Підтримка
www.wikidata.uk-ua.nina.az
U teoriyi miri teorema Gana pro rozklad ye tverdzhennyam pro vlastivosti zaryadiv Nazvana na chest avstrijskogo matematika Gansa Gana U vipadku sigma aditivnogo zaryadu na s algebri cya teorema i pov yazana teorema pro rozklad Zhordana dozvolyayut faktichno zvesti teoriyu zaryadiv i integraliv na nih do vidpovidnoyi teoriyi miri Tverdzhennya teoremiDlya bud yakogo vimirnogo prostoru X S displaystyle X Sigma i bud yakogo sigma aditivnogo zaryadu m displaystyle mu viznachenogo na s displaystyle sigma algebri S displaystyle Sigma isnuyut S displaystyle Sigma vimirni mnozhini P displaystyle P i N displaystyle N dlya yakih P N X displaystyle P cup N X i P N displaystyle P cap N varnothing Dlya kozhnoyi mnozhini E S displaystyle E in Sigma takogo yaksho E P displaystyle E subseteq P to m E 0 displaystyle mu E geqslant 0 tobto na vsih vimirnih pidmnozhinah mnozhini P displaystyle P znachennya zaryadu m displaystyle mu ye ne menshim 0 mnozhini P displaystyle P iz takoyu vlastivistyu nazivayutsya dodatnimi Dlya kozhnoyi mnozhini E S displaystyle E in Sigma takogo yaksho E N displaystyle E subseteq N to m E 0 displaystyle mu E leqslant 0 tobto na vsih vimirnih pidmnozhinah mnozhini N displaystyle N znachennya zaryadu m displaystyle mu ye ne bilshim 0 mnozhini N displaystyle N iz takoyu vlastivistyu nazivayutsya vid yemnimi Bilshe togo cej rozklad ye majzhe yedinim u sensi sho dlya bud yakoyi inshoyi pari P N displaystyle P N mnozhin iz S displaystyle Sigma dlya yakih vikonuyutsya ci tri umovi simetrichni riznici P P displaystyle P triangle P i N N displaystyle N triangle N ye mayut miru nul razom iz usima yih pidmnozhinami Para P N displaystyle P N nazivayetsya rozkladom Gana zaryadu m displaystyle mu DovedennyaMozhna vvazhati sho m displaystyle mu ne prijmaye znachennya displaystyle infty v inshomu vipadku mozhna rozglyadati miru m displaystyle mu Tverdzhennya pro vid yemni mnozhini Nehaj D S displaystyle D in Sigma i m D 0 displaystyle mu D leqslant 0 Todi isnuye vid yemna mnozhina A D displaystyle A subseteq D tobto mnozhina A S displaystyle A in Sigma taka sho dlya kozhnoyi S displaystyle Sigma vimirnoyi pidmnozhini B A displaystyle B subseteq A takozh m B 0 displaystyle mu B leqslant 0 dlya yakoyi m A m D displaystyle mu A leqslant mu D Dovedennya Nehaj A 0 D displaystyle A 0 D i za pripushennyam indukciyi dlya n N 0 displaystyle n in mathbb N 0 pobudovana mnozhina A n D displaystyle A n subseteq D Nehaj t n displaystyle t n poznachaye supremum m B displaystyle mu B dlya usih S displaystyle Sigma vimirnih pidmnozhin B displaystyle B mnozhini A n displaystyle A n Cej supremum mozhe buti neskinchennim Oskilki porozhnya mnozhina displaystyle varnothing ye pidmnozhinoyu A n displaystyle A n to t n 0 displaystyle t n geqslant 0 Zgidno oznachennya t n displaystyle t n isnuye S displaystyle Sigma vimirna pidmnozhina B n A n displaystyle B n subseteq A n dlya yakoyi m B n min 1 t n 2 displaystyle mu B n geqslant min left 1 frac t n 2 right Todi krok indukciyi zavershuyetsya yaksho prijnyati A n 1 A n B n displaystyle A n 1 A n setminus B n Ostatochno nehaj A D n 0 B n displaystyle A D Bigg backslash bigcup n 0 infty B n Oskilki mnozhini B n n 0 displaystyle B n n 0 infty poparno ne peretinayutsya to iz sigma aditivnosti zaryadu m displaystyle mu viplivaye sho m A m D n 0 m B n m D n 0 min 1 t n 2 displaystyle mu A mu D sum n 0 infty mu B n leqslant mu D sum n 0 infty min left 1 frac t n 2 right Zokrema zvidsi viplivaye sho m A m D displaystyle mu A leqslant mu D Yaksho A displaystyle A ne ye vid yemnoyu mnozhinoyu to isnuye S displaystyle Sigma vimirna pidmnozhina B A displaystyle B subseteq A yaka zadovolnyaye m B gt 0 displaystyle mu B gt 0 Oskilki za pobudovoyu takozh B A n displaystyle B subseteq A n dlya kozhnogo n N 0 displaystyle n in mathbb N 0 to i t n m B displaystyle t n geqslant mu B tozh suma ryadu pravoruch ye rivnoyu displaystyle infty i tomu takozh m A displaystyle mu A infty sho superechit pripushennyu Otzhe takoyi mnozhini B displaystyle B ne isnuye i A displaystyle A ye vid yemnoyu mnozhinoyu Pobudova rozkladu Gana Nehaj N 0 displaystyle N 0 varnothing i za indukciyeyu pri vzhe nayavnomu N n displaystyle N n nehaj s n displaystyle s n poznachaye infimum m D displaystyle mu D dlya usih S displaystyle Sigma vimirnih pidmnozhin D displaystyle D mnozhini X N n displaystyle X setminus N n Cej infimum mozhe buti rivnim displaystyle infty Oskilki porozhnya mnozhina displaystyle varnothing ye pidmnozhinoyu X N n displaystyle X setminus N n to s n 0 displaystyle s n leqslant 0 Otzhe isnuye S displaystyle Sigma vimirna pidmnozhina D n X N n displaystyle D n subseteq X setminus N n dlya yakoyi m D n max s n 2 1 0 displaystyle mu D n leqslant max left frac s n 2 1 right leqslant 0 Zgidno z navedenim vishe tverdzhennyam isnuye vid yemna mnozhina A n D n displaystyle A n subseteq D n taka sho m A n m D n displaystyle mu A n leqslant mu D n Todi dlya zavershennya kroku indukciyi mozhna poznachiti N n 1 N n A n displaystyle N n 1 N n cup A n Ostatochno takozh N n 0 A n displaystyle N bigcup n 0 infty A n Oskilki mnozhini A n n 0 displaystyle A n n 0 infty poparno ne peretinayutsya dlya kozhnoyi S displaystyle Sigma vimirnoyi pidmnozhini B N displaystyle B subseteq N m B n 0 m B A n displaystyle mu B sum n 0 infty mu B cap A n zgidno sigma aditivnosti zaryadu m displaystyle mu Zokrema N displaystyle N ye vid yemnoyu mnozhinoyu Yaksho poznachiti P X N displaystyle P X setminus N to P displaystyle P ye dodatnoyu mnozhinoyu Yakbi ce bulo ne tak to isnuvala b S displaystyle Sigma vimirna pidmnozhina D P displaystyle D subseteq P dlya yakoyi m D lt 0 displaystyle mu D lt 0 Ale todi s n m D displaystyle s n leqslant mu D dlya vsih n N 0 displaystyle n in mathbb N 0 i m N n 0 m A n n 0 max s n 2 1 displaystyle mu N sum n 0 infty mu A n leqslant sum n 0 infty max left frac s n 2 1 right infty sho superechit pripushennyu pro m displaystyle mu Otzhe P displaystyle P ye dodatnoyu mnozhinoyu Vlastivist majzhe yedinosti Yaksho N P displaystyle N P ye she odnim rozkladom Gana dlya X displaystyle X to P N displaystyle P cap N ye vodnochas dodatnoyu i vid yemnoyu mnozhinoyu Otzhe kozhna jogo vimirna pidmnozhina maye miru nul Te zh same stosuyetsya i N P displaystyle N cap P Rivnosti P P N N P N N P displaystyle P triangle P N triangle N P cap N cup N cap P i aditivnist zaryadu zavershuyut dovedennya teoremi Rozklad Zhordana zaryaduNaslidkom teoremi Gana pro rozklad ye Teorema Zhordana pro rozklad yaka stverdzhuye sho dlya kozhnogo sigma aditivnogo zaryadu m displaystyle mu zadanogo na S displaystyle Sigma isnuye rozklad m m m displaystyle mu mu mu na riznicyu dvoh mir m displaystyle mu i m displaystyle mu prinajmni odna iz yakih ye skinchennoyu Teorema Zhordana vidrazu viplivaye iz teoremi Gana yaksho dlya dovilnoyi S displaystyle Sigma vimirnoyi mnozhini E displaystyle E vidpovidni miri viznachiti yak m E m E P displaystyle mu E mu E cap P m E m E N displaystyle mu E mu E cap N dlya bud yakogo rozkladu Gana P N displaystyle P N zaryadu m displaystyle mu Dlya pobudovanih tak mir takozh dlya bud yakogo rozkladu Gana P N displaystyle P N takozh m E 0 displaystyle mu E 0 dlya S displaystyle Sigma vimirnih pidmnozhin E N displaystyle E subseteq N i m E 0 displaystyle mu E 0 dlya S displaystyle Sigma vimirnih pidmnozhin E P displaystyle E subseteq P Miri m displaystyle mu i m displaystyle mu viznacheni za dopomogoyu rozkladu Gana nazivayutsya dodatnoyu i vid yemnoyu skladovoyu zaryadu m displaystyle mu vidpovidno Para m m displaystyle mu mu nazivayetsya rozkladom Zhordana abo rozkladom Gana Zhordana zaryadu m displaystyle mu Rozklad Zhordana ye yedinim jogo oznachennya ne zalezhit vid viboru rozkladu Gana Ekvivalentno oznachennya mir iz rozkladu Zhordana m m displaystyle mu mu dlya zaryadu m displaystyle mu mozhna oderzhati iz rivnostej m E sup B S B E m B displaystyle mu E sup B in Sigma B subseteq E mu B m E inf B S B E m B displaystyle mu E inf B in Sigma B subseteq E mu B dlya bud yakogo E displaystyle E u S displaystyle Sigma Rozklad Zhordana ye minimalnim iz usih rozkladiv zaryadu yak riznici mir yaksho takozh m n n displaystyle mu nu nu dlya pari n n displaystyle nu nu nevid yemnih mir na X displaystyle X to n m n m displaystyle nu geqslant mu quad nu geqslant mu Miri m m displaystyle mu mu iz rozkladu Zhordana ye singulyarnimi Mira m m m displaystyle mu mu mu nazivayetsya povnoyu variaciyeyu zaryadu m displaystyle mu Div takozhZaryad teoriya miri PosilannyaHahn decomposition theorem na sajti PlanetMath Hazewinkel Michiel red 2001 Hahn decomposition Matematichna enciklopediya Springer ISBN 978 1 55608 010 4 Hazewinkel Michiel red 2001 Jordan decomposition of a signed measure Matematichna enciklopediya Springer ISBN 978 1 55608 010 4LiteraturaBillingsley Patrick 1995 Probability and Measure Third Edition Wiley Series in Probability and Mathematical Statistics New York John Wiley amp Sons ISBN 0 471 00710 2 Fischer Tom 2012 Existence uniqueness and minimality of the Jordan measure decomposition arXiv 1206 5449 math ST
Топ