Нері́вність Ма́ркова у теорії ймовірності дає оцінку ймовірності того, що випадкова величина перевищить за модулем фіксовану додатну константу, в термінах її математичного сподівання. Отримувана оцінка зазвичай досить груба. Проте, вона дозволяє отримати певне уявлення про розподіл, коли він не є явно відомим.
Формулювання
В термінах теорії міри, нерівність Маркова стверджує, що для вимірного простору з мірою заданій на ньому, вимірної узагальнено-дійснозначної функції f і t > 0, маємо
У випадку коли міра простору 1 (тобто, маємо справу з ймовірносним простором), твердження нерівності можна представити: нехай випадкова величина визначена на ймовірносному просторі , і її математичне сподівання скінченне. Тоді для a>0
- ,
де .
якщо розглянути випадкову величину , то отримаємо нерівність Чебишева:
Доведення
Мовою теорії ймовірності
З означення сподівання:
Однак, X невід'ємна випадкова змінна тому,
З цього отримуємо,
Тепер легко видно, що
Мовою теорії міри
Припустимо, що функція невід'ємна, оскільки у рівнянні з'являються лише абсолютні значення. Тепер, розглянемо дійснозначиму функцію на задану через
Тоді . Згідно з визначенням інтеграла Лебега
і, з того, що , обидві сторони можна поділити на , отримуючи
Приклад
Хай — невід'ємна випадкова величина. Тоді, узявши , отримаємо
- .
Див. також
Джерела
- Карташов М. В. Імовірність, процеси, статистика. — Київ : ВПЦ Київський університет, 2007. — 504 с.
- Гнеденко Б. В. Курс теории вероятностей. — 6-е изд. — Москва : Наука, 1988. — 446 с.(рос.)
- Гихман И. И., Скороход А. В., Ядренко М. В. Теория вероятностей и математическая статистика. — Київ : Вища школа, 1988. — 436 с.(рос.)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Neri vnist Ma rkova u teoriyi jmovirnosti daye ocinku jmovirnosti togo sho vipadkova velichina perevishit za modulem fiksovanu dodatnu konstantu v terminah yiyi matematichnogo spodivannya Otrimuvana ocinka zazvichaj dosit gruba Prote vona dozvolyaye otrimati pevne uyavlennya pro rozpodil koli vin ne ye yavno vidomim FormulyuvannyaV terminah teoriyi miri nerivnist Markova stverdzhuye sho dlya vimirnogo prostoru W F displaystyle Omega mathcal F z miroyu m displaystyle displaystyle mu zadanij na nomu vimirnoyi uzagalneno dijsnoznachnoyi funkciyi f i t gt 0 mayemo m x X f x t 1 t X f d m displaystyle mu x in X f x geq t leq 1 over t int X f d mu U vipadku koli mira prostoru 1 tobto mayemo spravu z jmovirnosnim prostorom tverdzhennya nerivnosti mozhna predstaviti nehaj vipadkova velichina X W R displaystyle X Omega to mathbb R viznachena na jmovirnosnomu prostori W F P displaystyle Omega mathcal F mathbb P i yiyi matematichne spodivannya skinchenne Todi dlya a gt 0 P X a E X a displaystyle mathbb P left X geqslant a right leqslant frac mathbb E X a de a gt 0 displaystyle a gt 0 yaksho rozglyanuti vipadkovu velichinu X E X displaystyle displaystyle X textrm E X to otrimayemo nerivnist Chebisheva P X E X a Var X a 2 displaystyle textrm P X textrm E X geq a leq frac textrm Var X a 2 DovedennyaMovoyu teoriyi jmovirnosti Z oznachennya spodivannya E X x f x d x displaystyle operatorname E X int infty infty xf x dx Odnak X nevid yemna vipadkova zminna tomu E X x f x d x 0 x f x d x displaystyle operatorname E X int infty infty xf x dx int 0 infty xf x dx Z cogo otrimuyemo E X 0 a x f x d x a x f x d x a x f x d x a a f x d x a a f x d x a P X a displaystyle operatorname E X int 0 a xf x dx int a infty xf x dx geq int a infty xf x dx geq int a infty af x dx a int a infty f x dx a operatorname P X geq a Teper legko vidno sho P X a E X a displaystyle operatorname P X geq a leq operatorname E X a Movoyu teoriyi miri Pripustimo sho funkciya f displaystyle f nevid yemna oskilki u rivnyanni z yavlyayutsya lishe absolyutni znachennya Teper rozglyanemo dijsnoznachimu funkciyu s displaystyle s na X displaystyle X zadanu cherez s x e f x e 0 f x lt e displaystyle s x begin cases varepsilon amp f x geq varepsilon 0 amp f x lt varepsilon end cases Todi 0 s x f x displaystyle 0 leq s x leq f x Zgidno z viznachennyam integrala Lebega X f x d m X s x d m e m x X f x e displaystyle int X f x d mu geq int X s x d mu varepsilon mu x in X f x geq varepsilon i z togo sho e gt 0 displaystyle varepsilon gt 0 obidvi storoni mozhna podiliti na e displaystyle varepsilon otrimuyuchi m x X f x e 1 e X f d m displaystyle mu x in X f x geq varepsilon leq 1 over varepsilon int X f d mu PrikladHaj X 0 displaystyle X geqslant 0 nevid yemna vipadkova velichina Todi uzyavshi a 2 E X displaystyle a 2 operatorname E X otrimayemo P X 2 E X 1 2 displaystyle operatorname P X geqslant 2 operatorname E X leqslant frac 1 2 Div takozhNerivnist Chebishova Markov Andrij AndrijovichDzherelaKartashov M V Imovirnist procesi statistika Kiyiv VPC Kiyivskij universitet 2007 504 s Gnedenko B V Kurs teorii veroyatnostej 6 e izd Moskva Nauka 1988 446 s ros Gihman I I Skorohod A V Yadrenko M V Teoriya veroyatnostej i matematicheskaya statistika Kiyiv Visha shkola 1988 436 s ros