2 2 4 R 2 x 2 y 2 0 displaystyle left x 2 y 2 z 2 R 2 r 2 right 2 4R 2 left x 2 y 2 right 0 Plosha poverhni tora A ta jogo ob yem V viznachayutsya za formulami A 4 p 2 R r 2 p r 2 p R displaystyle A 4 pi 2 Rr left 2 pi r right left 2 pi R right V 2 p 2 R r 2 p r 2 2 p R displaystyle V 2 pi 2 Rr 2 left pi r 2 right left 2 pi R right Ci formuli tochno zbigayutsya z formulami dlya ploshi ta ob yemu cilindra z visotoyu 2 p R displaystyle 2 pi R ta radiusom r yakij utvoryuyetsya pri rozrizanni tora ta vipryamlenni jogo vzdovzh liniyi sho prohodit cherez centr trubi Vtrati ploshi ta ob yemu na vnutrishnomu boci tora tochno kompensuyutsya zbilshennyam ploshi ta ob yemu na zovnishnomu boci TopologiyaZ topologichnogo poglyadu tor ce zamknuta poverhnya yaka viznachayetsya yak dobutok dvoh kil S S Ris 3 Tor yak dobutok dvoh kil Fundamentalnoyu grupoyu tora ye pryamij dobutok fundamentalnih grup kola p 1 T 2 p 1 S 1 p 1 S 1 Z Z displaystyle pi 1 mathbb T 2 pi 1 S 1 times pi 1 S 1 cong mathbb Z times mathbb Z Intuyitivno ce oznachaye sho trayektoriya sho spochatku obhodit dirku tora nehaj dlya stalogo kuta p a potim jogo tilo nehaj dlya stalogo kuta t mozhe buti deformovana u trayektoriyu sho spochatku obhodit tilo tora a potim dirku Takim chinom obhodi tora po shiroti ta po dovgoti komutuyut Tor ye poverhneyu povnotoriya zapovnenogo tora n vimirnij torZastosuvannyaPonyattya tora shiroko zastosovuyetsya v teoriyi dinamichnih sistem a takozh u teoriyi KAM Zokrema dinamika integrovnoyi gamiltonovoyi sistemi vidbuvayetsya na torah u fazovomu prostori sistemi V elektro ta radiotehnici vikoristovuyetsya toroyidalnij transformator shemi primnozhuvachiv naprugi vidhilennya promeniv EPT tosho Div takozhPovnij tor Bublik SushkaPosilannyaTor Terminologichnij slovnik dovidnik z budivnictva ta arhitekturi R A Shmig V M Boyarchuk I M Dobryanskij V M Barabash za zag red R A Shmiga Lviv 2010 S 194 ISBN 978 966 7407 83 4 Vikishovishe maye multimedijni dani za temoyu Tor Creation of a torus Ce nezavershena stattya z matematiki Vi mozhete dopomogti proyektu vipravivshi abo dopisavshi yiyi