Теорема Пойнтінга (англ. Poynting's theorem) — теорема, що описує закон збереження енергії електромагнітного поля. Теорема була доведена у 1884 році Джоном Генрі Пойнтінгом. Все зводиться до наступної формули:
- ,
Де S — вектор Пойнтінга, J — густина струму і E — електричне поле. Густина енергії ( — електрична стала, — магнітна стала).
Теорема Пойнтінга в інтегральній формі:
- ,
де — поверхня, що обмежуює об'єм .
У технічній літературі теорема зазвичай записується наступним чином ( — густина енергії):
- ,
де — густина енергії електричного поля, — густина енергії магнітного поля і — потужність втрат Джоуля на одиницю об'єму.
Доведення
Теорема може бути доведена з допомогою двох рівнянь Максвелла (для простоти вважаємо, що середовище — це вакуум (μ=1, ε=1); для загального випадку з довільним середовищем потрібно у формули до кожного ε0 і μ0 приписати ε і μ):
Домноживши дві частини рівняння на , отримаємо:
Розглянемо спочатку рівняння Максвелла-Ампера:
Домноживши дві частини рівняння на , отримаємо:
Віднявши перше рівняння з другого, отримаємо:
Нарешті:
Оскільки вектор Пойнтінга визначається как:
це рівнозначно:
Узагальнення
Механічна енергія у теоремі визначається як
де u_m — кінетична енергія густини у системі. Вона може бути описана як сума кінетичної енергії частинок α
— потік енергії, або «механічний вектор Пойнтінга»:
Рівняння неперервності енергії, або закон збереження енергії
Альтернативні форми
Можна отримати й інші форми теореми Пойнтінга. Замість того щоб використовувати вектор потоку можна вибрати форму Авраама , форму Мінковського , або якусь іншу.
Джерела
- Eric W. Weisstein "Poynting Theorem" From ScienceWorld – A Wolfram Web Resource.
- 5.1. ТЕОРЕМА УМОВА - ПОЙНТІНГА, c.91. Основи електродинаміки. Клубіс Я.Д., Шкатуляк Н.М.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Teorema Pojntinga angl Poynting s theorem teorema sho opisuye zakon zberezhennya energiyi elektromagnitnogo polya Teorema bula dovedena u 1884 roci Dzhonom Genri Pojntingom Vse zvoditsya do nastupnoyi formuli u t S J E displaystyle frac partial u partial t nabla cdot mathbf S mathbf J cdot mathbf E De S vektor Pojntinga J gustina strumu i E elektrichne pole Gustina energiyi u displaystyle u ϵ0 displaystyle epsilon 0 elektrichna stala m0 displaystyle mu 0 magnitna stala u 12 e0E2 B2m0 displaystyle u frac 1 2 left varepsilon 0 mathbf E 2 frac mathbf B 2 mu 0 right Teorema Pojntinga v integralnij formi t Vu dV VS dA VJ E dV displaystyle frac partial partial t int V u dV oint partial V mathbf S d mathbf A int V mathbf J cdot mathbf E dV de V displaystyle partial V poverhnya sho obmezhuyuye ob yem V displaystyle V U tehnichnij literaturi teorema zazvichaj zapisuyetsya nastupnim chinom u displaystyle u gustina energiyi S e0E E t Bm0 B t J E 0 displaystyle nabla cdot mathbf S varepsilon 0 mathbf E cdot frac partial mathbf E partial t frac mathbf B mu 0 cdot frac partial mathbf B partial t mathbf J cdot mathbf E 0 de e0E E t displaystyle varepsilon 0 mathbf E cdot frac partial mathbf E partial t gustina energiyi elektrichnogo polya Bm0 B t displaystyle frac mathbf B mu 0 cdot frac partial mathbf B partial t gustina energiyi magnitnogo polya i J E displaystyle mathbf J cdot mathbf E potuzhnist vtrat Dzhoulya na odinicyu ob yemu DovedennyaTeorema mozhe buti dovedena z dopomogoyu dvoh rivnyan Maksvella dlya prostoti vvazhayemo sho seredovishe ce vakuum m 1 e 1 dlya zagalnogo vipadku z dovilnim seredovishem potribno u formuli do kozhnogo e0 i m0 pripisati e i m E B t displaystyle nabla times mathbf E frac partial mathbf B partial t Domnozhivshi dvi chastini rivnyannya na B displaystyle mathbf B otrimayemo B E B B t displaystyle mathbf B cdot nabla times mathbf E mathbf B cdot frac partial mathbf B partial t Rozglyanemo spochatku rivnyannya Maksvella Ampera B m0J ϵ0m0 E t displaystyle nabla times mathbf B mu 0 mathbf J epsilon 0 mu 0 frac partial mathbf E partial t Domnozhivshi dvi chastini rivnyannya na E displaystyle mathbf E otrimayemo E B E m0J E ϵ0m0 E t displaystyle mathbf E cdot nabla times mathbf B mathbf E cdot mu 0 mathbf J mathbf E cdot epsilon 0 mu 0 frac partial mathbf E partial t Vidnyavshi pershe rivnyannya z drugogo otrimayemo E B B E m0E J ϵ0m0E E t B B t displaystyle mathbf E cdot nabla times mathbf B mathbf B cdot nabla times mathbf E mu 0 mathbf E cdot mathbf J epsilon 0 mu 0 mathbf E cdot frac partial mathbf E partial t mathbf B cdot frac partial mathbf B partial t Nareshti E B m0E J ϵ0m0E E t B B t displaystyle nabla cdot mathbf E times mathbf B mu 0 mathbf E cdot mathbf J epsilon 0 mu 0 mathbf E cdot frac partial mathbf E partial t mathbf B cdot frac partial mathbf B partial t Oskilki vektor Pojntinga S displaystyle mathbf S viznachayetsya kak S 1m0E B displaystyle mathbf S frac 1 mu 0 mathbf E times mathbf B ce rivnoznachno S ϵ0E E t Bm0 B t J E 0 displaystyle nabla cdot mathbf S epsilon 0 mathbf E cdot frac partial mathbf E partial t frac mathbf B mu 0 cdot frac partial mathbf B partial t mathbf J cdot mathbf E 0 UzagalnennyaMehanichna energiya u teoremi viznachayetsya yak tum r t Sm r t J r t E r t displaystyle frac partial partial t u m mathbf r t nabla cdot mathbf S m mathbf r t mathbf J mathbf r t cdot mathbf E mathbf r t de u m kinetichna energiya gustini u sistemi Vona mozhe buti opisana yak suma kinetichnoyi energiyi chastinok a um r t ama2r a2d r ra t displaystyle u m mathbf r t sum alpha frac m alpha 2 dot r alpha 2 delta mathbf r mathbf r alpha t Sm displaystyle mathbf S m potik energiyi abo mehanichnij vektor Pojntinga Sm r t ama2r a2r ad r ra t displaystyle mathbf S m mathbf r t sum alpha frac m alpha 2 dot r alpha 2 dot mathbf r alpha delta mathbf r mathbf r alpha t Rivnyannya neperervnosti energiyi abo zakon zberezhennya energiyi t ue um Se Sm 0 displaystyle frac partial partial t left u e u m right nabla cdot left mathbf S e mathbf S m right 0 Alternativni formiMozhna otrimati j inshi formi teoremi Pojntinga Zamist togo shob vikoristovuvati vektor potoku S E B displaystyle mathbf S propto mathbf E times mathbf B mozhna vibrati formu Avraama E H displaystyle mathbf E times mathbf H formu Minkovskogo D B displaystyle mathbf D times mathbf B abo yakus inshu DzherelaEric W Weisstein Poynting Theorem From ScienceWorld A Wolfram Web Resource 5 1 TEOREMA UMOVA POJNTINGA c 91 Osnovi elektrodinamiki Klubis Ya D Shkatulyak N M