Підтримка
www.wikidata.uk-ua.nina.az
Psevdoobernena matricya uzagalnennya obernenoyi matrici v matematici zokrema v linijnij algebri Matricya psevdoobernena do matrici A displaystyle A poznachayetsya yak A displaystyle A Najvidomishim ye psevdoobernennya Mura Penrouza yake bulo nezalezhno opisano en v 1920 i Rodzherom Penrouzom v 1955 Ranishe v 1903 roci koncepciyu psevdoobernenih integruyuchih operatoriv predstaviv Fredgolm Psevdoobernena matricya zastosovuyetsya dlya znahodzhennya najkrashogo nablizhennya metodom najmenshih kvadrativ rozv yazku SLAR ViznachennyaOznachennya Mura A displaystyle A nazivayetsya psevdoobernenoyu matriceyu do matrici A displaystyle A yaksho vona zadovolnyaye taki umovi A A A A displaystyle AA A A A A displaystyle AA chi A A displaystyle A A ne obov yazkovo dorivnyuvatimut odinichnij matrici A A A A displaystyle A AA A A A A A displaystyle AA AA ce oznachaye sho A A displaystyle AA ermitova matricya A A A A displaystyle A A A A A A displaystyle A A takozh ermitova matricya de A displaystyle A ermitovo spryazhena matricya do matrici A displaystyle A Viznachennya Mura Penrouza cherez granichnij perehid A lim d 0 A A d I 1 A lim d 0 A A A d I 1 displaystyle A lim delta to 0 A A delta I 1 A lim delta to 0 A AA delta I 1 Ci granici isnuyut navit yaksho A A 1 displaystyle AA 1 i A A 1 displaystyle A A 1 ne komutuyut VlastivostiPsevdoobernena matricya zavzhdi isnuye i vona yedina Psevdoobernennya nulovoyi matrici dorivnyuye yiyi transponuvannyu Psevdoobernennya ye oborotnim do samogo sebe A A displaystyle A A Psevdoobernennya komutuye z transponuvannyam spryazhennyam i ermitovim spryazhennyam A T A T A A A A displaystyle A T A T qquad overline A overline A qquad A A Rang matrici dorivnyuye rangu yiyi psevdoobernenoyi r a n k A r a n k A displaystyle rank A rank A Psevdoobernennya dobutku matrici A displaystyle A na skalyar a displaystyle alpha dorivnyuye dobutku matrici A displaystyle A na obernene chislo a 1 displaystyle alpha 1 a A a 1 A a 0 displaystyle alpha A alpha 1 A quad forall alpha neq 0 Yaksho vzhe vidoma matricya A A displaystyle A A chi matricya A A displaystyle AA to yih mozhna vikoristati dlya obchislennya A displaystyle A A A A A displaystyle A A A A A A A A displaystyle A A AA Matrici A A A A displaystyle A A AA ye ortogonalno proyekcijnimi matricyami Yaksho matricya A i displaystyle A i utvorena z matrici A displaystyle A za dopomogoyu vstavki she odnogo nulovogo ryadka stovpcya v i tu poziciyu to A i displaystyle A i bude utvoryuvatis z A displaystyle A dodavannyam nulovogo stovpcya ryadka v i tu poziciyu Yaksho ryadok stovpec v poperednij proceduri ne ye nulovim a i 0 displaystyle a i neq vec 0 to isnuye formula Grevilya dlya virazhennya A i displaystyle A i cherez A A a i displaystyle A A a i Chastkovi vipadkiOrtonormovani stovpci chi ryadki Yaksho v matrici A displaystyle A ortonormovani stovpci A A I displaystyle A A I abo ryadki A A I displaystyle AA I to A A displaystyle A A Povnij rang Yaksho stovpci matrici A displaystyle A linijno nezalezhni todi matricya A A displaystyle A A maye povnij rang a otzhe ye oborotnoyu Todi A A A 1 A displaystyle A A A 1 A Otzhe A A I displaystyle A A I zvidki sliduye sho A displaystyle A liva obernena matricya dlya A Yaksho ryadki matrici A displaystyle A linijno nezalezhni todi matricya A A displaystyle AA maye povnij rang a otzhe ye oborotnoyu Todi A A A A 1 displaystyle A A AA 1 Otzhe A A I displaystyle AA I zvidki sliduye sho A displaystyle A prava obernena matricya dlya A Yaksho i stovpci i ryadki linijno nezalezhni sho virno dlya kvadratnih nevirodzhenih matric todi A A 1 displaystyle A A 1 Ci chastkovi vipadki ekvivalentni pribirannyu dodanka d I displaystyle delta I z formuli viznachennya psevdoobernennya cherez granichnij perehid Psevdoobernennya dobutku Yaksho matrici A displaystyle A i B displaystyle B taki sho dobutok A B displaystyle AB viznachenij a takozh abo A maye ortonormovani stovpci A A displaystyle A A abo B maye ortonormovani ryadki B B displaystyle B B abo stovpci A displaystyle A linijno nezalezhni A A I displaystyle A A I i ryadki B displaystyle B linijno nezalezhni B B I displaystyle BB I Todi A B B A displaystyle AB B A Dovoditsya pryamoyu pidstanovkoyu v viznachennya Skalyari i vektori Psevdoobernennya mozhna viznachiti dlya skalyariv i vektoriv yaksho traktuvati yih yak matrici Psevdoobernennya skalyara x displaystyle x ye skalyar x 0 x 0 x 1 x 0 displaystyle x left begin matrix 0 amp x 0 x 1 amp x neq 0 end matrix right Psevdoobernennya vektora x displaystyle x ye vektor x 0 T x 0 x x x x 0 displaystyle x left begin matrix 0 T amp x 0 x over x x amp x neq 0 end matrix right Dani traktuvannya zadovilnyayut viznachennya psevdoobernennya ObchislennyaZa dopomogoyu A BC rozkladu Nehaj r rang matrici A rozmiru m n displaystyle m times n Todi A mozhe buti predstavlena yak A B C displaystyle A BC de B matricya rozmiru m r displaystyle m times r C matricya rozmiru r n displaystyle r times n Todi A C C C 1 B B 1 B displaystyle A C CC 1 B B 1 B chi A C B A C 1 B displaystyle A C B AC 1 B de C C 1 B B 1 B B C C 1 B A C 1 displaystyle CC 1 B B 1 B BCC 1 B AC 1 matricya menshogo rozmiru r r displaystyle r times r Za dopomogoyu QR rozkladu Matricyu A predstavimo u viglyadi A Q R displaystyle A QR de Q unitarna matricya Q Q Q Q I displaystyle Q Q QQ I i R verhnya trikutna matricya Todi A A Q R Q R R Q Q R R R displaystyle A A QR QR R Q QR R R A R R A displaystyle A R R A Za dopomogoyu SVD rozkladu Yaksho A U S V displaystyle A U Sigma V singulyarne predstavlennya matrici A todi A V S U displaystyle A V Sigma U Dlya diagonalnoyi matrici takoyi yak S displaystyle Sigma psevdoobernena matricya obchislyuyetsya zaminoyu vsih nenulovih znachen diagonalnih elementiv na oberneni Za dopomogoyu minoriv Nehaj k rang matrici A rozmiru m n displaystyle m times n Poznachimo cherez A k displaystyle A k matricyu skladenu z k linijno nezalezhnih stovpciv matrici A cherez A k displaystyle A overline k poznachimo matricyu z k linijno nezalezhnih ryadkiv matrici A cherez A k k displaystyle A kk matricyu z elementiv na peretini A k displaystyle A k z A k displaystyle A overline k Todi A A k A k A k 1 A k k A k A k 1 A k displaystyle A A overline k A overline k A overline k 1 cdot A kk cdot A k A k 1 A k Zastosuvannya do SLARSistema rivnyan A x b displaystyle Ax b mozhe ne mati tochnih rozv yazkiv ale mozhna znajti priblizni rozv yazki taki x displaystyle x pri yakih minimizuyetsya A x b 2 displaystyle Ax b 2 Ce rozv yazok metodom najmenshih kvadrativ Zagalnij rozv yazok sistemi A x b displaystyle Ax b ye sumoyu chastkovogo rozv yazku ciyeyi sistemi ta zagalnogo rozv yazku odnoridnoyi sistemi A x 0 displaystyle Ax 0 Za viznachennyam zagalnij rozv yazok sistemi A x 0 displaystyle Ax 0 ce yadro linijnogo operatora A displaystyle A ker A Z A y displaystyle ker A Z A y de Z A I A A displaystyle Z A I A A proektor na ker A displaystyle ker A y displaystyle y dovilnij vektor tiyeyi zh rozmirnosti sho i x displaystyle x Chastkovim rozv yazkom neodnoridnoyi sistemi ye x A b displaystyle x A b vin ortogonalnij do ker A displaystyle ker A i tomu maye najmenshu normu sered vsih rozv yazkiv Zagalnij rozv yazok A x b displaystyle Ax b yedinij rozv yazok det A A 0 displaystyle det A A neq 0 mnozhina rozv yazkiv det A A 0 displaystyle det A A 0 tochni rozv yazki ye b Z A b 0 displaystyle b Z A b 0 x A b displaystyle x A b W x A b ker A displaystyle Omega x A b ker A tilki priblizni rozv yazki b Z A b 0 displaystyle b Z A b neq 0 Vidstan vid dovilnoyi tochki y displaystyle y do mnozhini rozv yazkiv W x displaystyle Omega x rivna P A y A b P A y A b A A y b displaystyle P A y A b P A y A b A Ay b de P A I Z A displaystyle P A I Z A proektor ortogonalnij do ker A displaystyle ker A DzherelaGantmaher F R Teoriya matric 5 e M Fizmatlit 2010 559 s ISBN 5 9221 0524 8 ros Teoriya matric 2 Moskva Nauka 1982 272 s ros Matrichnyj analiz M Mir 1989 653 s ros Adi Ben Israel Thomas N E Greville 2003 Generalized Inverses Theory and Applications vid druge Springer s 436 s
Топ